首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
高原地区是我国雷暴天气多发区之一。通过对大气电场仪所测得雷电过程地面电场变化特征的分析有助于了解这一地区的雷暴特征,对认识该地区雷暴过程特征有一定的参考价值。对雷暴过程初期的地面电场波形变化的曲线拟合,总结出了共同的特征,为地面电场资料在雷电预警预报中的应用提供了参考价值。对雷暴过程地面电场资料的特征分析以及预报方面的研究都是很有现实意义的。  相似文献   

2.
为了了解海南文昌地区雷暴电环境的基本特征,利用安装于距地面3.5 m 楼顶的大气电场仪和雨量资料,分析了文昌夏季阵性降水对应不同类型的电场特征、单体雷暴活动电场演变规律及降水和闪电之间的关系。通过分析发现过观测场顶部无闪电的阵性降水过程地面电场极值较小,电场和降水基本呈现反向同步的变化特征。过顶单体雷暴在闪电发生前,地面电场提前产生扰动,明显的扰动一般提前于电场过零点约15~30 分钟,第1 次闪电发生一般提前于降水20~30 分钟。统计多次较强单体雷暴过程发现,阵性降水之前和降水过程中闪电比较密集,降水后期闪电较少发生,降水强度和闪电频次有一定的正比例关系。典型单体雷暴进入衰退期电场变化呈现出较为明显的阻尼振荡(EOSO)。   相似文献   

3.
选取2003年藏北高原那曲地区的两次典型过顶雷暴过程,首先总结了它们的层结特征,然后利用一个只考虑感应和非感应起电机制的三维强风暴动力和电耦合模式模拟了两次雷暴过程的电荷结构,最后从微物理场和流场出发讨论了高原雷暴电荷结构特征及其主要形成原因。结果表明,由于高原平均地表温度较低, 雷暴云反转温度层以下的起电区域较小,强的垂直上升速度使大粒子能够到达较高的高度,增加了大小粒子碰并几率,易形成明显的三极性电荷结构特征;较弱的上升速度易使大小粒子比含水量中心受重力作用过早的分离,高层的小粒子和低层的大粒子基本不参与起电活动,云底部和上部的正电荷区减弱。  相似文献   

4.
青藏高原雷暴弱降水云微物理特征的卫星反演分析   总被引:8,自引:3,他引:8       下载免费PDF全文
选取青藏高原3个雷暴弱降水过程,以极轨卫星反演云微物理特征分析方法为主,结合地面实况和探空资料,探讨了云微物理特征及这类雷暴形成的可能原因.结果表明:(1)这类云的云底温度较低,为0℃左右,离地面1~2 km,属冷云底的对流云.与暖云底(云底温度15~20℃)相比,冷云底导致云中的水成物少,释放潜热少,这可能是该区域强...  相似文献   

5.
一次单体雷暴的地面电场演变特征   总被引:2,自引:0,他引:2  
付伟基 《贵州气象》2006,30(6):13-16
该文利用地面电场资料、多普勒雷达、卫星观测以及常规天气资料,揭示单体雷暴对流系统的电场演变特征。通过对雷暴单体地面电场曲线演变特征的分析研究,结果表明这次单体雷暴的电荷分布为三极性结构,一般为上正下负,云底附近有一小正电荷区,为电场资料在单体雷暴天气分析预报中的应用积累了基础资料。  相似文献   

6.
海风雷暴的观测分析和数值模拟研究进展   总被引:4,自引:0,他引:4  
沿海地区经济相对繁荣,城市化水平较高,对天气和气候的依赖性强,突发性强对流天气所造成的灾害也会更加严重;同时沿海地区的强对流天气又与海风环流密切相关,因此沿海地区海风雷暴的研究受到了日益广泛的关注,成为了气象学和大气科学中的重要研究对象。在过去的半个多世纪中,海风雷暴的观测和模拟研究取得了大量的研究成果。本文通过对这些研究工作进行回顾和总结,系统地分析了国内外的研究现状,重点讨论了海风雷暴的结构和特征、发展演变过程、触发机制及其预报预警。最后对海风雷暴未来的研究方向进行了探讨,提出了一些有待于研究或需深入研究的问题,以利于今后更好的开展有关海风雷暴的工作,加深对其发生发展规律的认识,提高预报预警水平。  相似文献   

7.
张廷龙  言穆弘  张彤  赵阳 《高原气象》2010,29(6):1524-1532
针对中国内陆高原地区雷暴多为孤立且尺度较小的特征,假定孤立雷暴在闪电发生前,当地面电场处于平稳状态时,云内的电荷区在水平方向上均匀分布,且只与垂直高度有关。根据云厚可将雷暴云在垂直方向上分为若干个厚度相等的区域,地面电场值即为雷暴云内多个水平均匀分布的电荷区域共同作用的结果。在此理论假设基础上,利用甘肃中川地区一次典型雷暴过程引起的多站地面电场观测资料,对该雷暴过程的电荷结构及其演变特征进行最小二乘法的拟合研究。结果表明,在雷暴发展演变过程中,其下部始终存在一范围和强度都较大的正电荷区,同时在雷暴云顶部存在强度较小的负电荷区,使得雷暴整体上呈四极性电荷结构。通过与雷达回波的对比,发现雷暴电荷中心与雷达强回波中心位置大体一致。  相似文献   

8.
在夏季 ,人们常遇到”雷声大雨点稀”、”只刮风不下雨”这样的天气。出现这种局地天气 ,绝大部分是雷暴单体造成的。所以 ,掌握雷暴单体结构、地面流场和降水特征 ,有助于对夏季局地天气的预报。1 雷暴单体的结构及地面流场雷暴单体自西向东移动时 ,云体前部是上升区 ,对应地面为低压辐合运动区 ;云体中后部是下沉运动区 ,对应地面为高压辐散运动区。由于局地雷暴为中小尺度 ,不考虑地转偏向力的影响 ,因而空气水平运动方向基本和气压梯度力一致 ,在云体前部 ,由四周向低压中心辐合 ,在云体后部 ,有小高压中心向外辐散。云体前部的小低压 …  相似文献   

9.
《高原气象》2003,22(3):275-280
利用NOx分析仪和大气平均电场仪在青海省大通县对雷暴天气过程中自然闪电产生的NOx进行了地面观测.分析结果表明 在晴天稳定大气条件下, 全天NOx的平均体积混合比相对比较平稳, 观测值虽然比理想中的干净背景大气条件下的地面值要大一些, 但比污染大气中的值小许多; 在雷暴天气中, 闪电次数与NOx的平均体积混合比峰值个数相同, 且峰值由闪电产生.闪电产生的NOx的平均体积混合比峰值在出现时间上比闪电有一定的滞后.雷暴过程中各次闪电产生NOx的传输时间序列变化, 可用二次多项式进行拟合, 且相关系数较高, 传输时间和传输距离之间不存在严格的线性关系.高、低能量闪电的能量域值为12~13×106J, 高、低能量的闪电是间隔发生的, 且随着时间的推移间隔增大.  相似文献   

10.
青藏高原地面热源观测研究的进展   总被引:4,自引:8,他引:4  
季国良  钟强 《高原气象》1989,8(2):126-132
1.历史的回顾青藏高原不仅在大地形的动力方面影响着我国和亚州的大气环流,而且在高原地面加热场和地一气系统的能量收支方面对我国、亚州甚至北半球的天气气候产生着重大的影响,因此,几十年来一直为国内外气象学家们所关注。为了揭示高原地区地面热状况及其对天气气候影响的本质,我国气象工作者从50年代开始就对此进行了大量的研究。然而,在如此辽阔的高原地区,至今仍仅有很少的日射观测台站,这就给研究工作带来了极大的困难。为  相似文献   

11.
利用NCEP/NCAR再分析月平均资料,分析了1948-2009年夏季青藏高原(下称高原)600hPa位势高度场的变化趋势,发现整个高原位势高度场都出现大范围的升高,低压中心主要位于27.5°-40°N、80°-102.5°E范围内,定义该范围内位势高度场的平均值为高原夏季低压指数。采用经验正交函数分解(EOF)和小波分析等方法对近62年夏季高原低压的年际和年代际变化特征进行了分析。结果表明,近62年夏季高原低压总体呈减弱趋势,在20世纪80年代之前,夏季高原低压指数均处于低值范围,并在1962年出现最小值,在1979年左右出现最大值,之后在高值范围内上下振荡;空间分布表现为低压在高原大部分区域均为由南向北递增,呈明显的纬向分布;低压在1976年发生了一次较明显的减弱突变。小波分析表明,低压具有1~2年和13年周期。利用中国596个测站的月降水资料,采用相关分析和合成分析等方法分析了高原低压与我国夏季降水的关系,分析表明,高原低压增强时长江流域和新疆地区的降水偏多,而东北、华北和华南地区的降水则偏少。  相似文献   

12.
青藏高原地表温度的变化分析   总被引:51,自引:15,他引:51  
利用青藏高原86个气象观测站建站~2001年历年各月地面0cm温度资料,在分析高原冬季、夏季和年平均地表温度基本气候特征的基础上,通过主成分分析、主值函数和功率谱分析等方法,对高原地表温度异常变化的空间结构和时间演变趋势作了诊断研究。结果表明:高原地表温度主要受海拔高度与纬度的影响,海拔越高温度越低,纬度越高温度越低。年平均温度最高值在雅鲁藏布江河谷的察隅为14.9℃;夏季平均温度最高值在柴达木盆地的格尔木为23.0℃。高原外围的南疆盆地南缘,川西温度更高,但其中心不在高原。高原地表温度最低值在中部的托托河、五道梁,年平均温度为-0.2℃,冬季更低,平均为~14.2~-15.8℃;夏季平均地表温度最低值在清水河为9.8℃,7月平均温度为10.7℃。高原地表温度第一载荷向量除南部小范围为负值外,大部分地方为一致的正值,即第一空间尺度表现为整体一致性;第二空间尺度有南正(负)北负(正)之差异。第一主分量在近30年中表现为明显的上升趋势,主要反映了高原主体偏北和东北部地区地表温度显著升温趋势,而第二主分量的缓慢下降说明高原中部和东南部地表温度呈下降趋势。代表站温度变化表现出准3年和准6年的周期振荡。铁路线北段和南段线性升温率较大,在0.42~0.58℃/10a之间;铁路线中段的高海拔地区升温率较小,为0.32~0.39℃/10a。  相似文献   

13.
青藏高原东部雨季OLR与降水变化特征及相关分析   总被引:1,自引:6,他引:1  
柳苗  李栋梁 《高原气象》2007,26(2):249-256
利用美国NOAA系列气象卫星观测的1974年6月—2003年12月(其中1978年3~12月缺测)2.5°×2.5°经纬网格月平均射出长波辐射(OLR)资料,以及青藏高原上84个测站同期月总降水量资料,采用EOF方法,取前3个载荷向量及主分量讨论其空间和时间变化特征。结果表明:(1)在雨季(5~9月)降水量的高值中心与OLR的低值中心基本重合,OLR可以较好地反映降水情况。(2)近30年雨季高原台站平均降水量呈增加趋势,高原平均OLR有减小趋势,两者在时间变化上有较好的反相关性。(3)在雨季,高原OLR东南部低,西北部高;降水量的分布则相反,是东南多西北少,OLR低值中心与降水高值中心相对应,在高原主体两者之间的相关系数达到了-0.35以上(通过α=0.05显著性水平检验)。(4)降水与OLR在整体空间特征中呈相反趋势,结合主分量(PC1~PC3)的变化,可以得到高原北部降水减少,南部增加;而OLR则相反,北部增大、南部减小。OLR与降水的空间异常特性呈相反变化分布,这进一步揭示了在高原雨季OLR与降水两者的负相关关系。  相似文献   

14.
青藏高原低涡活动对降水影响的统计分析   总被引:6,自引:0,他引:6  
郁淑华  高文良  彭骏 《高原气象》2012,31(3):592-604
利用1998—2004年逐日08:00(北京时,下同)和20:00 500hPa高空图、日雨量和青藏高原低涡(下称高原低涡)切变线年鉴资料,统计分析了冬、夏半年不同生命史的高原低涡对我国和四川盆地东、西部降水的影响。结果表明,冬、夏半年高原低涡以东部涡占多数,6-10月有三分之一的东部涡能移出高原。冬半年高原低涡出现次数少,约占全年的五分之一,但也可造成高原及其周边地区的雨雪天气,特别是生命史超过36h以上的高原低涡有近半数可移出高原,造成高原区域暴雨雪,四川盆地中雨,半数可造成云南大雨雪或暴雨雪。夏半年,随着低涡生命史的增长,高原低涡影响高原及其周边地区和我国其他地区的降水范围和强度在增大,生命史超过60h以上的高原低涡可造成高原暴雨、甘肃中雨以上、四川盆地暴雨或大暴雨及云南大部分地区大雨以上的降水,每年都有1~5次可影响到华中、华东地区产生大雨以上的降水。100°E以东的高原低涡,不论是否移出,均可造成四川盆地中雨以上的降水。影响四川盆地降水的高原低涡以偏东路径为主,但东南路径影响更强。  相似文献   

15.
青藏高原地面加热场强度与ENSO循环的关系   总被引:7,自引:1,他引:7  
分析了近50年青藏高原地面加热场强度距平指数、Ni~no C区海温指数、SOI和印缅槽指数的统计相关,结果表明,ENSO指数和印缅槽指数在月、季时间尺度上具有很好的持续性。青藏高原地面加热场强度距平指数和印缅槽指数与Ni~no C区海温指数存在很好的正相关,与SOI有显著的负相关。由此建立了一个通过印缅槽将ENSO循环与青藏高原地面加热场联系起来,解释西北区东部及河套干旱形成的概念模型。  相似文献   

16.
青藏高原强对流雷暴云分布特征   总被引:21,自引:10,他引:21  
利用青藏高原1950—2000年50年5~9月的雷暴天气资料,特别是近20年在青藏高原多次实验观测的地面和高空天气资料及部分雷达回波资料,揭示了青藏铁路沿线强对流雷暴天气分布的变化特征及高原强雷暴云日变化和强雷暴云生命史特点。结果表明,夏季青藏铁路沿线强雷暴天气由北向南增加,多雷暴中心在高原中部的那曲、安多和索县一带,呈东西向,与青藏高原山脉走向一致。雷暴发生次数年均达到90次,5~9月占全年的97%。青藏高原强对流雷暴云中有87%产生霰和强阵性降雨,其中有63%为雨夹雹。高原强雷暴云从5月月均达到10次后逐月增加,6月猛增到20次左右,7月最多月均达到25次以上,8月较多达到20次以上,9月减少到20次。高原雷暴云发生时段主要在15~22时(北京时,下同),由北向南推迟,那曲主要在17~19时,拉萨在21~23时,06~11时基本上没有雷暴。那曲出现强雷暴的峰值时段要比拉萨早6h,出现雷暴相对比例高一倍。高原强雷暴云生命史的持续时间≤1h的达到70%以上,持续时间1~2h的达到20%,而持续时间>2h的不到数总数的10%。那曲强雷暴云持续时间明显比拉萨长,且相对比率高。50年间3个时段雷暴发生次数说明,最近10年青藏铁路沿线出现强对流雷暴频数略有减少。  相似文献   

17.
印度洋海温的偶极振荡与高原汛期降水和温度的关系   总被引:5,自引:0,他引:5  
利用1961—2000年近40年印度洋海温距平场资料及对应的青藏高原35个观测站的降水与温度资料,通过相关普查得出,印度洋地区东西海温的偶极振荡与青藏高原汛期降水、温度有较好的相关关系,特别是前期1月、12月~2月的印度洋地区东西海温的偶极指数与青藏高原汛期(6~8月)降水和前一年6月的印度洋地区东西海温的偶极指数与青藏高原汛期(6~8月)温度有很好的相关。分析1961—2002年NCEP/NCAR 500hPa北半球高度场资料发现,印度洋地区东西海温的偶极指数与欧亚500hPa的高度场异常有密切的关系,并通过印度西南季风的强弱,影响到青藏高原汛期降水和温度的变化。  相似文献   

18.
青藏高原地区NCEP新再分析地面通量资料的检验   总被引:18,自引:9,他引:18  
魏丽  李栋梁 《高原气象》2003,22(5):478-487
利用1979—1998年地面气象站温度观测资料和1982年8月-1983年7月高原热源观测资料,检验了NCEP/DOE新再分析地面气温和地面辐射收支在青藏高原地区的偏差。比较表明,气温和地面辐射量新再分析值能反映实际年变化特征,但其温度值系统性偏低,偏低幅度随地区和季节而变化。由于其气温和地表温度偏低造成地表长波辐射和大气逆辐射系统性偏低;冬季积雪地区的地表吸收太阳辐射和净辐射新再分析值偏小;地面净长波、净短波和总的净辐射与实测的偏差比较小。分析发现,同化模式地形高度与地面气象站海拔高度的差异是造成气温新再分析与实测偏差的主要原因,冬季积雪区地表反照率新再分析值偏大是造成冬季地面净辐射偏小的因素,并加剧了冬季气温新再分析的偏差。其研究对改进气候模拟结果分析有一定的启发。  相似文献   

19.
青藏高原西部地表通量的年、日变化特征   总被引:8,自引:6,他引:8  
利用青藏高原西部地区改则和狮泉河两个自动观测气象站1998年全年每天24个时次的风速、温度和湿度等梯度观测资料,采用湍流相似理论.计算了改则和狮泉河的动量通量、感热通量以及潜热通量。结果表明:改则和狮泉河两地的地表湍流通量都具有明显的季节变化和日变化,且其季节变化的相同点表现在感热通量均在5月份最大,1月份最小:而潜热通量均在8月份最大。不同点表现在改则的潜热通量在12月份最小,狮泉河1~5月平均潜热通量为负,以凝结为主,改则的月平均蒸发及全年的蒸发总量比狮泉河的要大。而其感热通量比后者的都小。日变化幅度随季节变化明显,表现在夏季地表通量的日变化幅度大,冬季要小得多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号