首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlined municipal waste stabilization lagoons are potential sources of ground-water contamination. Fourteen monitoring wells were installed around the Mc Ville, North Dakota lagoon, a site at which the impoundment is excavated into permeable sediments of an unconfined glacio-fluvial aquifer with a shallow water table. One cell at the site, Cell I, retains waste water continuously, while another, Cell II, is used for periodic overflow discharges from Cell I. Seepage through the bottom of Cell I passes through a strongly reducing organic sludge layer. Sulfate in the waste water is reduced to sulfide and possibly precipitated as sulfide minerals in or below this sludge layer. In the unsaturated or shallow saturated zone beneath the pond, the infiltrating waste water reduces ferric iron in iron oxide minerals to more soluble ferrous iron. Proximal down-gradient well analyses indicate high iron concentrations and very low sulfate levels. Downgradient wells near the lagoon have very high ammonium concentrations. The source of the ammonium is either rapid infiltration from Cell II or denitrification of the nitrate present in ground water upgradient from the lagoon. About 300 feet downgradient from Cell I, ammonium concentrations decline to near zero. The most likely mechanism for this decrease is cation  相似文献   

2.
Methyl tert -butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert -butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.  相似文献   

3.
Contaminants have been threatening the Engelse Werk wellfield located between the town of Zwolle and the IJssel River in the Netherlands. Chemical analysis of water samples taken in production wells, both at the IJssel River and near the Zwolle railway station, indicated elevated concentrations of mainly organic contaminants including benzene, bentazon, acenaftene, trichloroethane, and bromacil. Immediate contaminant prevention and remediation measures are needed to safeguard the production wells. Ground water flow and transport models were developed to assist in the design of remediation strategies. Ground water flow models indicated that the IJssel River and a waste disposal ditch at the railway station are within the capture zone of the wellfield. A chloride transport model simulated minimum travel times in the order of four to 13 years for contaminants in the IJssel River to reach the production wells of the wellfield. A transport model for benzene was set up to advise on the remediation measures to be taken at the waste disposal ditch to clean up the contamination in the upper aquifer between this site and the Engelse Werk wellfield. The designed remediation system consists of 12 pumping wells with a combined capacity of 1650 m3/day. The system is capable of reducing the benzene levels at the threatened production wells at the Engelse Werk wellfield to a permissible level below 0.1 μg/L within a period of 5 years.  相似文献   

4.
Data substantiating perched conditions in layered bedrock uplands are rare and have not been widely reported. Field observations in layered sedimentary bedrock in southwestern Wisconsin, USA, provide evidence of a stable, laterally extensive perched aquifer. Data from a densely instrumented field site show a perched aquifer in shallow dolomite, underlain by a shale-and-dolomite aquitard approximately 25 m thick, which is in turn underlain by sandstone containing a 30-m-thick unsaturated zone above a regional aquifer. Heads in water supply wells indicate that perched conditions extend at least several kilometers into hillsides, which is consistent with published modeling studies. Observations of unsaturated conditions in the sandstone over a 4-year period, historical development of the perched aquifer, and perennial flow from upland springs emanating from the shallow dolomite suggest that perched groundwater is a stable hydrogeologic feature under current climate conditions. Water-table hydrographs exhibit apparent differences in the amount and timing of recharge to the perched and regional flow systems; steep hydraulic gradients and tritium and chloride concentrations suggest there is limited hydraulic connection between the two. Recognition and characterization of perched flow systems have practical importance because their groundwater flow and transport pathways may differ significantly from those in underlying flow systems. Construction of multi-aquifer wells and groundwater withdrawal in perched systems can further alter such pathways.  相似文献   

5.
Enhanced subsurface biorestoration is rapidly becoming recognized as a valuable tool for the restoration of hydrocarbon-contaminated aquifers and sediments. Previous field and laboratory studies at a former wood creosoting facility near Conroe, Texas, have indicated that insufficient oxygen is the primary factor limiting the biotransformation of polynuclear aromatics (PNAs) in sediments and ground water at this site. A series of laboratory experiments and field push-pull injection tests were performed as part of this project to: (1) study the effect of low oxygen concentrations on the biotransformation of PNAs; (2) identify the minimum concentration of PNAs that could be achieved through the addition of oxygen alone; (3) confirm that enhanced subsurface biorestoration is feasible at this site; and (4) test an existing numerical model of the biotransformation process (BIOPLUME). The laboratory studies demonstrated that biotransformation of the PNAs was not inhibited at dissolved oxygen concentrations as low as 0.7 mg/L although this work did suggest that there may be a minimum PNA concentration of 30 to 70 μg/L total PNAs below which biotransformation was inhibited. The field push-pull tests confirmed that addition of oxygen was effective in enhancing the subsurface biodegradation of the PNAs. The minimum concentration achieved using oxygen alone was approximately 60 μg/L total PNAs. Minimal biotransformation of these compounds was observed without oxygen addition. The numerical model BIOPLUME was tested against monitoring data from the field experiments and appears to provide a good approximation of the biodegradation process.  相似文献   

6.
A field study was conducted to assess purging requirements for dedicated sampling systems in conventional monitoring wells and for pumps encased in short screens and buried within a shallow sandy aquifer. Low-flow purging methods were used, and wells were purged until water quality indicator parameters (dissolved oxygen, specific conductance, turbidity) and contaminant concentrations (chromate, trichloroethylene, dichloroethylene) reached equilibrium. Eight wells, varying in depth from 4.6 to 15.2 m below ground surface, were studied. The data show that purge volumes were independent of well depth or casing volumes. Contaminant concentrations equilibrated with less than 7.5 I. of purge volume in all wells. Initial contaminant concentration values were generally within 20 percent of final values. Water quality parameters equilibrated in less than 10 L in all wells and were conservative measures for indicating the presence of adjacent formation water. Water quality parameters equilibrated faster in dedicated sampling systems than in portable systems and initial turbidity levels were lower.  相似文献   

7.
The objective of this study was to assess the possible impact of deep well disposal operations, conducted between 1958 and 1974, on the ground water quality in a shallow fresh water aquifer beneath Sarnia, Ontario, Canada. Because of the breakout of formation fluids in Sarnia and Port Huron, Michigan, in the early 1970s, it had been hypothesized that liquid waste from the disposal zone in bedrock had leaked through numerous abandoned oil, gas, and salt wells in the area up to the shallow fresh water aquifer and from there to the surface.
A monitoring well network of 29 5cm (2 inch) diameter piezometers was established in the thin sand and shale aquifer system, which exists between 30 and 70m (100 and 230 feet) below ground surface. In addition, a 300m (1000 foot) deep borehole was drilled and instrumented with a Westbay multilevel casing, which permitted sampling of the disposal zone.
Ground water samples from the shallow monitoring wells and the Westbay multilevel casing were analyzed for volatiles by GC/MS. Those volatile aromatics that were conspicuously present in the deep disposal zone, e.g., ethyl toluenes and trimethyl benzene, were not detected in the shallow monitoring wells. Thus, if contaminants from the disposal zone did indeed migrate to the shallow aquifer, contamination was not widespread and probably consisted mostly of displaced chloride-rich formation waters.  相似文献   

8.
Pumped waters from 14 Pennsylvania wells, located in shallow sandstone, siltstone and shale aquifers, were continuously monitored for dissolved oxygen (D. O.), nitrate (NO3), pH, electrical conductivity (EC) and water temperature in a discharge manifold at the well head. The amount of pumping or purging required to stabilize these parameter readings varied by well site and parameter being analyzed. However, the purging required was generally greatest for D. O. and least for water temperature where: D. O. < NO3 pH < EC < water temperature. Wells located near the siltstone-shale interface generally required far more purging than did wells located elsewhere. Although parameter stability was often achieved within purging one bore volume, the complexity, diversity, and variability in the data and these well-ground water systems, suggest that no single purging rule is appropriate. Instead, the extent of purging required before sampling these shallow aquifers should be determined by incorporating on-site monitoring of target or related parameters into the purging process.
From a sampling perspective, the relationship between NO3 and D. O. concentrations during purging were analyzed relative to aquifer type. For most wells located in sandstone or siltstone, NO3 concentrations remained relatively constant during purging irrespective of changes in D. O. For most wells located in shale, these two were positively and similarly correlated, suggesting that a general relationship exists.  相似文献   

9.
Chloride contamination of groundwater in urban areas due to deicing is a well‐documented phenomenon in northern climates. The objective of this study was to evaluate the effects of permeable pavement on degraded urban groundwater. Although low impact development practices have been shown to improve stormwater quality, no infiltration practice has been found to prevent road salt chlorides from entering groundwater. The few studies that have investigated chlorides in permeable asphalt have involved sampling directly beneath the asphalt; no research has looked more broadly at surrounding groundwater conditions. Monitoring wells were installed upgradient and downgradient of an 860 m2 permeable asphalt parking lot at the University of Connecticut (Storrs, Connecticut). Water level and specific conductance were measured continuously, and biweekly samples were analyzed for chloride. Samples were also analyzed for sodium (Na), calcium (Ca), and magnesium (Mg). Analysis of variance analysis indicated a significantly (p < 0.001) lower geometric mean Cl concentration downgradient (303.7 mg/L) as compared to upgradient (1280 mg/L). Concentrations of all alkali metals increased upgradient and downgradient during the winter months as compared to nonwinter months, indicating that cation exchange likely occurred. Despite the frequent high peaks of chloride in the winter months as well as the increases in alkali metals observed, monitoring revealed lower Cl concentrations downgradient than upgradient for the majority of the year. These results suggest that the use of permeable asphalt in impacted urban environments with high ambient chloride concentrations can be beneficial to shallow groundwater quality, although these results may not be generalizable to areas with low ambient chloride concentrations.  相似文献   

10.
In 1988 and 1989, a natural gradient tracer test was performed in the shallow, aerobic and aquifer at Canadian Forces Base (CFB) Borden. A mixture of ground water containing dissolved oxygenated gasoline was injected below the water table along with chloride (Cl-) as a conservative tracer. The migration of BTEX, MTBE, and Cl was monitored in detail for 16 moths. The mass of BTEX compounds in the plume diminished significantly with time due to intrinsic aerobic biodegradation, while MTBE showed only a small decrease in mass over the 16-month period. In 1995/96, a comprehensive ground water sampling program was undertaken to define the mass of MTBE still present in the aquifer. Since the plume had migrated into an unmonitored section of the Borden Aquifer, numerical modeling and geostatistical methods were applied to define an optimal sampling grid and to improve the level of confidence in the results. A drive point profiling system was used to obtain ground water samples. Numerical modeling with no consideration of degradation pedicted maximum concentrations in excess of 3000 μg/L; field sampling found maximum concentrations of less than 200 μg/L. A mass balance for the remaining MTBE mass in the aquifer eight years after injection showed that only 3% of the original mass remained. Sorption, volatilization, a biotic degradation, and plant uptake are not considered significant attenuation processes for the field conditions. Therefore, we suggest that biodegradation may have played a major role in the attenuation of MTBE within the Borden Aquifer.  相似文献   

11.
Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple‐well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride‐cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high‐chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high‐chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.  相似文献   

12.
A release of 1,2-dichloroethane. also known as ethylene dichloride (EDC), resulted in shallow subsurface freephase contamination of a Gulf Coast site in the southern United States. The site stratigraphy consists primarily of a low permeability, surficial peat. silt, and clay zone underlain by fractured clay; a confined 12 in deep sand ground water flow zone; a confined 21 m deep fine sand zone of limited ground water flow, followed by a deep aquitard. The Gumbo clay and sandy clay aquitard below the release area overlies and protects the 61 m deep Upper Chicot Aquifer, which is a confined regional aquifer. An ongoing recovery and hydraulic containment program from the primary impacted and laterally and vertically restricted shallow 40-foot sand zone has effectively recovered dense nonaqueous phase liquid (DNAPL) and contained dissolved phase EDC.
Natural attenuation of EDC was demonstrated through (1) a laboratory microcosm study substantiating the ability of the native microbial population in the deeper aquifer lo degrade EDC under anaerobic environmental conditions found at the site. (2) field investigations showing reductions in EDC concentrations over time in many of the wells on site, and (3) an evaluation of the ground water for EDC and its degradation products and oilier geo-chemical parameters such as dissolved oxygen, redox potential, and pH. Degradation products of EDC found in the field investigations included 2-chloroeihanol, ethanol. ethene, and ethane. Dissolved EDC concentrations in selected wells between the first recorded samples and the fourth quarter of 1997 ranged from greater than 4% to 99% reductions. First-order exponential decay half-lives ranged from 0.21 to 4.2 years for wells showing decreases in FDC concentrations over time. Elevated methane concentrations indicated carbon dioxide to be the major terminal electron acceptor.  相似文献   

13.
Nitrate-contaminated ground water beneath and adjacent to an intensive swine ( Sus scrofa domesticus ) production facility in the Middle Coastal Plain of North Carolina was analyzed for δ15N of nitrate (δ15N-NO3). Results show that the isotopic signal of animal waste nitrogen is readily identifiable and traceable in nitrate in this ground water. The widespread land application of animal wastes from intensive livestock operations constitutes a potential source of nitrogen contamination to natural water throughout large regions of the United States and other countries. The site of the present study has been suspected as a nitrate contamination source to nearby domestic supply wells and has been monitored for several years by government and private water quality investigators through sampling of observation wells, ditches, and streams. δ15N of nitrate allowed direct identification of animal waste-produced nitrate in 11 of 14 wells sampled in this study, as well as recognition of nitrate contributions from non-animal waste agricultural sources in remaining wells.  相似文献   

14.
Private wells in Cayuga and Orange counties in New York were sampled to determine the occurrence of pesticide contamination of groundwater in areas where significant pesticide use coincides with shallow or otherwise vulnerable groundwater. Well selection was based on local groundwater knowledge, risk modeling, aerial photo assessments, and pesticide application database mapping. Single timepoint samples from 40 wells in each county were subjected to 93‐compound chromatographic scans. All samples were nondetects (reporting limits ≤1 μg/L), thus no wells from either county exceeded any of 15 state groundwater standards or guidance values. More sensitive enzyme‐linked immunosorbent assays (ELISA) found two wells with quantifiable atrazine in each county (0.1–0.3 μg/L), one well with quantifiable diazinon (0.1 μg/L) in Orange County, and one well with quantifiable alachlor (0.2 μg/L) in Cayuga County. Trace detections (<0.1 μg/L) in Cayuga County included atrazine (five wells), metolachlor (six wells), and alachlor (one well), including three wells with multiple detections. All 12 Cayuga County wells with ELISA detections had either corn/grain or corn/forage rotations as primary surrounding land uses (although 20 other wells with the same land uses had no detections) and all quantified detections and most trace detections occurred in wells up to 9‐m deep. Orange County trace (<0.1 μg/L) ELISA detections (atrazine three wells, diazinon one well, and metolachlor five wells) and quantified detections were only generally associated with agricultural land uses. Finding acceptable drinking water quality in areas of vulnerable groundwater suggests that water quality in less vulnerable areas will also be good.  相似文献   

15.
In this study, the dissolved oxygen (DO) alteration method (Chlebica and Robbins 2013) is used to evaluate the patterns of flow into and vertically within shallow screened monitoring wells. The method entails bubbling air into a well, followed by conducting DO profiles with time. Tests were conducted in six standard 2" (5 cm) polyvinyl chloride shallow screened monitoring wells at four test sites in Storrs, Connecticut. Test sites vary in formation permeability, flow patterns, and nearby geographic features influencing flow. The method provides a means for groundwater flow characterization and potentially improved interpretation of contamination sampling results in the absence of detailed three‐dimensional hydrogeologic information.  相似文献   

16.
Ground water quality data generated during the investigation of 334 hazardous waste disposal sites were used to contrast the Resource Conservation and Recovery Act (RCRA) and Comprehensive Emergency Response, Compensation and Liability Act (CERCLA) monitoring. programs. The minimum RCRA-required network of four wells was equaled or exceeded at 94 percent of the 156 RCRA sites and 70 percent of the 178 CERCLA sites in the data base. A sampling frequency of four events per year or more was used at 60 percent of the RCRA sites compared to only 24 percent at the CERCLA sites. CERCLA records compiled to date indicate that 480 compounds have been detected and another 220 compounds have been tentatively identified in ground water in the vicinity of hazardous waste disposal sites. However, the composite data from 123 RCRA site monitoring programs only indicates the presence of 100 chemical substances. The most significant discrepancy in the RCRA detection monitoring program is that it only generates data on three of the 20 organic contaminants that have been most frequently detected during the CERCLA hazardous waste disposal site investigations. Modification of the current RCRA program to include routine analysis for volatile organic compounds would correct this weakness.  相似文献   

17.
Concentrations of chloride in excess of State of New Hampshire water‐quality standards (230 mg/l) have been measured in watersheds adjacent to an interstate highway (I‐93) in southern New Hampshire. A proposed widening plan for I‐93 has raised concerns over further increases in chloride. As part of this effort, road‐salt‐contaminated groundwater discharge was mapped with terrain electrical conductivity (EC) electromagnetic (EM) methods in the fall of 2006 to identify potential sources of chloride during base‐flow conditions to a small stream, Policy Brook. Three different EM meters were used to measure different depths below the streambed (ranging from 0 to 3 m). Results from the three meters showed similar patterns and identified several reaches where high EC groundwater may have been discharging. Based on the delineation of high (up to 350 mmhos/m) apparent terrain EC, seven‐streambed piezometers were installed to sample shallow groundwater. Locations with high specific conductance in shallow groundwater (up to 2630 mmhos/m) generally matched locations with high streambed (shallow subsurface) terrain EC. A regression equation was used to convert the terrain EC of the streambed to an equivalent chloride concentration in shallow groundwater unique for this site. Utilizing the regression equation and estimates of one‐dimensional Darcian flow through the streambed, a maximum potential groundwater chloride load was estimated at 188 Mg of chloride per year. Changes in chloride concentration in stream water during streamflow recessions showed a linear response that indicates the dominant process affecting chloride is advective flow of chloride‐enriched groundwater discharge. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

18.
Two research cruises on the Baltic Sea, in July and November of 1979, were made for investigating the Baltic Sea water for its contents of dissolved cadmium, lead and copper. Atomic absorption spectrophotometry and voltammetry were used as methods of investigation, the latter method having supplied slightly lower results. In the water layer of 0 … 50 m the cadmium concentrations were 0.03 … 0.05 μg/l and the lead concentrations were 0.1 … 0.2 μg/l, seasonal changes did not have any effect on them. The copper concentrations, on the other hand, were 0.4 … 1.2 μg/l in summer and 0.1 … 0.7 μg/l in autumn. Compared with ocean waters, the lead content is remarkably high. In anoxic deep waters of the Baltic Sea the concentrations of the three metals, especially that of cadmium, are very low (< 0.01 μg/l).  相似文献   

19.
The iodide contents in 389 ground-water-tapping plants of the county are compared with the geological character of the aquifer, the carbonate and non-carbonate hardness and the nitrate and chloride contents of the waters. 54% of the plants have I-concentrations of 3 … 7 μg/l. In the air-covered ground-water (hardness quotient<2.8) 2 … 50 μg/l I are found, whereas in the confined ground-water (hardness quotient >2.8) 2 … 50 μg/l I are contained. In general, the I-content increases with the carbonate hardness, a connection with till existing. Therefore, ground-waters of the Miocene have relatively low salt- and I-contents. Geogenic salt influences in the form of NaCl increase the I-contents to 50 … 100 μg/l. Anthropogenic influences in the residential area and due to waste increase the Cl?- and I?-concentrations. There were not detected any dependences between the I- and NO3-contents.  相似文献   

20.
Micropurge sampling of ground water wells has been suggested as a possible replacement to traditional purge and sample methods. To compare methods, duplicate ground water samples were collected at two field sites using iraditional and micropurge methods. Samples were analyzed for selected organic and inorganic constituents, and the results were compared statistically. Analysis of the data using the nonparametric sign test indicates that within a 95 percent confidence interval, there was no significant difference between the two methods for the site contaminants and the majority of analytes. These analytical results were supported by visual observations with the colloidal borescope, which demonstrated impacts on the flow system in the well when using traditional sampling methods. Under selected circumstances, the results suggest replacing traditional sampling with micropurging based on reliability, cost, and waste minimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号