首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional numerical analysis of deep excavations with cross walls   总被引:4,自引:2,他引:2  
Previous plane strain analysis of a case history has shown that cross walls in an excavation can effectively reduce movements induced by deep excavation. This study performed three-dimensional numerical analyses for 4 deep excavation cases with different installations of cross walls, including different excavation depths, cross wall intervals and cross wall depths. Both the observed and computed wall deflections for the 4 cases were compared with those of the same excavations that were assumed with no cross walls installed to demonstrate the effectiveness of cross walls in reducing lateral wall deflections. The results show that the cross wall also had a corner effect similar to that of the diaphragm wall. The deflection of the diaphragm wall was smallest at the location of the cross wall installed and then increased with the increasing distance from the cross wall, up to the midpoint between two cross walls. Many factors such as in situ soil properties, diaphragm wall properties, construction procedure, cross wall depth and so on may affect the amount of reduction in lateral wall deflections due to the installation of cross walls. Under the same condition, the amount of reduction was highly dependent on the depth of cross walls, distance to the cross walls and the cross wall interval.  相似文献   

2.
软土地区采用灌注桩围护的深基坑变形性状研究   总被引:14,自引:1,他引:13  
徐中华  王建华  王卫东 《岩土力学》2009,30(5):1362-1366
根据上海软土地区80个钻孔灌注桩围护的深基坑工程案例有关数据,系统地分析了基坑开挖引致的灌注桩变形性状。所有基坑的灌注桩最大侧向位移介于0.1 %~1.0 %倍的开挖深度之间,平均值为开挖深度的0.44 %。钢筋混凝土支撑和钢支撑在控制墙体的变形上没有明显差别,最大侧向位移一般位于开挖面上下5 m的范围内。无量纲化最大侧向位移随着支撑系统刚度的增大而减小,随着墙底以上软土层厚度的增加而增大,但与灌注桩插入比及坑底抗隆起稳定系数之间并无明显的关系。墙顶侧向位移随着首道支撑位置深度的增加而呈现出指数增长的趋势,而灌注桩最大侧向位移与首道支撑的深度位置无明显关系。  相似文献   

3.
Previous studies have shown that use of cross walls in deep excavations can reduce the wall deflection to a very small amount. However, design of cross walls is costly because the deflection behavior of the diaphragm wall with cross walls is in nature three dimensional. The objective of this study was to establish a simplified approach used as a first approximation to design cross walls such that the lateral wall deflection can satisfy a design criterion. A series of parametric studies using a three-dimensional numerical method was performed to obtain the influence factors on wall deflections, including excavation geometry, wall system stiffness, axial stiffness of strut, axial stiffness of the cross wall, normalized undrained shear strength of clay and the cross wall depth. Then, a simplified formula for predicting the wall deflection for excavations without and with cross walls was established using multivariate regression analysis, respectively. The formulas were validated through 36 excavation cases without cross walls and 12 cases with cross walls. The simplified formulas can be used to develop a spreadsheet that estimates the cross wall sizes and intervals based on the entered excavation geometry, material properties of retaining-strut system, in situ undrained shear strength and tolerable wall deflection. The estimated cross wall sizes and intervals should be verified by an appropriate full numerical analysis.  相似文献   

4.

This paper presents the observed and simulated effectiveness of deep cement mixing walls created using top-down (DCM-TD) construction techniques for a deep excavation in soft Bangkok clay. The wall system consisted of four rows of 0.7-m-diameter DCM columns, and the bracing system consisted of two 0.25-m-thick basement slabs and seven temporary struts. The effectiveness of the wall system compared to that of other wall systems was evaluated using the measured results of previous case studies. A 3D numerical analysis was performed to calculate forces in the basement slabs and bending moments in the DCM wall. Finally, series of parametric analyses of both DCM-TD and deep cement mixing walls created using bottom-up (DCM-BU) construction techniques were carried out, and their results were compared to highlight the effectiveness of DCM-TD and its applicability to excavations at greater depths. The field and numerical results show that DCM-TD is more effective than DCM-BU in terms of the limitations of lateral wall movement, the bending moment in a DCM wall and the thickness of a DCM wall for various depths because of a larger system stiffness. Therefore, DCM-TD is very effective and suitable for use in potential future deep excavations in urban areas.

  相似文献   

5.
Three-dimension finite element analyses of deep excavations with buttress walls were performed to evaluate the effect of buttress wall shapes on limiting movements induced by deep excavation. Results showed that a combination of the rectangular and the capital L-letter shapes (RL-shape) yielded the greatest performance in reducing wall deflections and ground surface settlements. The main deformation-control mechanism mainly came from the horizontal and vertical frictional resistances of buttress walls against adjacent soils which were pushed by wall deflections and the soil heave at the excavation bottom, respectively. Besides, the RL-shape buttress walls were successfully verified through a well-documented case history.  相似文献   

6.
One important consideration in the design of a braced excavation system is to ensure that the structural bracing system is designed both safely and economically. The forces acting on the struts are often determined using empirical methods such as the Apparent Pressure Diagram (APD) method developed by Peck (1969). Most of these empirical methods that were developed from either numerical analysis or field studies have been for excavations with flexible wall types such as sheetpile walls. There have been only limited studies on the excavation performance for stiffer wall systems such as diaphragm walls and bored piles. In this paper, both 2D and 3D finite element analyses were carried out to study the forces acting on the struts for braced excavations in clays, with focus on the performance for the stiffer wall systems. Subsequently, based on this numerical study as well as field measurements from a number of reported case histories, empirical charts have been proposed for determining strut loads for excavations in stiff wall systems.  相似文献   

7.
The construction of sheet pile walls may involve either excavation of soils in front or backfilling of soils behind the wall. These construction procedures generate different loading conditions in the soil and therefore different wall behavior should also be expected. The conventional methods, which are based on limit equilibrium approach, commonly used in the design of anchored sheet pile walls do not consider the method of construction. However, continuum mechanics numerical methods, such as finite element method, make it possible to incorporate the construction method during the analyses and design of sheet pile walls. The effect of wall construction type for varying soil conditions and wall heights were investigated using finite element modeling and analysis. The influence of construction method on soil behavior, wall deformations, wall bending moments, and anchor forces were investigated. The study results indicate that walls constructed by backfill method yield significantly higher bending moments and wall deformations. This paper presents the results of the numerical parametric study performed and comparative analyses of the anchored sheet pile walls constructed by different construction methods.  相似文献   

8.
Conventional numerical predictions of deep excavations normally neglect the construction process of the retaining structure and choose the earth pressure at rest as initial condition at the beginning of the simulation. The presented results of simulation and measurements during the construction process of the Taipei National Enterprise Center show, that such an assumption leads to an underestimation of the horizontal wall deflection, the surface ground settlements as well as the loading of the struts in case of normally to slightly over‐consolidated clayey soil deposits. The stepwise installation process of the individual diaphragm wall panels results in a substantial modification of the lateral effective stresses in the adjacent ground. Especially the pouring process of the panel and the fresh concrete pressure causes a partial mobilization of the passive earth pressure and a distinct stress level increase in the upper half of the wall. As a consequence of the increased stresses prior to the pit excavation, up to 15% greater ground and wall movements are predicted. Moreover, the increased stress level due to the installation process of the diaphragm wall leads to substantial higher strut loadings during the excavation of the pit. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Deep cement mixed (DCM) walls are widely used in supporting excavations in many parts of the world. In this paper, a case study of an excavation supported by a DCM wall with steel inclusions is analysed using a three-dimensional finite element model and based on the coupled theory of nonlinear porous media. The DCM wall is constructed with wide flange steel inclusions. The stress–strain behaviour of the DCM wall section is simulated using an extended version of the Mohr–Coulomb model, which considers the strain-softening behaviour of DCM columns beyond yield. The computed lateral deformations are compared with the field measurements to validate the numerical modelling procedure. Using the same case study, the internal stability of the wall against bending and shear failure modes is investigated. In addition, the lateral pressure distribution along the wall length is investigated because in practice design is carried out considering a uniform pressure distribution assuming rigid wall movements. A parametric study was carried out to investigate the viability of DCM walls in supporting excavations by varying the spacing between steel inclusions, wall thickness and initial lateral earth pressure. Based on the results of the parametric study, guidelines are proposed to select the most efficient geometric arrangement of steel inclusions within DCM walls.  相似文献   

10.
Installation of buttress walls against diaphragm walls has been used as an alternative measure for the protection of adjacent buildings during excavation, but their mechanism in reducing movements has not yet been fully understood. This study performs three-dimensional finite element analyses of two excavation case histories, one in clay with T-shape buttress walls and another in dominant sand with rectangular buttress walls, to establish analysis model. Then, a series of parametric study were performed by varying soil types, types and length of buttress walls based on the above-mentioned excavations. Results show that the mechanism of buttress walls in reducing wall deflections mainly came from the frictional resistance between the side surface of buttress wall and adjacent soil rather than from the combined bending stiffness from diaphragm and buttress walls. The buttress wall with a length <2.0 m had a poor effect in reducing the wall deflection because the soil adjacent to the buttress wall had almost the same amount of movement as the buttress wall, causing the frictional resistance little mobilized. Since the frictional resistance of buttress walls in a deep excavation has fully been mobilized prior to the final excavation depth, the efficiency of buttress walls in reducing the wall deflection in a deep excavation was much less than that in a shallow excavation. Rectangular shape of buttress walls was of a better effect than T-shape in the shallow excavation because frictional resistance between buttress walls and adjacent soil played a major role in reducing the wall deflection rather than bearing resistance of the flange. When the excavation went deeper, the difference in reducing the wall deflection between the R-shape and T-shape became small.  相似文献   

11.
Deep excavations particularly in deep deposits of soft clay can cause excessive ground movements and result in damage to adjacent buildings. Extensive plane strain finite element analyses considering the small strain effect have been carried out to examine the wall deflections for excavations in soft clay deposits supported by retaining walls and bracing. The excavation geometry, soil strength and stiffness properties, and the wall stiffness were varied to study the wall deflection behavior. Based on these results, a simple Polynomial Regression (PR) model was developed for estimating the maximum wall deflection. Wall deflections computed by this method compare favorably with a number of field and published records.  相似文献   

12.
56m深TRD工法搅拌墙在深厚承压含水层中的成墙试验研究   总被引:1,自引:0,他引:1  
王卫东  翁其平  陈永才 《岩土力学》2014,35(11):3247-3252
上海国际金融中心项目基坑面积约为48 860m2,开挖深度为26.527.9m,周边环境复杂。为控制抽降承压水对周边环境的影响,经方案比选,基坑周边设置厚700mm、深56m等厚度水泥土搅拌墙(TRD)作为承压水悬挂隔水帷幕。在上海地区施工如此深TRD墙体尚属首例,为此现场开展了试成墙试验,试成墙监测表明,墙身在深厚承压含水层中水泥土强度达到0.8427.9m,周边环境复杂。为控制抽降承压水对周边环境的影响,经方案比选,基坑周边设置厚700mm、深56m等厚度水泥土搅拌墙(TRD)作为承压水悬挂隔水帷幕。在上海地区施工如此深TRD墙体尚属首例,为此现场开展了试成墙试验,试成墙监测表明,墙身在深厚承压含水层中水泥土强度达到0.841.38 MPa。室内渗透性试验表明,渗透系数由10-3cm/s提高到10-7cm/s,满足隔水帷幕设计要求;墙体施工期间,地表最大沉降约8mm,主要影响范围约5m;土体侧向位移主要产生在距离墙体5m的范围内,TRD墙体施工对周边环境影响很小。试验墙体的顺利实施为后续正式墙体的施工提供了依据,也为类似工程提供了重要参考。  相似文献   

13.
何平  徐中华  王卫东  李青 《岩土力学》2015,36(Z1):597-601
等厚度水泥土搅拌墙技术即TRD工法,近年来在深基坑工程中得到了广泛应用。以上海国际金融中心基坑工程开展的0.7 m厚、8 m宽、56.7 m深TRD成墙试验为背景,采用有限元方法,并基于土体小应变本构模型对其成墙过程进行了模拟,得到了土体侧向位移和地表沉降曲线,并与实测数据进行了对比。结果表明,距离墙体5 m处两者的土体侧向位移曲线基本一致,而距离墙体1.4 m处的土体侧向位移在深度大于20 m后的计算结果较实测值偏小;地表沉降在靠近墙体处最大,随着距墙体的距离增大而逐渐减小。最后分析了成墙深度对地表沉降和土体侧向变形的影响,结果表明,深度越深,引起的土体侧向变形和地表沉降也越大。通过不同成墙深度引起的地表沉降归一化曲线可看出,TRD成墙引起的最大地表沉降约为0.05%H(H为成墙深度),沉降影响区域约为1.8H。  相似文献   

14.
Piles and diaphragm wall-supported berthing structure on marine soils are loaded laterally from horizontal soil movements generated by dredging. The literature on the adequacy of the finite element method modeling of berthing structure to analyze their behavior during dredging is limited. This paper describes a finite element approach for analyzing the lateral response of pile and diaphragm wall during dredging. Piles are represented by equivalent sheet-pile walls and a plane strain analysis using the finite element method is performed. Results from the finite element method are compared with full-scale field test data. Full-scale field test was conducted on a bearing structure to measure the lateral deflection on pile and diaphragm wall for their full length using inclinometer during dredging in sequence. The finite element method results are in good agreement with full-scale field results. Conclusions are drawn regarding application of the analytical method to study the effect of dredging on piles and diaphragm wall-supported berthing structures.  相似文献   

15.
This paper presents a thorough finite element (FE) parametric study of sheet pile wall deflections caused by deep dynamic compaction (DDC). In this study, the effects of several parameters which may affect the wall deflections were investigated. These parameters are (1) wall embedment length; (2) tamping distance; (3) impact energy per blow; (4) blow counts; (5) soil types on the supporting side of sheet pile walls; and (6) wall stiffness. The effects of these parameters were quantified and discussed, and the factors that help to reduce wall deflections were identified. A series of figures which depict the effects of these parameters were generated. Finally, some suggestions and recommendations for design and construction were reached.  相似文献   

16.
排桩冻结法深基坑施工监测与反馈分析   总被引:5,自引:0,他引:5  
对于润扬大桥南锚碇排桩冻结法深大基坑,冻结作用使基坑的受力过程变得更为复杂,根据排桩冻结法基坑结构和场地工程地质条件,建立了大型安全监测系统。本文介绍了润扬大桥南锚碇场地工程地质条件、排桩冻结法基坑的结构和南锚碇基坑监测方案、分析了南锚排桩冻结法深基坑各项监测数据的变化规律,包括侧向土压力、内支撑轴力、排桩钢筋应力和排桩水平位移随时间变化规律,并基于施工监测进行了反馈分析,保障了南锚碇排桩冻结法深基坑的安全与稳定。监测结果分析表明,排桩冻结法是基坑工程的一种可行的施工工法,润扬大桥南锚碇排桩冻结法深大基坑的成功实践为今后类似工程的建设积累了宝贵经验。  相似文献   

17.
A new approach for simulating the excavation and construction of subsequent panels is proposed to investigate the effects from the installation of diaphragm walls on the surrounding and adjacent buildings. The method has been combined with a 3-D nonlinear analysis and a constitutive law providing bulk and shear modulus variation, depending on the stress path (loading, unloading, reloading). From the application of the method in a normally to slightly over-consolidated clayey soil it was found that the panel length is the most affecting factor of ground movements and lateral stress reduction during panel installation. Moreover, from the evaluation of horizontal stress reduction and the variation of horizontal displacements arises that the effects from the construction of a panel are mainly limited to a zone within a distance of the order of the panel length. The effects on an adjacent building have also been investigated by applying a full soil–structure interaction including the whole building. Settlement profiles and settlements are given at specific points as increasing with subsequent installation of panels, providing the ability of specific monitoring guidelines for the upcoming construction of the diaphragm wall in front of the building. Contrary to lateral movements, which mostly take place at the panel under construction, it was found that the effect of settlements covers a larger area leading to a progressive settlement increase. The effect highly depends on the distance from the panel under construction.  相似文献   

18.
《Computers and Geotechnics》2001,28(6-7):397-423
The case history of the deep excavation for the National Gallery extension in London is presented in this paper. Comparisons with data from other sites show that it is typical for that of similar projects in Central London. Class 1 predictions of the retaining wall behaviour (prior to construction) using the Model London Clay constitutive relationship considerably over-estimated wall and ground movements. Retaining wall and ground movements are also considerably over-predicted by analyses using a simple linear elastic/perfectly plastic soil model, despite optimistic parameters being assumed for the soils. Predictions made using the constitutive model BRICK are closer to the measured deflected shape, but are also higher than measured values. Parametric studies of the effect of various parameters suggest that a “best estimate” of the wall movements are still well in excess of those measured. It is concluded that these differences are due to three-dimensional effects and deficiencies in the model. The “beam-spring” computer software for retaining walls FREW gives similar results to the analyses using the simple model. Analyses of the same problem carried out by a different operator using another finite element code, but with the same constitutive model, yielded somewhat different results and highlight the need for careful interpretation of finite element analyses.  相似文献   

19.
RT模式下刚性挡墙土压力计算方法研究   总被引:5,自引:0,他引:5  
龚慈  魏纲  徐日庆 《岩土力学》2006,27(9):1588-1592
针对绕墙顶向外转动的刚性挡土墙,提出一种土压力计算方法。根据土体渐进破坏机理,考虑土拱效应,建立了填土内摩擦角及墙土接触面上外摩擦角的发挥与土体位移的非线性关系,并根据初始应力条件确定初始内摩擦角。采用改进的水平层分析法计算各转角下的土压力分布,并得到土压力合力大小及其作用点的计算公式。通过比较,不同转角下土压力强度、合力大小以及作用点计算值与模型试验实测结果接近。  相似文献   

20.
土体水平位移对邻近既有桩基承载性状影响分析   总被引:1,自引:0,他引:1  
城市建设中经常会遇到由于堆载或基坑开挖所引起的土体水平位移现象,土体水平位移的作用会使邻近建筑物的桩基础产生附加内力或变形,并可能导致邻近桩基的破坏而发生工程事故。针对此类问题,基于Winkler地基模型以及桩-土变形协调条件,建立单桩水平位移控制方程,根据内力与位移的微分关系,采用两阶段方法进行求解。结合典型的工程事故,通过参数分析,研究土体水平位移对邻近桩基承载性状的影响程度。分析表明,基坑工程围护墙体的稳定和开挖深度对邻近桩基的安全有着重要影响,并提出了近期发生在上海的某小高层楼房整体倒覆事故的一种可能原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号