首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张良培  李家艺 《遥感学报》2016,20(5):1091-1101
高光谱成像技术具有光谱连续、图谱合一,能够以较高的光谱诊断能力对地物目标进行精细化解译,可以大幅增强地物信息的提取能力。充分利用高光谱遥感图像丰富的空间、谱信息,进行观测目标地物的精细化解译,成为近年来遥感领域的研究热点和前沿领域,并在多个相关领域具有巨大的应用价值和广阔的发展前景。本文结合高光谱图像成像特点,对基于稀疏表示理论的高光谱图像处理与分析方法进行综述,概括了高光谱图像处理与分析主要研究,并对各个研究领域与方向进行分析和评价,最后对各研究领域发展提出建议和展望。  相似文献   

2.
The spectral angle mapper (SAM), as a spectral matching method, has been widely used in lithological type identification and mapping using hyperspectral data. The SAM quantifies the spectral similarity between an image pixel spectrum and a reference spectrum with known components. In most existing studies a mean reflectance spectrum has been used as the reference spectrum for a specific lithological class. However, this conventional use of SAM does not take into account the spectral variability, which is an inherent property of many rocks and is further magnified in remote sensing data acquisition process. In this study, two methods of determining reference spectra used in SAM are proposed for the improved lithological mapping. In first method the mean of spectral derivatives was combined with the mean of original spectra, i.e., the mean spectrum and the mean spectral derivative were jointly used in SAM classification, to improve the class separability. The second method is the use of multiple reference spectra in SAM to accommodate the spectral variability. The proposed methods were evaluated in lithological mapping using EO-1 Hyperion hyperspectral data of two arid areas. The spectral variability and separability of the rock types under investigation were also examined and compared using spectral data alone and using both spectral data and first derivatives. The experimental results indicated that spectral variability significantly affected the identification of lithological classes with the conventional SAM method using a mean reference spectrum. The proposed methods achieved significant improvement in the accuracy of lithological mapping, outperforming the conventional use of SAM with a mean spectrum as the reference spectrum, and the matching filtering, a widely used spectral mapping method.  相似文献   

3.
鉴于在时频局部化能力方面小波包变换优于小波变换,将高光谱影像像元光谱曲线作为1维信号并对其进行多尺度小波包变换分解,得到不同尺度上的低频和高频成分向量。根据不同地物像元光谱小波包分解最佳基有很大差异,而同一地物像元光谱小波包分解的前若干个最佳基完全相同的特点,提出一种基于前若干个最佳小波包基特征参量数组的分类特征参量和目标识别方法,并对AVIRIS影像中的特征如地物植被、水体、岩石及某些阴影等进行提取与制图。  相似文献   

4.
高光谱图像目标检测算法分析   总被引:1,自引:0,他引:1  
孙林  鲍金河  刘一超 《测绘科学》2012,(1):131-132,108
本文将国内外的高光谱图像目标检测算法分为光谱异常检测、光谱匹配检测和高光谱与高空间分辨率结合目标检测三种检测算法,分析了三种检测算法的原理、应用特点和局限性,并探讨了目标检测算法的发展的可能性。  相似文献   

5.
小样本的高光谱图像降噪与分类   总被引:1,自引:0,他引:1  
在样本数目稀少情况下实现高光谱图像精细分类是个挑战性的问题。高光谱图像信噪比提高比较困难,噪声大小对分类结果有最直接的影响。利用高光谱图像相邻波段之间的相关性和相邻像素之间的相关性,提出多级降噪滤波的高光谱图像分类方法,通过改进的两阶段稀疏与低秩矩阵分解方法,去除高光谱图像中能量较高的噪声,利用主成分分析方法去除高光谱图像中能量较低的噪声,引导滤波方法去除分类结果图中的"椒盐噪声"。选取两幅真实高光谱图像进行实验,结果表明,两阶段稀疏与低秩矩阵分解法和主成分分析法两种降噪方法具有较强的互补性;引导滤波方法使得分类图更加平滑且分类精度更高。与其他光谱空间分类方法相比,本文方法分类精度更高,且在样本极少时能获得很高的分类精度。  相似文献   

6.
Due to constraints both at the sensor and on the ground, dimension reduction is a common preprocessing step performed on many hyperspectral imaging datasets. However, this transformation is not necessarily done with the ultimate data exploitation task in mind-for example, target detection or ground cover classification. Indeed, theoretically speaking it is possible that a lossy operation such as dimension reduction might have a negative impact on detection performance. This notion is investigated experimentally using real-world hyperspectral imaging data. The popular principal components transform [aka. principal components analysis (PCA)] is used to explore the impact that dimension reduction has on adaptive detection of difficult targets in both the reflective and emissive regimes. Using seven state-of-the-art algorithms, it is shown that in many cases PCA can have a minimal impact on the detection statistic value for a target that is spectrally similar to the background against which it is sought.  相似文献   

7.
Hyperspectral images (HSI) provide a new way to exploit the internal physical composition of the land scene. The basic platform for acquiring HSI data-sets are airborne or spaceborne spectral imaging. Retrieving useful information from hyperspectral images can be grouped into four categories. (1) Classification: Hyperspectral images provide so much spectral and spatial information that remotely sensed image classification has become a complex task. (2) Endmember extraction and spectral unmixing: Among images, only HSI have a complete model to represent the internal structure of each pixel where the endmembers are the elements. Identification of endmembers from HSI thus becomes the foremost step in interpretation of each pixel. With proper endmembers, the corresponding abundances can also be exactly calculated. (3) Target detection: Another practical problem is how to determine the existence of certain resolved or full pixel objects from a complex background. Constructing a reliable rule for separating target signals from all the other background signals, even in the case of low target occurrence and high spectral variation, comprises the key to this problem. (4) Change detection: Although change detection is not a new problem, detecting changes from hyperspectral images has brought new challenges, since the spectral bands are so many, accurate band-to-band correspondences and minor changes in subclass land objects can be depicted in HSI. In this paper, the basic theory and the most canonical works are discussed, along with the most recent advances in each aspect of hyperspectral image processing.  相似文献   

8.
Active contours, or snakes, are broadly used to detect linear features such as edges. However, they are often restricted in the delineation of regions of interest within the hyperspectral domain. In this paper, a new approach is presented, referred to as “Busyness Multiple Correlation Edge Detector”, that enables hyperspectral boundary detection using active contours such as “Alternating Vector Field Convolution” snakes. The combination of “Alternating Vector Field Convolution” snakes with the “Busyness Multiple Correlation Edge Detector” opens a broad set of applications by concurrent high convergence quality and speed. Furthermore, specific snake initialisations are tested. A series of examples are used to both demonstrate the approach and underline the benefits of the new methods.  相似文献   

9.
丰明博  刘学  赵冬 《测绘学报》2014,43(2):158-163
将高光谱图像与高空间分辨率图像融合后,由于融合图像空间分辨率提高,改变了混合像元内地物组分比例,像元光谱信息较原高光谱图像光谱信息会出现“失真”现象。针对这种情况,考虑混合像元内成分变化进行图像融合,首先利用投影方法模拟多光谱图像得到高光谱图像,并将模拟高光谱图像与原高光谱图像利用小波方法进行融合,融合图像不仅增强了空间信息,而且对光谱信息进行一定的修正,从而提高了环境异常探测等一系列应用的精度。利用Hyperion图像和SPOT-5图像进行融合实验,融合图像能够识别出87.2%目标区域。  相似文献   

10.
基于穷举法的高光谱遥感图像地物识别研究   总被引:1,自引:0,他引:1  
介绍了一种基于穷举法的高光谱遥感图像地物识别方法.该方法从所有与研究区有关的可能参考光谱中识别出图像上每个像元的最佳匹配光谱,绘制识别结果图,并由图中信息可对参考光谱进行更换,以求得最佳识别结果.并以云南省中甸普朗斑岩铜矿区外围的高光谱遥感图像为例,得到了该区的地物识别图,经实地检验,证实了该方法的有效性.  相似文献   

11.
天宫一号高光谱成像仪具有空间分辨率高、光谱分辨率高、图谱合一等特性,在中国航天高光谱领域具有里程碑的意义。针对一般遥感场景分类数据集尺度单一、光谱分辨率较低等问题,本文提出基于天宫一号的多谱段、高空间分辨率、多时相高光谱遥感场景分类数据集(TG1HRSSC)。利用天宫一号高光谱成像仪获取的高质量数据,经过辐射校正、几何校正、空间裁剪、波段筛选、数据质量分析与控制等,制作了一批通用的航天高光谱遥感场景分类数据集,通过载人航天空间应用数据推广服务平台(http://www.msadc.cn[2019-09-10])进行分发和共享。该数据集包括天宫一号高光谱成像仪获取的城镇、农田、林地、养殖塘、荒漠、湖泊、河流、港口、机场等9个典型地物场景的204个高光谱影像数据,其中5 m分辨率全色谱段1个波段、10 m分辨率可见近红外谱段54个有效波段以及20 m分辨率短波红外谱段52个有效波段。研究利用AlexNet、VGG-VD-16、GoogLeNet等深度学习算法网络对构建的数据集进行场景分类的试验,结果表明该数据集的场景分类应用实现较好效果。由于该数据集具备高分辨、高光谱等特征优势,未来在语义理解、多目标检测等方面有着广泛的应用价值。  相似文献   

12.
We present a critical modification to improved dark object technique for correcting hyperspectral data (EO1-Hyperion). The modification is required in improved dark object technique as the original method does not take into account overlap of spectral response functions of two adjacent bands of hyperspectral sensor. We used weighted deconvolution for correcting the original overlap affected path radiance correction propagation factors. Further, we compared the reduction in correction factors—in different conditions—because of the overlap. We calculated the path radiance for April 22 Hyperion image and compared it with other methods such as 6SV. We found noticeable difference in corrected and uncorrected path radiance propagation factors with “clear” to “very clear” atmospheric models. For the other models (“moderate”, “hazy”, “very hazy”), the difference is negligible and can be ignored and improved dark object technique can be applied without any overlap correction.  相似文献   

13.
空-谱信息与稀疏表示相结合的高光谱遥感影像分类   总被引:1,自引:1,他引:0  
针对传统的高光谱遥感影像分类中多依赖光谱信息而忽视空间信息以及提取的特征维数高的问题,提出了一种空-谱信息与稀疏表示相结合的分类算法。首先,利用最小噪声分离对原始影像进行降维,在此基础上,对主成分图上局部影像块内的所有像素进行重组,并用排序的方法得到旋转不变的空-谱特征。然后,对空-谱特征进行监督学习得到字典,并将提取的测试样本的空-谱特征编码到字典中以得到测试样本的稀疏表示。最后,使用支持向量机分类器(SVM)对高光谱影像进行分类。3组高光谱数据试验表明,与传统的分类方法比较,本文方法能有效提高分类精度。  相似文献   

14.
Extracting a set of meaningful spectral features could enhance the classification performance. This is particularly important in hyperspectral images where the dataset are very large and time consuming to process. Wavelet transform as a powerful decomposition tool in both low and high frequency components could play an essential role in extracting spectral features of target minerals. Selecting the optimum base wavelet is an important step in wavelet transform. In this research, two criteria to select optimum base wavelet were implemented on three wavelet series including Daubechie (db), symlet (sym) and coiflet (coif). Energy criterion involves entropy factor and energy-to-Shannon entropy ratio while matching shape criterion operates according to correlation coefficients. High ranking base wavelets in both energy and shape criteria, coif1, db3 and db7, are recommended to be utilized in hyperspectral image classification. Neural Network technique was used for classification and trained by means of mineral spectral features related to typical porphyry copper deposits. Non-Linear wavelet feature extraction was employed to select the efficient features as input data. The study area covered by Hyperion data contains two well-known porphyry copper deposits, Darrehzar and Sarcheshmeh, located in the Iranian copper belt. Based on classification error matrix, it is concluded that db7 through 12 selected features exhibits the maximum consistency with the field measured data and can be recommended as an appropriate base wavelet for detecting porphyry copper deposits.  相似文献   

15.
高光谱遥感影像分类研究进展   总被引:4,自引:0,他引:4  
随着模式识别、机器学习、遥感技术等相关学科领域的发展,高光谱遥感影像分类研究取得快速进展。本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展,在总结分类策略的基础上,重点从以核方法为代表的新型分类器设计、特征挖掘、空间-光谱分类、基于主动学习和半监督学习的分类、基于稀疏表达的分类、多分类器集成六个方面对高光谱影像像素级分类最新研究进行了综述。针对今后的研究方向,指出高光谱遥感影像分类一方面要适应大数据、智能化高光谱对地观测的发展前沿,继续引入机器学习领域的新理论、新方法,综合利用多源遥感数据、多维特征空间互补的优势,提高分类精度、分类器泛化能力和自动化程度;另一方面要关注高光谱遥感应用的需求,突出高光谱遥感记录精细光谱特征的优势,针对应用需求发展有效的分类方法。  相似文献   

16.
:光谱相似性测度用来衡量像元光谱的相似程度,是高光谱影像光谱匹配分类的重要工具之一,一般通过设置阈值判断像元光谱和参考光谱是否相似来进行分类。在此基础上,本文提出了一种多特征转换的高光谱影像自适应分类方法,实现了各种光谱相似性特征和分类器相结合的一种自适应分类。实验结果表明,本文提出的方法相比于传统的SVM方法,分类的总体精度更高,还可以避免部分传统光谱匹配分类方法中需要专家经验确定分类阈值的复杂过程。  相似文献   

17.
针对高光谱图像分类中对光谱信息利用不足的问题,提出一种基于卷积神经网络在光谱域开展的分类算法。该算法通过构建五层网络结构,逐像素对光谱信息开展分析,将全光谱段集合作为输入,利用神经网络展开代价函数值的计算,实现对光谱特征的提取与分类。实验中采用三组高光谱遥感影像数据进行对比分析,以India Pines数据集为例,提出的基于卷积神经网络的分类方法的分类正确率达到90.16%,比RBF-SVM方法高出2.56%,相比三种传统的深度学习方法高出1%~3%,训练速度也较为理想。实验结果表明,本文所提出的算法充分利用了高光谱图像中逐像素点的光谱域信息,能够有效提高分类正确率。与传统学习算法相比,在较少训练样本的情况下,更能发挥其良好的分类性能。  相似文献   

18.
To solve the low detection efficiency problem of Constrained Energy Minimization (CEM) method used for hyperspectral remote sensing imagery, this paper firstly presents two improved detection methods: principal component CEM (PCCEM) and matrix taper CEM (MTCEM). Then, based on these two methods, a more optimized Two-Time detection (TTD) method is proposed. Primarily, the targets of interest in the hyperspectral image are detected by using the PCCEM and MTCEM method. Then the autocorrelation matrix of non-target pixels is estimated according to the target detection results. Finally, based on this autocorrelation matrix, a new weight vector is constructed for the second detection. Under the effect of this new weight vector, the output energy of the target can be kept at unity and the output energy of the background is suppressed at the same time. Then, the improvement of target detection result can be realized. Experimental results on a real world hyperspectral data show the efficiency of the proposed TTD method to improve the detection performance.  相似文献   

19.
Understanding the Unique Spectral Signature of Winter Rape   总被引:1,自引:0,他引:1  
Driven by significant technological developments in the hyperspectral imaging, material mapping using reference spectra has received renewed interest of the remote sensing community. The applicability of reference spectral signatures in image classification depends mainly on the material type and its spectral signature behaviour. Identification and spectral characterization of materials which exhibit unique spectral behaviour is the first step in this approach. Consequently there have been active researches for the identification of surface materials which exhibit unique spectral signatures. The uniqueness of reflectance signature of winter rape relative to its co-occurring crop species was reported in this study. Reflectance spectral libraries constructed from field spectral reflectance measurements collected over five agricultural crops (alfalfa, winter barley, winter rape, winter rye, and winter wheat) during four subsequent growing seasons were classified by the linear discriminant analysis (LDA). Further, the reference field spectral database was used for the spectral feature fitting and classification of a historical HyMAP airborne hyperspectral imagery acquired at a separate site, by spectral library search. Results indicate the existence of a meaningful spectral matching between image and field spectra for winter rape and demonstrate the potential for transferring spectral library for hyperspectral image classification. The observed consistency in the discrimination of winter rape demonstrates experimentally the fundamental principle of remote sensing which suggests the theoretical existence of unique spectral signatures for materials which can be incorporated as reference spectral signatures for hyperspectral image classification.  相似文献   

20.
针对基于高斯径向基核函数的OCSVM等异常检测算法,对地物光谱变异极为敏感,导致算法异常检测性能不稳定的问题,根据光谱角度余弦测度对光谱形状相似性的描述不受地物光谱辐射强度变异影响的特性,将具有非正定核特性的光谱角度余弦核测度引入非正定SVM算法中,提出一种基于非正定OCSVM的高光谱影像地物异常检测算法。利用四组模拟数据进行目标异常检测实验,结果表明,该算法能够有效检测出高光谱影像数据中的目标地物,检测精度提升明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号