首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An experiment on evapotranspiration from citrus trees under irrigation with saline water was carried out for 4 months. Two lysimeters planted with a citrus tree in the green house were used. One lysimeter was irrigated with saline water (NaCl and CaCl2 of 2000 mg/L equivalence,EC = 3.8 dS/m, SAR = 5.9) and the other was irrigated with freshwater using drip irrigation. The applied irrigation water was 1.2 times that of the evapotranspiration on the previous day. Evapotranspiration was calculated as the change in lysimeter weight recorded every 30 minutes. The lysimeters were filled with soil with 95.8% sand. The results of the experiment were as follows. (i) The evapotranspiration from citrus tree was reduced after irrigation with saline water. The evapotranspiration returns to normal after leaching. However it takes months to exhaust the salt from the tree. (ii) To estimate the impact of irrigation with saline water on the evapotranspiration from citrus trees, the reduction coefficient due to salt stress (Ks) was used in this experiment. Evapotranspiration under irrigation with saline water (ET s ) can be calculated from evapotranspiration under irrigation with freshwater (ET) by the equationET s =K s × ET. Ks can be expressed as a function ofEC sw . (iii) The critical soil-water electrical conductivity (EC sw ) is 9.5 dS/m, beyond which adverse effects on evapotranspiration begin to appear. IfEC sw can be controlled at below 9.5 dS/m, saline water can be safely used for irrigation.  相似文献   

2.
Actual evapotranspiration(ET_a) over the Tibetan Plateau(TP) is an important component of the water cycle,and greatly influences the water budgets of the TP lake basins.Quantitative estimation of ET_a within lake basins is fundamental to physically understanding ET_a changes,and thus will improve the understanding of the hydro logical processes and energy balance throughout the lake basins.In this study,the spatiotemporal dynamic changes of ET_α within the Lake Selin Co(the TP's largest lake) and its surrounding small lakes and land area during 2003-2012 are examined at the basin scale.This was carried out using the well-established Water and Energy Budget-based Distributed Hydrological Model(WEB-DHM) for the land area,the Penman method for the water area when unfrozen,and a simple sublimation estimation approach for the water area when frozen.The relationships between ET_a changes and controlling factors are also discussed.Results indicate that the simulated land ET_a from the WEB-DHM reasonably agrees with the estimated ET_a values from the nonlinear complementary relationship model using appropriately calibrated parameter values at a point scale.Land ET_a displayed a non-significant increase of 7.03 mm year~(-1),and largely depends on precipitation.For the water area,the combined effects of reduced wind speed and net radiation offset the effect of rising temperature and vapor pressure deficit,and contributed to a non-significant decrease in evaporation of 4.17 mm year~(-1).Sensitivity analysis shows that vapor pressure deficit and wind speed are the most sensitive variables to the changes of evaporation from the water area.  相似文献   

3.
We have analyzed the behavior of the F2 layer parameters during nighttime periods of enhanced electron concentration by the results of vertical sounding of the ionosphere carried out with five-minute periodicity in Almaty (76°55′ E, 43°15′ N) in 2001–2012. The results are obtained within the frameworks of the unified concept of different types of ionospheric plasma disturbances manifested as variations in the height and half-thickness of the layer accompanied by an increase and decrease of N m F2 at the moments of maximum compression and expansion of the layer. A good correlation is found between height h Am , which corresponds to the maximum increase, and layer peak height h m F, while h Am is always less than h m F. The difference between h Am and h m F linearly increases with increasing h m F. Whereas the difference is ~38 km for h m F = 280 km, it is ~54 km for h m F = 380 km. Additionally, the correlation is good between the increase in the electron concentration in the layer maximum ΔN m and the maximum enhancement at the fixed height ΔN; the electron concentration enhancement in the layer maximum is about two to three times lower than its maximum enhancement at the fixed height.  相似文献   

4.
Different values have been assigned to the ratio of the defl ection amplifi cation factor(Cd) to the response modifi cation factor(R) for a specifi ed force-resisting system in the seismic design provisions while the same application is defi ned for it. An analytical study of the seismic responses of several reinforced concrete frames subjected to a suite of earthquake records performed in this research indicate that the stories’ overstrength and stiffness distribution along the structural height can affect local defl ections more than global ones. Therefore, the Cd/R ratio is calculated based on the ratio of both maximum inelastic to maximum elastic displacements and interstory drifts. Due to damage concentration in some specifi c stories, the defl ection amplifi cation factor calculated based on inelastic interstory drifts was larger than that of the inelastic displacements. Consequently, a minimum value of 1.0 is recommended for the Cd/R ratio in order to estimate maximum inelastic drifts. The ratio of inelastic to elastic displacement was generally found to increase slightly along the structural height for the studied RC models. In addition, it was detected that the story damage indices of the studied RC frames decrease when the inverted value of inelastic interstory drift ratios are increased through a(negative) power form.  相似文献   

5.
Variations in the frequency of occurrence of riometer absorption, minimum frequency of reflection of the ionospheric F layer, minimum height, and height of maximum electron density of the ionospheric F layer near the solar minimum have been studied. Application of the superposed epoch technique has detected the Moon phase effect on these ionospheric parameters. This effect was: three events per day in the occurrence of riometer absorption, 0.056 MHz in the minimum frequency of reflection of the F layer, and 2.6 and 6.7 km, in the change of the minimum height of reflection and height of reflection from the region with maximum electron density of the ionospheric F layer, respectively. The lunar tide action changes the ionospheric conductivity and, thus, influences the current systems of the magnetosphere. Through changes of magnetospheric currents, the Moon phase effect is exhibited in the Ap and Dst indices and is 4.3 and 4.25 nT, respectively.  相似文献   

6.
A novel ground motion selection and modifications method to perform response history analysis of structures is presented in this paper. Currently, the accessibility of ground motion information permits the analysis of structures using real ground motion data. Predicting the dynamic behavior of structures is a primary objective; therefore, the selection of a set of ground motions that shows a reduction in the variability of the structural response and accuracy in preserving the median demand is a challenging task. The new selection and scaling procedure emerges from comparing a set of horizontal ground motions at various ranges of frequency. In this study, the conditional mean spectrum and the design response spectrum are used as target spectra, and the records that give an applicable and compelling contribution to the hazard are considered. It is possible to obtain a set of ground motions with similar seismic severity by matching the target spectrum at the period of interest T ref , where the scaled spectrum should have an equivalent Housner intensity in the period range 0.2T ref –2T ref . The horizontal components for every band of frequency is obtained using a specific index that depends on the energy-frequency trend’s shape as well as on its scattering degree around the mean value. This allows obtaining a set of spectrum-compatible records with almost identical severity and low dispersion of the structural response parameters. The methodology has been tested showing a significant effectiveness in terms of low variability of parameters and accuracy in preserving the median demand for a given hazard scenario.  相似文献   

7.
We applied the g CAP algorithm to determine239 focal mechanism solutions 3:0 M We 6:0T with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere.  相似文献   

8.
9.
Bayesian probability theory is an appropriate and useful method for estimating parameters in seismic hazard analysis. The analysis in Bayesian approaches is based on a posterior belief, also their special ability is to take into account the uncertainty of parameters in probabilistic relations and a priori knowledge. In this study, we benefited the Bayesian approach in order to estimate maximum values of peak ground acceleration (Amax) also quantiles of the relevant probabilistic distributions are figured out in a desired future interval time in Iran. The main assumptions are Poissonian character of the seismic events flow and properties of the Gutenberg-Richter distribution law. The map of maximum possible values of Amax and also map of 90% quantile of distribution of maximum values of Amax on a future interval time 100 years is presented. According to the results, the maximum value of the Amax is estimated for Bandar Abbas as 0.3g and the minimum one is attributed to Esfahan as 0.03g. Finally, the estimated values in Bayesian approach are compared with what was presented applying probabilistic seismic hazard (PSH) methods based on the conventional Cornel (1968) method. The distribution function of Amax for future time intervals of 100 and 475 years are calculated for confidence limit of probability level of 90%.  相似文献   

10.
The time variations in three parameters during the last decades are considered. R(foF2) is the correlation coefficient between the nighttime and daytime values of foF2 for the same day. Stable trends are found for the minimum (R(foF2)(max)) and maximum (R(foF2)(min)) values of R(foF2) during a year. The foF2(night)/foF2(day) ratio demonstrates both, negative and positive trends, and the trend sign depends on the inclination I and declination D of the magnetic field. The correlation coefficient r(h, fo) between foF2 and the 100 hP level in the stratosphere demonstrates a decrease (in the years of maximum and minimum solar activity) from the 1980s to the 1990s. The trends in all three groups of data are considered under the assumption of long-term changes in the circulation in the upper atmosphere.  相似文献   

11.
Stable isotope paleoaltimetry has provided unprecedented insights into the topographic histories of many of the world’s highest mountain ranges. However, on the Tibetan Plateau (TP), stable isotopes from paleosols generally yield much higher paleoaltitudes than those based on fossils. It is therefore essential when attempting to interpret accurately this region’s paleoaltitudes that the empirical calibrations of local stable isotopes and the relations between them are established. Additionally, it is vital that careful estimations be made when estimate how different isotopes sourced from different areas may have been influenced by different controls. We present here 29 hydrogen isotopic values for leaf wax-derived n-alkanes (i.e., δDwax values, and abundance-weighted average δD values of C29 and C31) in surface soils, as well as the δD values of soil water (δDsw) samples (totaling 22) from Mount Longmen (LM), on the eastern TP (altitude ~0.8–4.0 km above sea level (asl), a region climatically affected by the East Asian Monsoon (EAM). We compared our results with published data from Mount Gongga (GG). In addition, 47 river water samples, 55 spring water samples, and the daily and monthly summer precipitation records (from May to October, 2015) from two precipitation observation stations were collected along the GG transect for δD analysis. LM soil δDwax values showed regional differences and responded strongly to altitude, varying from?160‰ to?219‰, with an altitudinal lapse rate (ALR) of?18‰ km?1 (R 2=0.83; p<0.0001; n=29). These δDwax values appeared more enriched than those from the GG transect by ~40‰. We found that both the climate and moisture sources led to the differences observed in soil δDwax values between the LM and GG transects. We found that, as a general rule, ε wax/rw, ε wax/p and ε wax/sw values (i.e., the isotopic fractionation of δDwax corresponding to δDrw, δDp and δDsw) increased with increasing altitude along both the LM and GG transects (up to 34‰and 50‰, respectively). Basing its research on a comparative study of δDwax, δDp, δDrw(δDspringw) and δDsw, this paper discusses the effects of moisture recycling, glacier-fed meltwater, relative humidity (RH), evapotranspiration (ET), vegetation cover, latitude, topography and/or other factors on ε wax/p values. Clearly, if ε wax-p values at higher altitudes are calculated using smaller ε wax-p values from lower altitudes, the calculated paleowaterδDp values are going to be more depleted than the actual δD values, and any paleoaltitude would therefore be overestimated.  相似文献   

12.
The evolution of the East Asian summer monsoon(EASM) during the Holocene has long been of significant interest.Knowledge of past EASM variability not only increases our understanding of monsoon dynamics on a long timescale,but it also provides an environmental and climatic background for research into Chinese cultural development.However,the timing of the EASM maximum remains controversial.The popular concept of an "early Holocene maximum" is mainly based on speleothemδ~(18)O(δ~(18)O_c) records from caves in southern China;however,the interpretation of δ~(18)O_C as a reliable proxy for EASM intensity is being increasingly challenged.The present paper is a critical review of the climatic significance of the δ~(18)O_C record from China.Firstly,we suggest that precipitation in northern China is an appropriate index of EASM intensity,the variation of which clearly indicates a mid-Holocene monsoon maximum.Secondly,an interregional comparison demonstrates that the precipitation record in northern China is quite different from that in southern China on a range of timescales,and is inconsistent with the spatial similarity exhibited by speleothem oxygen isotope records.Furthermore,both modeling and observational data show that the δ~(18)O_C records from southern China indeed reflect changes in precipitation δ~(18)O(δ~(18)O_P) rather than precipitation amount,and therefore that their use as an EASM proxy is inappropriate.Finally,we address several significant monsoon-related issues-including the driving mechanism of the EASM on an orbital timescale,the climatic significance of speleothem oxygen isotopes,and the relationship between atmospheric circulation and precipitation in monsoonal regions.  相似文献   

13.
Analysis of the annual variation of the E-layer critical frequency median foE in the nighttime (22?02 LT) auroral zone by the data of several stations of the Northern Hemisphere has shown the median maximum in winter and minimum in summer, even though the summer contribution of solar radiation to foE is greater. Thus, a new phenomenon was discovered—an foE median winter anomaly in the nighttime auroral zone. Its amplitude (ratio of winter to summer foE figures) can reach 10–15%; however, this anomaly was weakly expressed and statistically insignificant at particular stations located in the auroral zone. The winter anomaly is more distinct for foE avr, the median of the E-layer critical frequency foE caused by the auroral source of atmospheric ionization, i.e., excluding the solar radiation contribution to foE. For foE avr, the amplitude of the winter anomaly can reach 15–20%. Based on the qualitative analysis, it has been found that foE winter anomaly is stipulated by the winter/summer asymmetry of energy flow of accelerated electrons, which induce discrete aurorae in the nighttime auroral zone.  相似文献   

14.
We present the seismic source zoning of the tectonically active Greater Kashmir territory of the Northwestern Himalaya and seismicity analysis (Gutenberg-Richter parameters) and maximum credible earthquake (m max) estimation of each zone. The earthquake catalogue used in the analysis is an extensive one compiled from various sources which spans from 1907 to 2012. Five seismogenic zones were delineated, viz. Hazara-Kashmir Syntaxis, Karakorum Seismic Zone, Kohistan Seismic Zone, Nanga Parbat Syntaxis, and SE-Kashmir Seismic Zone. Then, the seismicity analysis and maximum credible earthquake estimation were carried out for each zone. The low b value (<1.0) indicates a higher stress regime in all the zones except Nanga Parbat Syntaxis Seismic Zone and SE-Kashmir Seismic Zone. The m max was estimated following three different methodologies, the fault parameter approach, convergence rates using geodetic measurements, and the probabilistic approach using the earthquake catalogue and is estimated to be M w 7.7, M w 8.5, and M w 8.1, respectively. The maximum credible earthquake (m max) estimated for each zone shows that Hazara Kashmir Syntaxis Seismic Zone has the highest m max of M w 8.1 (±0.36), which is espoused by the historical 1555 Kashmir earthquake of M w 7.6 as well as the recent 8 October 2005 Kashmir earthquake of M w 7.6. The variation in the estimated m max by the above discussed methodologies is obvious, as the definition and interpretation of the m max change with the method. Interestingly, historical archives (~900 years) do not speak of a great earthquake in this region, which is attributed to the complex and unique tectonic and geologic setup of the Kashmir Himalaya. The convergence is this part of the Himalaya is distributed not only along the main boundary faults but also along the various active out-of-sequence faults as compared to the Central Himalaya, where it is mainly adjusted along the main boundary fault.  相似文献   

15.
The structure and dynamics of the ionosphere and plasmasphere at high solar activity under quiet geomagnetic conditions of June 2–3, 1979, and January 5–6, 1980, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The plasma drift velocity, determined by comparing the calculated and measured heights of the F 2 layer maximum (hmF2), and the correction of [N2] and [O2], found in the NRLMSISE-00 model, make it possible to coordinate the electron densities (NmF2) calculated at the hmF2 height and the measured anomalous variations in NmF2 over the Argentine Islands ionosonde as well as the calculated and measured NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that, if the interference of the diffusion velocities of O+(4S) and H+ ions is taken into account, the additional heating of plasmaspheric electrons leads to an increase in the flux of O+(4S) ions from the topside ionosphere to lower F 2 layer altitudes, as a result of which an anomalous nighttime increase in NmF2 6, observed on January 6, 1980, over Millstone Hill station, is mainly produced. The second component of the formation of anomalous night-time NmF2 is the plasma drift along the magnetic field caused by the neutral wind, which shifts O+(4S) ions to higher altitudes where the recombination rate of O+(4S) with N2 and O2 is lower and slows down a decrease in NmF2 in the course of time. It has been shown that the influence of electronically excited O+ ions and vibrationally excited N2 and O2 molecules on electron density (N e ) considerably differs under winter and summer conditions. This difference forms significant part of the winter anomaly in N e at heights of the F 2 region and topside ionosphere over Millstone Hill station.  相似文献   

16.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   

17.
Methods of selecting paleomagnetic data for the construction of apparent polar wander paths (APWPs) are analyzed. It is shown that the existing criteria of reliability of paleomagnetic data cannot be regarded as evidence for their validity. In other words, no unambiguous dependence exists between the reliability and the closeness of paleomagnetic poles to a hypothetical region crossed by the reliable APWP. A new approach to the construction of paleomagnetic APWPs based on simple principles (principle of space and principle of time) is proposed. Using a numerical implementation of this algorithm, three stable clusters were determined (L p = 164, F p = 43; L p = 144, F p = 13; and L p = 170, F p = ?2); the respective maximum estimates of their ages are 248–251, 345, and 385 Ma. These clusters can be regarded as reliable paleomagnetic poles in the Paleozoic of the East European platform.  相似文献   

18.
Equations of regression are derived for the intense magnetic storms of 1957?2016. They reflect the nonlinear relation between Dstmin and the effective index of geomagnetic activity Ap(τ) with a timeweighted factor τ. Based on this and on known estimations of the upper limit of the magnetic storm intensity (Dstmin =–2500 nT), the maximal possible value Ap(τ)max ~ 1000 nT is obtained. This makes it possible to obtain initial estimates of the upper limit of variations in some parameters of the thermosphere and ionosphere that are due to geomagnetic activity. It is found, in particular, that the upper limit of an increase in the thermospheric density is seven to eight times larger than for the storm in March 1989, which was the most intense for the entire space era. The maximum possible amplitude of the negative phase of the ionospheric storm in the number density of the F2-layer maximum at midlatitudes is nearly six times higher than for the March 1989 storm. The upper limit of the F2-layer rise in this phase of the ionospheric storm is also considerable. Based on qualitative analysis, it is found that the F2-layer maximum in daytime hours at midlatitudes for these limiting conditions is not pronounced and even may be unresolved in the experiment, i.e., above the F1-layer maximum, the electron number density may smoothly decrease with height up to the upper boundary of the plasmasphere.  相似文献   

19.
Turbulence data(2008–2012) from a 325 m meteorological tower in Beijing, which consisted of three layers(47,140, and 280 m), was used to analyze the vertical distribution characteristics of turbulent transfer over Beijing city according to similarity theory. The conclusions were as follows.(1) Normalized standard deviations of wind speeds/ui * were plotted as a function only of a local stability parameter. The values under near-neutral conditions were 2.15, 1.61, and 1.19 at 47 m, 2.39, 1.75,and 1.21 at 140 m, and 2.51, 1.77, and 1.30 at 280 m, showing a clear increase with height. The normalized standard deviation of wind components fitted the 1/3 law under unstable stratification conditions and decreased with height under both stable and unstable conditions.(2) The normalized standard deviation of temperature fitted the.1/3 law in the free convection limit, but was quite scattered with different characteristics under near-neutral conditions. The normalized standard deviations of humidity and the CO2 concentration fitted the.1/3 law under unstable conditions, and remained constant under near-neutral and stable stratification. The normalized standard deviation of scalars, i.e., temperature, humidity, and CO2 concentration, all increased with height.(3) Compared with momentum, and the water vapor and CO2 concentrations, the turbulence correlation coefficient for heat was smaller under near-neutral conditions, but larger under both stable and unstable conditions. A dissimilarity between heat, and the water vapor and CO2 concentrations was observed in urban areas. The relative correlation coefficients between heat and each of momentum, humidity, and CO2 concentration(|rwT/ruw|, |rwT/rwc| and |rwT/ruq|) in the lower layers were always larger than in higher layers, except for the relative correlation coefficient between heat and humidity in an unstable stratification. Therefore, the ratio between heat and each of momentum, humidity, and CO2 concentration decreased with height.  相似文献   

20.
The increasing availability and reliability of satellite remote sensing products [e.g., precipitation (P), evapotranspiration (ET), and the total water storage change (TWSC)] make it feasible to estimate the global terrestrial water budget at fine spatial resolution. In this study, we start from a reference water budget dataset that combines all available data sources, including satellite remote sensing, land surface model (LSM) and reanalysis, and investigate the roles of different non-satellite remote sensing products in closing the terrestrial water budget through a sensitivity analysis by removing/replacing one or more categories of products during the budget estimation. We also study the differences made by various satellite products for the same budget variable. We find that the gradual removal of non-satellite data sources will generally worsen the closure errors in the budget estimates, and remote sensing retrievals of P, ET, and TWSC together with runoff (R) from LSM give the worst closure errors. The gauge-corrected satellite precipitation helps to improve the budget closure (4.2–9 % non-closure errors of annual mean precipitation) against using the non-gauge-corrected precipitation (7.6–10.4 % non-closure errors). At last, a data assimilation technique, the constrained Kalman filter, is applied to enforce the water balance, and it is found that the satellite remote sensing products, though with worst closure, yield comparable budget estimates in the constrained system to the reference data. Overall, this study provides a first comparison between the water budget closure using the satellite remote sensing products and a full combination of remote sensing, LSM, and reanalysis products on a quasi-global basis. This study showcases the capability and potential of the satellite remote sensing in closing the terrestrial water budget at fine spatial resolution if properly constrained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号