共查询到12条相似文献,搜索用时 0 毫秒
1.
针对城市及周边区域建造区和自然地表交织分布的特点,探讨了利用归一化植被指数(NDVI)和归一化建造指数(NDBI)构造趋势面的地表温度(LST)降尺度方法,以北京市市区及周边较平坦区域为例实现了LST自960 m向120 m的降尺度转换。分析了LST空间分布特征及NDVI、NDBI对地物的指示性特征;以北京市四至六环为界分析NDVI、NDBI趋势面对地表温度的拟合程度及各自的适用区域;在120 m、240 m、480 m和960 m 4个尺度上评价了NDVI、NDBI和NDVI+NDBI趋势面对LST的拟合程度和趋势面转换函数的尺度效应;对NDVI、NDBI和NDVI NDBI等3种方法的降尺度结果分覆盖类型、分区域对比评价。实验结果表明结合两种光谱指数的NDVI NDBI方法降尺度转换精度有所改善,改善程度取决于地表覆盖类型组合。 相似文献
2.
秦岭山区地形因子是影响植被分布的重要因素。选取2001、2009和2017年MODIS陆地产品MOD13Q1数据和DEM数据,从DEM中提取地形因子,高程、坡度和坡向,与MODIS的NDVI数据结合,分析了地形对秦岭地区植被空间分布影响。研究结果表明:(1)NDVI随着高程的增大而逐渐增大,在高程1800 m左右时达到最大值,随后又随着高程的增大而减小;(2)NDVI在坡度0°~5°间逐渐增大,在5°~40°呈稳定趋势,从40°开始缓慢减小,60°达到乔木能够生长的坡面倾角临界值,当坡面倾角大于60°时植被指数开始快速减小;(3)受太阳辐射的影响,坡向在NW 270°~360°,SE 240°~270°之间的植被长势较好,其余坡向上长势一般。 相似文献
3.
ABSTRACTClimatic factors such as rainfall and temperature play a vital role in the growth characteristics of vegetation. While the relationship between climate and vegetation growth can be accurately predicted in instances where vegetation is homogenous, this becomes complex to determine in heterogeneous vegetation environments. The aim of this paper was to study the relationship between remotely-sensed monthly vegetation indices (i.e. Normalized Difference Vegetation Index and Enhanced Vegetation Index) and climatic variables (temperature and precipitation) using time-series analysis at the biome-level. Specifically, the autoregressive distributed lag model (ARDL1 and ARDL2, corresponding respectively to one month and two month lags) and the Koyck-transformed distributed lag model were used to build regression models. All three models estimated NDVI and EVI fairly accurately in all biomes (Relative Root-Mean-Squared-Error (RMSE): 12.0–26.4%). Biomes characterized by relative homogeneity (Grassland, Savanna, Indian Ocean Coastal Belt and Forest Biomes) achieved the most accurate estimates due to the dominance of a few species. Comparisons of lag size (one month compared to two months) generally showed similarities (Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and log-likelihood) with quite high comparability in certain biomes – this indicates the utility of the ARDL1 and ARDL2 model, depending on the availability of appropriate data. These findings demonstrate the variation in estimation linked to the biome, and thus the validity of biome-level correlation of climatic data and vegetation indices. 相似文献
4.
Weixin Xu Song Gu XinQuan Zhao Jianshe Xiao Yanhong Tang Jingyun Fang Juan Zhang Sha Jiang 《International Journal of Applied Earth Observation and Geoinformation》2011
Using satellite-observed Normalized Difference Vegetation Index (NDVI) data and Rotated Empirical Orthogonal Function (REOF) method, we analyzed the spatio-temporal variation of vegetation during growing seasons from May to September in the Three-River Source Region, alpine meadow in the Qinghai-Tibetan Plateau from 1982 to 2006. We found that NDVI in the centre and east of the region, where the vegetation cover is low, showed a consistent but slight increase before 2003 and remarkable increase in 2004 and 2005. Impact factors analysis indicted that among air temperature, precipitation, humid index, soil surface temperature, and soil temperature at 10 cm and 20 cm depth, annual variation of NDVI was highly positive correlated with the soil surface temperature of the period from March to July. Further analysis revealed that the correlation between the vegetation and temperature was insignificant before 1995, but statistically significant from 1995. The study indicates that temperature is the major controlling factor of vegetation change in the Three-River Source Region, and the currently increase of temperature may increase vegetation coverage and/or density in the area. In addition, ecological restoration project started from 2005 in Three-River Source Region has a certain role in promoting the recovery of vegetation. 相似文献
5.
应用面向对象的决策树模型提取橡胶林信息 总被引:4,自引:0,他引:4
橡胶林的无序和不合理种植引发了一系列的生态问题,快速监测橡胶林空间分布及动态变化,对橡胶的合理种植、区域生态环境保护以及有关部门的规划决策有重要的指导意义。以MODIS归一化植被指数NDVI时间序列数据和多时相的Landsat TM数据为基础分析橡胶林的季相和光谱特征,确定橡胶识别的关键时期和特征参数,构建面向对象的决策树分类模型,开展橡胶信息提取研究。结果表明,多时相的遥感数据可反映橡胶的季相特征,以TM数据为基础计算得到的陆表水分指数LSWI和归一化植被指数NDVI可作为橡胶识别的光谱特征参数,橡胶休眠期是利用遥感方法进行橡胶提取的最佳时期。相比于单时相数据,利用包含橡胶关键物候期的多时相遥感数据能得到更高的橡胶林提取精度。 相似文献
6.
7.
Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery 总被引:3,自引:0,他引:3
Hossein Saadat Jan AdamowskiRobert Bonnell Forood SharifiMohammad Namdar Sasan Ale-Ebrahim 《ISPRS Journal of Photogrammetry and Remote Sensing》2011,66(5):608-619
Accelerated soil erosion, high sediment yields, floods and debris flow are serious problems in many areas of Iran, and in particular in the Golestan dam watershed, which is the area that was investigated in this study. Accurate land use and land cover (LULC) maps can be effective tools to help soil erosion control efforts. The principal objective of this research was to propose a new protocol for LULC classification for large areas based on readily available ancillary information and analysis of three single date Landsat ETM+ images, and to demonstrate that successful mapping depends on more than just analysis of reflectance values. In this research, it was found that incorporating climatic and topographic conditions helped delineate what was otherwise overlapping information. This study determined that a late summer Landsat ETM+ image yields the best results with an overall accuracy of 95%, while a spring image yields the poorest accuracy (82%). A summer image yields an intermediate accuracy of 92%. In future studies where funding is limited to obtaining one image, late summer images would be most suitable for LULC mapping. The analysis as presented in this paper could also be done with satellite images taken at different times of the season. It may be, particularly for other climatic zones, that there is a better time of season for image acquisition that would present more information. 相似文献
8.
C-band dual polarization (HH, HV) Synthetic Aperture Radar (SAR) data from Radarsat-2 were used to discriminate and characterize mangrove forests of the Sundarbans. Multi-temporal data acquired during winter and rainy seasons were analysed for the segregation of mangrove forest area. A decision rule based classification involving combination of three-date HH (range −11 to −2 dB) with single-date cross-polarization ratio (2–8) was applied on the datasets for discriminating mangrove forests from other land cover classes. Application of textural measures (entropy and angular second moment) in the aforesaid decision rule based classification produced three broad homogeneous mangrove classes. The area covered by the most homogeneous class increased from January to March and decreased from July to September, and correlated well to the change in the phenological status of the mangroves. Extent of homogeneous areas was more in the eastern region of the Sundarbans than that of the central and western side. Thus, the study revealed that textural measures combined with multi-temporal HH backscatter and single-date cross-polarization ratio in a decision rule classification could be satisfactorily used for characterization of the mangrove forests. 相似文献
9.
Heather J. Richardson David J. Hill Dan R. Denesiuk Lauchlan H. Fraser 《地理信息系统科学与遥感》2017,54(4):573-591
We used geographic datasets and field measurements to examine the mechanisms that affect soil carbon (SC) storage for 65 grazed and non-grazed pastures in southern interior grasslands of British Columbia, Canada. Stepwise linear regression (SR) modeling was compared with random forest (RF) modeling. Models produced with SR performed better than those produced using RF models (r2 = 0.56–0.77 AIC = 0.16–0.30 for SR models; r2 = 0.38–0.53 and AIC = 0.18–0.30 for RF models). The factors most significant when predicting SC were elevation, precipitation, and the normalized difference vegetation index (NDVI). NDVI was evaluated at two scales using: (1) the MOD 13Q1 (250 m/16-day resolution) NDVI data product from the moderate resolution imaging spectro-radiometer (MODIS) (NDVIMODIS), and (2) a handheld multispectral radiometer (MSR, 1 m resolution) (NDVIMSR) in order to understand the potential for increasing model accuracy by increasing the spatial resolution of the gridded geographic datasets. When NDVIMSR data were used to predict SC, the percentage of the variance explained by the model was greater than for models that relied on NDVIMODIS data (r2 = 0.68 for SC for non-grazed systems, modeled with SR based on NDVIMODIS data; r2 = 0.77 for SC for non-grazed systems, modeled with SR based on NDVIMSR data). The outcomes of this study provide the groundwork for effective monitoring of SC using geographic datasets to enable a carbon offset program for the ranching industry. 相似文献
10.
In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR − RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx − Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2’s ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season. 相似文献
11.
Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales. 相似文献
12.
The leaf area index (LAI) of plant canopies is an important structural parameter that controls energy, water, and gas exchanges of plant ecosystems. Remote sensing techniques may offer an alternative for measuring and mapping forest LAI at a landscape scale. Given the characteristics of high spatial/spectral resolution of the WorldView-2 (WV2) sensor, it is of significance that the textural information extracted from WV2 multispectral (MS) bands will be first time used in estimating and mapping forest LAI. In this study, LAI mapping accuracies would be compared from (a) spatial resolutions between 2-m WV2 MS data and 30-m Landsat TM imagery, (b) the nature of variables between spectrum-based features and texture-based features, and (c) sensors between TM and WV2. Therefore spectral/textural features (SFs) were first selected and tested; then a canonical correlation analysis was performed with different data sets of SFs and LAI measurement; and finally linear regression models were used to predict and map forest LAI with canonical variables calculated from image data. The experimental results demonstrate that for estimating and mapping forest LAI, (i) using high resolution data (WV2) is better than using relatively low resolution data (TM); (ii) extracted from the same WV2 data, texture-based features have higher capability than that of spectrum-based features; (iii) a combination of spectrum-based features with texture-based features could lead to even higher accuracy of mapping forest LAI than their either one separately; and (iv) WV2 sensor outperforms TM sensor significantly. However, we need to address the possible overfitting phenomenon that might be brought in by using more input variables to develop models. In addition, the experimental results also indicate that the red-edge band in WV2 was the worst on estimating LAI among WV2 MS bands and the WV2 MS bands in the visible range had a much higher correlation with ground measured LAI than that red-edge and NIR bands did. 相似文献