首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study utilizes the discrete element method (DEM) to present a microscopic energy monitoring approach to characterize energy dissipation mechanisms in seismically loaded soils. Numerical simulations were conducted on saturated deposits of granular particles subjected to seismic excitations, modeled using a transient fully-coupled continuum–fluid discrete-particle model. The onset of liquefaction is illustrated through macroscopic and microscopic response patterns. A novel in-depth look at the individual microscale energy components both before and after the onset of liquefaction is presented. Local microscopic energies are also presented and are compared with local macroscopic energies calculated from stress–strain loops. Finally, an assessment of existing hypotheses to quantify liquefaction potential based on energy consideration is presented through a discussion of a number of simulations that resulted in liquefaction.  相似文献   

2.
Natural loess is a kind of under-consolidated and unsaturated loose granulates (silts) with its microstructure characterized with large voids and inter-particle cementation. This paper presents a distinct element method (DEM) to investigate its macro- and micro-mechanical behaviour (compression and collapse behaviour) under one-dimensional (1D) compression condition. A relationship between bond strength in DEM model and initial water content is used to develop a bond contact model for loess. Then, DEM structural loess samples are prepared by the multi-layer under-compaction method, and cemented with the bond contact model. The effect of water content and void ratio on compression and collapse behaviour of loess is numerically investigated by simulating 1D compression and wetting tests on the DEM material. The DEM results agree qualitatively with available experimental observations in literatures. The wetting-induced deformation is independent of the sequence of wetting and loading under 1D compression condition. The macroscopic yielding and collapse behaviours are associated with bond breakage on microscopic scale. Moreover, bonds break in one of the two failure types in the simulations, i.e. tensile failure and shear failure (compression-shear failure and tension-shear failure), with bonds broken firstly mainly due to tension followed by shear when the samples are compressed, while mainly due to shear when the samples are wetted under a certain pressure. In addition, the contact orientations and deviator fabrics of contacts under 1D compression and wetting were also investigated.  相似文献   

3.
Microscopic and macroscopic behaviour of fluid flow through rough-walled rock fractures was experimentally investigated. Advanced microfluidic technology was introduced to examine the microscopic viscous and inertial effects of water flow through rock fractures in the vicinity of voids under different flow velocities, while the macroscopic behaviour of fracture flow was investigated by carrying out triaxial flow tests through fractured sandstone under confining stresses ranging from 0.5 to 3.0 MPa. The flow tests show that the microscopic inertial forces increase with the flow velocity with significant effects on the local flow pattern near the voids. With the increase in flow velocity, the deviation of the flow trajectories is reduced but small eddies appear inside the cavities. The results of the macroscopic flow tests show that the linear Darcy flow occurs for mated rock fractures due to small aperture, while a nonlinear deviation of the flow occurs at relatively high Reynolds numbers in non-mated rock fracture (Re?>?32). The microscopic experiments suggest that the pressure loss consumed by the eddies inside cavities could contribute to the nonlinear fluid flow behaviour through rock joints. It is found that such nonlinear flow behaviour is best matched with the quadratic-termed Forchheimer equation.  相似文献   

4.
李磊  蒋明镜  张伏光 《岩土力学》2018,39(3):1082-1090
深部岩石在工程中具有高应力、大变形等典型特点,因此,高围压下考虑岩石残余强度的三轴试验对于分析深部岩石力学特性具有重要意义。离散单元法是分析岩石力学特性的重要数值方法,但是长期以来采用离散单元法定量模拟岩石的三轴试验一直存在诸多挑战,即数值模拟与室内试验得到的应力-应变全过程曲线难以定量匹配。采用改进的三维胶结抗弯-扭模型对深部砂岩考虑残余强度时的三轴试验进行了定量模拟,实现了数值模拟与室内试验应力-应变全过程曲线的定量匹配,获得了岩石较大的峰值/残余内摩擦角及非线性强度包线,克服了经典BPM模型存在的3个突出问题。通过参数分析,研究了峰值/残余内摩擦角及黏聚力与离散元微观参数之间的关系,同时这些大量的算例也证明了该模型具有较高的计算效率,可以满足模拟三维室内常规试验的要求。  相似文献   

5.
The critical state is significant to the mechanical behaviors of granular materials and the foundation of the constitutive relations. Using the discrete element method (DEM), the mechanical behaviors of granular materials can be investigated on both the macroscopic and microscopic levels. A series of DEM simulations under true triaxial conditions have been performed to explore the critical state and dilatancy behavior of granular materials, which show the qualitatively similar macroscopic responses as the experimental results. The critical void ratio and stress ratio under different stress paths are presented. A unique critical state line (CSL) is shown to indicate that the intermediate principal stress ratio does not influence the CSL. Within the framework of the unique critical state, the stress–dilatancy relation of DEM simulations is found to fulfill the state-dependent dilatancy equations. As a microscopic parameter to evaluate the static determinacy of the granular system, the redundancy ratio is defined and investigated. The results show that the critical state is very close to the statically determinate state. Other particle-level indexes, including the distribution of the contact forces and the anisotropies, are carefully investigated to analyze the microstructural evolution and the underlying mechanism. The microscopic analysis shows that both the contact orientations and contact forces influence the mechanical behaviors of granular materials.  相似文献   

6.
The grains of lunar regolith are characterized with rough surfaces, angular shapes and mutual adhesions due to short-range interactions. These features control the macroscopic mechanical behavior of lunar regolith but have not been completely captured by contact models in previous Discrete Element Method (DEM) analyses. In this paper, a simplified two-dimensional microscopic contact model is proposed for high efficiency DEM analyses of lunar regolith. The model consists of three components in the normal, tangential and rolling directions respectively, plus two new parameters. A shape parameter is used to control the rolling resistance ability at the contact area between two particles to capture the features of grain shape and interlocking. The second parameter, micro-separation, which denotes the nominal minimum distance between the molecules of the two contacting particles, is introduced to account for van der Waals force as the major component of the short-range interactions that contribute to the adhesion of regolith grains in lunar environment conditions. The novel model has been implemented in a two-dimensional DEM code for numerical simulations of biaxial compression tests on lunar regolith. The effects of interparticle friction, grain shape, lunar environment conditions and void ratio on the strength of lunar regolith were numerically investigated. The results show that soils in the simulated lunar environment exhibit greater strength and more apparent strain-softening and shear dilatancy than on the Earth. The proposed model can capture the main features of the mechanical behavior of lunar regolith (apparent cohesion and high peak friction angle) and a wide range of strength indices can be obtained by the contact model.  相似文献   

7.
8.
当前盐岩的宏观力学模型通常是唯象模型,不能很好地解释盐岩受力变形破坏的真正物理基础。盐岩是由于化学沉积而形成的矿物集合体,是一种主要由NaCl和少量杂质组成的多晶体,其变形机制主要由晶粒与晶界的力学特性控制。通过扫描电镜(SEM),获得盐岩晶粒的微细观结构特征,采用分子动力学方法和纳米压痕技术,确定盐岩晶粒和晶界的微细观力学参数;将盐岩晶粒作为块体,基于Voronoi多边形技术,建立盐岩的微细观数值模型;利用离散元方法,对盐岩试件在单轴压缩和直剪条件下的宏观力学行为进行了数值模拟。数值模拟结果与宏观力学试验结果吻合度高,表明基于盐岩微细观晶粒结构特征并结合离散元数值模拟的方法能够较好地研究盐岩的宏观力学性能及其材料物理基础。  相似文献   

9.

Empirical evidence has shown that particle breakage affects the mechanical behaviour of granular materials. The source of this mechanism takes place at the particle scale, and the main consequence on the macromechanical behaviour is increasing compressibility. Due to the inverse correlation between particle size and particle crushing strength, coarse rockfill materials are particularly vulnerable to mechanical degradation due to particle breakage. However, such coarse materials do not fit in standard laboratory devices, and the alternative of large sample testing is usually unavailable or too expensive. Alternatively, recent works have proposed multi-scale approaches using the discrete element method (DEM) to carry out numerical testing of coarse crushable materials, although few studies have focused on size effects. This article presents the application of a DEM bonded-cell model to study particle size-strength correlation on angular rock aggregates. Each particle is modelled by a cluster of perfectly rigid polyhedral cells with Mohr–Coulomb contact law. Constant cell density within particles implies that the presence of potential fragmentation planes increases with size. Therefore, particle strength decreases with size. A comprehensive sensitivity analysis was carried out through 1477 particle crushing simulations in a given particle size. Based on published experimental data on calcareous rock aggregates, part of the simulations were used for calibration, and 97 additional simulations of a coarser size fraction were performed for validation. The results show a good agreement with the empirical data in terms of size effect and data scatter through Weibull statistics.

  相似文献   

10.
In this paper the effects of maximum particle size, particle gradation/sorting and fabric on bulk mechanical behaviour of granular materials such as coarse grained soils and rockfills are investigated" from micromechanical considerations starting from the grain scale level, using numerical" simulations based on Discrete Element Modelling (DEM). Hydrostatic compaction and biaxial tests on 2-dimensional assemblies of discs with varying particle sizes and gradations were modelled using DEM. An examination of the constitutive behaviour of granular media considering" the particulate nature of the medium has been attempted to explain the effect of particle size and gradation. Simulation results on perfectly parallel graded assemblies indicate that with increase in the size of the particles, a marginal increase (or no increase) in the angle of internal friction is observed during biaxial loading conditions. A change to a wider gradation (keeping the minimum grain size the same) results in a decrease in the angle of internal friction and an increase in volumetric strain to a considerable extent. Based on micromechanical force and fabric parameters, the basis for the physical behaviour was established. This helps in understanding the physics of parallel gradation techniques.  相似文献   

11.
12.
A homogenization strategy for granular materials is presented and applied to a three-dimensional discrete element method (DEM), that uses superellipsoids as particles. Macroscopic quantities are derived from the microscopic quantities resulting from a DEM simulation by averaging over representative volume elements (RVEs). The implementation of an RVE is described in detail regarding the definition and discretization of the RVE boundary. The homogenization strategy is validated by DEM simulations of compression and shear tests of cohesionless granular assemblies. Finally, an elasto-plastic material model is fitted to the resulting stress–strain curves.  相似文献   

13.
This paper is aimed towards investigating the filtration law of an incompressible viscous Newtonian fluid through a rigid non-inertial porous medium (e.g. a porous medium placed in a centrifuge basket). The filtration law is obtained by upscaling the flow equations at the pore scale. The upscaling technique is the homogenization method of multiple scale expansions which rigorously gives the macroscopic behaviour and the effective properties without any prerequisite on the form of the macroscopic equations. The derived filtration law is similar to Darcy's law, but the tensor of permeability presents the following remarkable properties: it depends upon the angular velocity of the porous matrix, it verifies Hall–Onsager's relationship and it is a non-symmetric tensor. We thus deduce that, under rotation, an isotropic porous medium leads to a non-isotropic effective permeability. In this paper, we present the results of numerical simulations of the flow through rotating porous media. This allows us to highlight the deviations of the flow due to Coriolis effects at both the microscopic scale (i.e. the pore scale), and the macroscopic scale (i.e. the sample scale). The above results confirm that for an isotropic medium, phenomenological laws already proposed in the literature fails at reproducing three-dimensional Coriolis effects in all types of pores geometry. We show that Coriolis effects may lead to significant variations of the permeability measured during centrifuge tests when the inverse Ekman number Ek−1 is 𝒪(1). These variations are estimated to be less than 5% if Ek−1<0.2, which is the case of classical geotechnical centrifuge tests. We finally conclude by showing that available experimental data from tests carried out in centrifuges are not sufficient to determining the effective tensor of permeability of rotating porous media. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The literature review on discrete element (DEM) model analysis of jigging reveals that an idealized fluid behavior is assumed and the damping of the fluid motion across the mineral bed is generally ignored. A microscopic model based on the principles of Computational Fluid Dynamics (CFD) is used to simulate the liquid flow and stratification of coal particles with a wide size range and density distribution in jigging. Fluid motion is calculated by directly solving the Navier–Stokes equations. Coal particles are moved in a Lagrangian frame through the action of forces imposed by the fluid and gravity. Particle effects on fluid motion are fed back at each time step through calculating the velocity disturbance caused by the particle. Particle–particle and particle–wall collisions are also considered. The snapshots of particle configurations for the simulation of stratification in oscillating flow show that the model predicts the macroscopic behavior, such as segregation and stratification, of particles reasonably well.  相似文献   

15.
Liu  Guang  Sun  WaiChing  Lowinger  Steven M.  Zhang  ZhenHua  Huang  Ming  Peng  Jun 《Acta Geotechnica》2019,14(3):843-868

We present a numerical analysis on injection-induced crack propagation and coalescence in brittle rock. The DEM network coupling model in PFC is modified to capture the evolution of fracture geometry. An improved fluid flow model for fractured porous media is proposed and coupled with a bond-based DEM model to simulate the interactions among cracks induced by injecting fluid in two nearby flaws at identical injection rates. The material parameters are calibrated based on the macro-properties of Lac du Bonnet granite and KGD solution. A grain-based model, which generates larger grains from assembles of particles bonded together, is calibrated to identify the microscopic mechanical and hydraulic parameters of Lac du Bonnet granite such that the DEM model yields a ratio between the compressive and tensile strength consistent with experiments. The simulations of fluid injection reveal that the initial flaw direction plays a crucial role in crack interaction and coalescence pattern. When two initial flaws are aligned, cracks generally propagate faster. Some geometrical measures from graph theory are used to analyze the geometry and connectivity of the crack network. The results reveal that initial flaws in the same direction may lead to a well-connected crack network with higher global efficiency.

  相似文献   

16.
Creep tests on asphalt mixtures have been undertaken under four stress levels in the laboratory while the discrete element model (DEM) has been used to simulate the laboratory tests. A modified Burger’s model has been used to represent the time-dependent behaviour of an asphalt mixture by adding time-dependent moment and torsional resistance at contacts. Parameters were chosen to give the correct stress-strain response for constant strain rate tests in Cai et al. (2013). The stress-strain response for the laboratory creep tests and the simulations were recorded. The DEM results show reasonable agreement with the experiments. The creep simulation results proved to be dependent on both bond strength variability and positions of the particles. Bond breakage was recorded during the simulations and used to investigate the micro-mechanical deformation behaviour of the asphalt mixtures. An approach based on dimensional analysis is also presented in this paper to reduce the computational time during the creep simulation, and this analysis is also a new contribution.  相似文献   

17.
Performance assessment of deep repositories for heat-generating radioactive waste requires the capability of predicting reliably the evolution of the system during a time period commensurate with the hazardous life of the waste. In many repository designs clay barriers represent important elements of the waste isolation system.

In order to provide reasonable assurance that clay barriers will ensure long-term waste isolation, it is essential to understand their behaviour under a variety of conditions. Due to the variability of argillaceous materials, to the complexity of the phenomena that might take place in a waste repository and to the longevity of the required isolation, an adequate understanding of the behaviour and the capability to model the evolution of the clay barriers are not easy tasks. The factors that need to be understood and modelled include stress evolution, long-term strain or creep, thermal effects on solid skeleton, on interstitial fluids and on mineralogy. The difficulty of the task is increased by the facts that many effects are coupled, that their rates must be extremely low, in order to be realistic, and that the time period to be modelled defies the possibility of direct experimental observation. Several critical issues are identified and discussed briefly, such as: constitutive law to describe the thermo-mechanical behaviour of the clay skeleton, modelling of the fluid phase in clays and its response to heating, thermal fracturing and healing. Strategies are suggested for a rational approach to the experimental investigation of some relevant processes. The study of suitable natural analogues, for example the thermo-metamorphic halo occurring at Orciatico in Tuscany, could provide valuable insights in the thermal effects of heating clay barriers. It is conceivable that models describing a variety of relevant phenomena, such as dehydration, fracturing and permeability changes could be tested through the study of the Orciatico analogue.

In the end performance assessments of clay barriers would benefit through improvements in modelling: this would involve progress in understanding the basic phenomena and their coupled nature, improved conceptual and mathematical models and increased reliability for their calibration/validation. The improved understanding of phenomena requires additional experimental activities on various levels: molecular, microscopic, macroscopic, medium scale and in situ.  相似文献   


18.
This paper presents a numerical procedure of material parameter identification for the coupled hydro‐mechanical boundary value problem (BVP) of the self‐boring pressuremeter test (SBPT) in clay. First, the neural network (NN) technique is applied to obtain an initial estimate of model parameters, taking into account the possible drainage conditions during the expansion test. This technique is used to avoid potential pitfalls related to the conventional gradient‐based optimization techniques, considered here as a corrector that improves predicted parameters. Parameter identification based on measurements obtained through the pressuremeter expansion test and two types of holding tests is illustrated on the Modified Cam clay model. NNs are trained using a set of test samples, which are generated by means of finite element simulations of SBPT. The measurements obtained through expansion and consolidation tests are normalized so that NN predictors operate independently of the testing depth. Examples of parameter determination are demonstrated on both numerical and field data. The efficiency of the combined parameter identification in terms of accuracy, effectiveness and computational effort is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Barodesy is a constitutive model based on proportional paths and the asymptotic behaviour of soil. It was originally developed for sand in 2009 by Kolymbas, and a version for clay was introduced in 2012. A shortcoming of former barodetic models was that tensile stresses can occur for certain dilative deformations. In this article, an improved version of barodesy for clay and a simplified calibration procedure are proposed. Basic features are shown, and simulations of element tests are compared with experimental data of several clay types.  相似文献   

20.
In this paper, numerical simulation of 3-dimensional assemblies of 1000 polydisperse sphere particles using Discrete Element Method (DEM) is used to study the liquefaction behaviour of granular materials. Numerical simulations of cyclic triaxial shear tests under undrained conditions are performed at different confining pressures under constant strain amplitude. Results obtained in these numerical simulations indicate that with increase in confining pressure there is an increase in liquefaction resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号