首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Near‐bed, highly resolved velocity profiles were measured in the lower 0.03 m of the water column using acoustic Doppler profiling velocimeters in narrow tidal channels in a salt marsh. The bed shear stress was estimated from the velocity profiles using three methods: the log‐law, Reynolds stress, and shear stress derived from the turbulent kinetic energy (TKE). Bed shear stresses were largest during ebbing tide, while near‐bed velocities were larger during flooding tide. The Reynolds stress and TKE method gave similar results, while the log‐law method resulted in smaller bed shear stress values during ebbing tide. Shear stresses and turbulent kinetic energy followed a similar trend with the largest peaks during ebbing tide. The maximum turbulent kinetic energy was on the order of 1 × 10? 2 m2/s2. The fluid shear stress during flooding tide was approximately 30% of the fluid shear stress during ebbing tide. The maximum TKE‐derived shear stress was 0.7 N/m2 and 2.7 N/m2 during flooding and ebbing tide, respectively, and occurred around 0.02 m above the bed. Turbulence dissipation was estimated using the frequency spectrum and structure function methods. Turbulence dissipation estimates from both methods were maximum near the bed (~0.01 m). Both the structure function and the frequency spectrum methods resulted in maximum dissipation estimates on the order of 4 × 10? 3 m2/s3. Turbulence production exceeded turbulence dissipation at every phase of the tide, suggesting that advection and vertical diffusion are not negligible. However, turbulence production and dissipation were within a factor of 2 for 77% of the estimates. The turbulence production and dissipation decreased quickly away from the bed, suggesting that measurements higher in the water column cannot be translated directly to turbulence production and dissipation estimates near the bed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Kämpf  Jochen 《Ocean Dynamics》2019,69(5):581-597
Ocean Dynamics - The wind-driven circulation of coastal oceans has been studied for many decades. Using a 2.5-dimensional hydrodynamic model, this work unravels new aspects inherent with this...  相似文献   

3.
Vertical velocity profiles measured over various bed configurations (plane beds, ripples, and dunes) in. the meandering River South Esk, Glen Clova, Scotland are presented on semilogarithmic paper. Local bed shear stress and roughness height are calculated from the lowermost parts of the profiles using the Karman-Prandtl law of the wall; these parameters, and the geometrical properties of the profiles, are related to the various bed configurations. A graphical model is used to identify profiles developed on specific regions of dune geometry, in order to discriminate those profiles that define bed shear effective in transporting sediment over dunes. An assessment is made of the errors involved in estimating local mean velocity from extrapolating the law of the wall to the water surface. A Darcy-Weisbach friction coefficient is related to bed configuration and local stream power.  相似文献   

4.
Bed shear stress is a fundamental variable in river studies to link ?ow conditions to sediment transport. It is, however, dif?cult to estimate this variable accurately, particularly in complex ?ow ?elds. This study compares shear stress estimated from the log pro?le, drag, Reynolds and turbulent kinetic energy (TKE) approaches in a laboratory ?ume in a simple boundary layer, over plexiglas and over sand, and in a complex ?ow ?eld around de?ectors. Results show that in a simple boundary layer, the log pro?le estimate is always the highest. Over plexiglas, the TKE estimate was the second largest with a value 30 per cent less than the log estimate. However, over sand, the TKE estimate did not show the expected increase in shear stress. In a simple boundary layer, the Reynolds shear stress seems the most appropriate method, particularly the extrapolated value at the bed obtained from a turbulent pro?le. In a complex ?ow ?eld around de?ectors, the TKE method provided the best estimate of shear stress as it is not affected by local streamline variations and it takes into account the increased streamwise turbulent ?uctuations close to the de?ectors. It is suggested that when single‐point measurements are used to estimate shear stress, the instrument should be positioned close to 0·1 of the ?ow depth, which corresponds to the peak value height in pro?les of Reynolds and TKE shear stress. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The article presents a theoretical investigation of the propagation of normally and obliquely incident plane shear waves past a rectangular trench filled up with water saturated soil sandwiched between anisotropic elastic media. The motivation for this work is due to the effectiveness of the isolation of waves by the in-filled rectangular trench. Unlike the most of the previous researchers, this model considers the soil–structure interaction effects and directly determines the influence of barrier in the form of in-filled trench on the mode of wave propagation. It is of interest to determine the reflection and transmission coefficients, and the energy partition distribution of shear waves in the in-filled rectangular trench showing the influence of barrier on the propagation of waves. An extensive parametric study through numerical computation is carried out to investigate the influence of the material properties of the in-filled trench and the amplitude ratios on shear waves. The in-filled trench barrier directly declines the intensity of waves significantly in such a way that the waves do not create any hazards to the nearby structures, if exists at all.  相似文献   

6.
Entrainment of sediment particles from channel beds into the channel flow is influenced by the characteristics of the flow turbulence which produces stochastic shear stress fluctuations at the bed. Recent studies of the structure of turbulent flow has recognized the importance of bursting processes as important mechanisms for the transfer of momentum into the laminar boundary layer. Of these processes, the sweep event has been recognized as the most important bursting event for entrainment of sediment particles as it imposes forces in the direction of the flow resulting in movement of particles by rolling, sliding and occasionally saltating. Similarly, the ejection event has been recognized as important for sediment transport since these events maintain the sediment particles in suspension. In this study, the characteristics of bursting processes and, in particular, the sweep event were investigated in a flume with a rough bed. The instantaneous velocity fluctuations of the flow were measured in two-dimensions using a small electromagnetic velocity meter and the turbulent shear stresses were determined from these velocity fluctuations. It was found that the shear stress applied to the sediment particles on the bed resulting from sweep events depends on the magnitude of the turbulent shear stress and its probability distribution. A statistical analysis of the experimental data was undertaken and it was found necessary to apply a Box-Cox transformation to transform the data into a normally distributed sample. This enabled determination of the mean shear stress, angle of action and standard error of estimate for sweep and ejection events. These instantaneous shear stresses were found to be greater than the mean flow shear stress and for the sweep event to be approximately 40 percent greater near the channel bed. Results from this analysis suggest that the critical shear stress determined from Shield's diagram is not sufficient to predict the initiation of motion due to its use of the temporal mean shear stress. It is suggested that initiation of particle motion, but not continuous motion, can occur earlier than suggested by Shield's diagram due to the higher shear stresses imposed on the particles by the stochastic shear stresses resulting from turbulence within the flow.  相似文献   

7.
This paper presents an approach to modeling the depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation. The depth-averaged equation of vegetated compound channel flow is given by considering the drag force and the blockage effect of vegetation, based on the Shiono and Knight method (1991) [40]. The analytical solution to the transverse variation of depth-averaged velocity is presented, including the effects of bed friction, lateral momentum transfer, secondary flows and drag force due to vegetation. The model is then applied to compound channels with completely vegetated floodplains and with one-line vegetation along the floodplain edge. The modeled results agree well with the available experimental data, indicating that the proposed model is capable of accurately predicting the lateral distributions of depth-averaged velocity and bed shear stress in vegetated compound channels with secondary flows. The secondary flow parameter and dimensionless eddy viscosity are also discussed and analyzed. The study shows that the sign of the secondary flow parameter is determined by the rotational direction of secondary current cells and its value is dependent on the flow depth. In the application of the model, ignoring the secondary flow leads to a large computational error, especially in the non-vegetated main channel.  相似文献   

8.
In this study,annular flume experiments were carried out,using the sediment samples collected from the lower part of the inter-tidal zone at Xiaoyangkou,Jiangsu coast,China.The Ariathurai-Partheniades equation was used to determine the bed shear stress,by evaluating variations in the suspended sediment concentration within the water column.The derived relation between the bed shear stress and suspended sediment concentration shows that,at various stages of seabed erosion, suspended sediment concentration increases rapidly when the flow velocity is increased,but the pattern of change in the bed shear stress does not follow suit.At low concentrations,bed shear stress initially increases markedly with increasing flow velocity.However,when the concentration reaches an apparently critical level around 0.55 kg m"3,the rate of change in the bed shear stress abruptly slows down,or becomes almost constant,in response to further increases in the flow velocity.Results of experiments indicate that,from a critical level onward,suspended sediment concentration has a strong influence on the bed shear stress.  相似文献   

9.
10.
Environmental flows are generally characterized by complex bed morphology and high current speeds. Such configurations favor the formation of vortex structures that strongly affect hydrody-namics and sediment transport. Large-Eddy Simulation (LES) enables investigation of the dynam-ics of the largest turbulence scales and, thanks to enhanced calculation resources, has now become applicable for simulating environmental flows. In this paper, a LES approach is developed in a CFD code (TELEMAC-3D), which was originally developed to simulate free surface flows using RANS methods. The present developments involve implementing subgrid models, boundary con-ditions and numerical schemes suitable for LES. The LES version of TELEMAC-3D was validated by comparing results on the model with experimental data for flow past a cylinder. Then, the model was applied to a test case representing flow over dunes. After validating the hydrodynamics, the model was used to assess the bottom shear stress, using both a RANS and a LES approach. Com-parison highlighted the potential contribution of LES to investigating the hydrodynamic forces acting on the bottom.  相似文献   

11.
 This paper highlights the similarities between a number of studies which have applied the concept of Shannon's entropy to Hydraulic Engineering. The entropy concept is further developed in an attempt to predict the transverse distribution of boundary shear stress in circular open channels. The approach is also extended and applied to circular channels with a flat bed and trapezoidal channels, and the Lagrange multipliers, λ, found by recourse to empirical equations. Doubts are expressed concerning the value of the entropy approach to such problems.  相似文献   

12.
13.
Bed shear stress was estimated using wave and current measurements obtained with the GEOPROBE bottom-tripod system during resuspension events in Norton Sound, Alaska, and on the northern California shelf. The boundary-layer model ofGrant andMadsen (1979, Journal of Geophysical Research,84, 1797–1808) was used to compute the bed shear stress under combined wave-generated and quasi-steady currents. Resuspension events were identified by sudden, large increases in light scattering at 1.9 m above the sea floor. The shear-stress values were used to compute the Shields parameter (ψ). The results for Norton Sound are in excellent agreement with the Shields threshold criterion; the data for the California shelf plot somewhat above the Shields threshold curve, though generally within the scatter envelope. Although the surface sediments in each area contain substantial fine-grained fractions (mean diameters were 0.007 cm in Norton Sound and 0.002 cm on the California shelf), the results do not indicate significant cohesion, because the sediment was entrained at bed shear-stress values close to those predicted by the modified Shields curve for cohesionless fine-grained particles. We suspect that frequent wave stirring and observed plowing of the surface sediment by benthonic animals maintain a high water content and contribute to the ease with which these materials are resuspended.  相似文献   

14.
Continuous monitoring of bed shear stress in large river systems may serve to better estimate alluvial sediment transport to the coastal ocean.Here we explore the possibility of using a horizontally deployed acoustic Doppler current profiler(ADCP) to monitor bed shear stress,applying a prescribed boundary layer model,previously used for discharge estimation.The model parameters include the local roughness length and a dip correction factor to account for sidewall effects.Both these parameters depend on river stage and on the position in the cross-section, and were estimated from shipborne ADCP data.We applied the calibrated boundary layer model to obtain bed shear stress estimates over the measuring range of the HADCP.To validate the results,co-located coupled ADCPs were used to infer bed shear stress,both from Reynolds stress profiles and from mean velocity profiles. From HADCP data collected over a period of 1.5 years,a time series of width profiles of bed shear stress was obtained for a tidal reach of the Mahakam River,East Kalimantan,Indonesia.A smaller dataset covering 25 hours was used for comparison with results from the coupled ADCPs.The bed shear stress estimates derived from Reynolds stress profiles appeared to be strongly affected by local effects causing upflow and downflow,which are not included in the boundary layer model used to derive bed shear stress with the horizontal ADCP.Bed shear stresses from the coupled ADCP are representative of a much more localized flow,while those derived with the horizontal ADCP resemble the net effect of the flow over larger scales.Bed shear stresses obtained from mean velocity profiles from the coupled ADCPs show a good agreement between the two methods,and highlight the robustness of the method to uncertainty in the estimates of the roughness length.  相似文献   

15.
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three‐dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one‐third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
利用FLAC,模拟了双轴压缩岩样的破坏过程及剪应力异常.在峰值强度之前及之后,岩石的本构模型分别取为线弹性及莫尔库仑剪破坏与拉破坏复合的应变软化模型.本文仅分析了3个具有较大应力降的周期的剪应力异常及塑性区分布.在第1及第2周期,剪破坏分别发生在试样的两侧及背景空区内部,前兆明显,地震属于断错型.在第3周期,背景空区之外的新剪切破裂带引起断错型地震;空区内部的老破裂带引起走滑型地震,未观测到前兆.在塑性区边缘,剪应力梯度较高.破裂带位置剪应力值反而较低.尽管在应力-应变曲线的软化阶段之前,不同单元的剪应力表现出千姿百态的复杂形态,但尚有规律可循.若几个单元都位于某条破裂带上,则剪应力的变化可能是同步的,或演变规律类似.鉴于原地复发地震类型可能不同,前兆将有差别.  相似文献   

17.
Abstract

The main aim of this study is the experimental investigation of friction velocities and shear stresses in rivers under unsteady flow conditions. Special measurements of mean velocities and other hydraulic parameters were made in two small lowland rivers in central Poland. Four controlled flood waves were released and analysed in the selected reaches. The main hydrometric characteristics and the relationship between water level and discharge were established. Friction velocities were obtained directly from the full St Venant equations of motion, as well as from only the steady momentum equation, and their time-dependent forms were established. Both these approaches provided similar results when the unsteadiness parameter was relatively low. It appeared that real friction velocities were much larger than those obtained from the common uniform flow formula. The passing hydrograph influenced the value of the shear velocity significantly.  相似文献   

18.
《国际泥沙研究》2020,35(2):193-202
The current work focuses on locally resolving velocities,turbulence,and shear stresses over a rough bed with locally non-uniform character.A nonporous subsurface layer and fixed interfacial sublayer of gravel and sand were water-worked to a nature-like bed form and additionally sealed in a hydraulic flume.Two-dimensional Particle Image Velocimetry(2 D-PIV) was applied in the vertical plane of the experimental flume axis.Runs with clear water and weak sediment transport were done under slightly supercritical flow to ensure sediment transport conditions without formation of considerable sediment deposits or dunes.The study design included analyzing the double-averaged flow parameters of the entire measurement domain and investigating the flow development at 14 consecutive vertical subsections.Local geometrical variabilities as well the presence of sediment were mainly reflected in the vertical velocity component.Whereas the vertical velocity decreased over the entire depth in presence of sediment transport,the streamwise velocity profile was reduced only within the interfacial sublayer.In the region with decelerating flow conditions,however,the streamwise velocity profile systematically increased along the entire depth extent.The increase in the main velocity(reduction of flow resistance)correlated with a decrease of the turbulent shear and main normal stresses.Therefore,effects of rough bed smoothening and drag force reduction were experimentally documented within the interfacial sublayer due to mobile sediment.Moreover,the current study leads to the conclusion that in nonuniform flows the maximum Reynolds stress values are a better predictor for the bed shear stress than the linearly extrapolated Reynolds stress profile.This is an important finding because,in natural flows,uniform conditions are rare.  相似文献   

19.
The concept of Tsallis entropy was applied to model the probability distribution functions for the shear stress magnitudes in circular channels (with filling ratios of 0.506, 0.666, 0.826), circular with flat bed (filling ratios of 0.333, 0.666), rectangular channel (1.34, 2, 3.94, 7.37 aspect ratios) and compound channel (with relative depths of 0.324, 0.46). The equation for the shear stress distribution was obtained according to the entropy maximization principle, and is able to estimate the shear stress distribution as much on the walls as the channel bed. The approach is also compared with the predictions obtained based on the Shannon entropy concept. By comparing the two prediction models, this study highlights the application of Tsallis entropy to estimate the shear stress distribution of open channels. Although the results of the two models are similar in the circular cross-section, the differences between them are more significant in circular with flat bed and rectangular channels. For a wide range of filling ratio values, experimental data are used to illustrate the accuracy and reliability of the proposed model.  相似文献   

20.
Bed shear stress in open channel flows is often estimated from the logarithmic vertical velocity profile. However, most measuring devices used in the field do not allow for flow velocity to be measured very close to the bed. The lack of near-bed measurements is a critical loss of information which may affect bed shear stress estimates. Detailed velocity profiles obtained from a field acoustic Doppler velocimeter over three different bed roughnesses clearly show that the inclusion of near-bed points is critical for the estimation of bed shear stress in a shallow river environment. Moreover, the results indicate that using the full flow depth instead of the bottom 20 per cent of the profile generates an underestimation of the shear stress when flow is uniform. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号