首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the cyclic behavior of bentonite–sand mixtures and factors affecting it were studied by means of a ring-shear apparatus and a scanning electron microscope. It was found that bentonite content had a significant influence on the liquefaction potential of the studied soils. A small amount of bentonite in the mixtures would cause the formation of “loose” microstructures, resulting in the occurrence of rapid liquefaction under cyclic loading, while a high bentonite content would cause the formation of clay matrixes, thus raising the soil resistance to liquefaction. In addition, the effect of pore water chemistry on the cyclic behavior of a high plasticity bentonite–sand mixture was carefully examined. It was also found that the presence of ions in pore water would change the clay microfabric, making it more open and thus more vulnerable to liquefaction. Finally, the effects of loading frequency on the cyclic behavior of mixtures with different amounts of bentonite were investigated. It was found that as the bentonite content increased, the influence became more pronounced.  相似文献   

2.
Several researchers have reported that the mean effective stress of unsaturated soils having a relatively high degree of saturation gradually decreases under fully undrained cyclic loading conditions, and such soils can be finally liquefied like saturated soils. This paper describes a series of simulations of fully undrained cyclic loading on unsaturated soils, conducted using an elastoplastic model for unsaturated soils. This model is a critical state soil model formulated using effective stress tensor for unsaturated soils, which incorporates the following concepts: (a) the volumetric movement of the state boundary surface containing the critical state line owing to the variation in the degree of saturation; (b) the soil water characteristic curve considering the effects of specific volume and hydraulic hysteresis; and (c) the subloading surface concept for considering the effect of density. Void air is assumed to be an ideal gas obeying Boyle's law. The proposed model is validated through comparisons with past results. The simulation results show that the proposed model properly describes the fully undrained cyclic behavior of unsaturated soils, such as liquefaction, compression, and an increase in the degree of saturation. Finally, the effects of the degree of saturation, void ratio, and confining pressure on the cyclic strength of unsaturated soils are described by the simulation results. The liquefaction resistance of unsaturated soils increases as the degree of saturation and the void ratio decrease, and as the confining pressure increases. Furthermore, the degree of saturation has a greater effect on the liquefaction resistance than the confining pressure and void ratio. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a relatively simple method for three‐dimensional liquefaction analysis of granular soil under offshore foundations. In this method, the Mohr–Coulomb model, which defines the elasto–plastic stress–strain relationship under monotonic loading, is modified to accommodate the plastic strains generated by cyclic loading. The effects of cyclic loading, evaluated from the results of laboratory tests on saturated samples of soil, are incorporated into the model. The method is implemented in an efficient finite element program for analyses of three‐dimensional consolidating soil. The practicability of the model is demonstrated by analysis of a typical offshore foundation, and the predictions of the numerical analysis are compared with the observed behaviour of the foundation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
胶新铁路砂土液化区路基沉降规律研究   总被引:2,自引:0,他引:2  
地震液化常给人们带来巨大损失,而剪切振动和循环荷载作用下的动力学效应常被认为是地震液化的主要原因,人们对剪切荷载作用下饱和砂土的液化问题进行了较多的研究,而对循环荷载作用下砂土液化的动力学效应研究较少。胶新铁路在DK39+000开始为高地震烈度区,DK283+550~DK283+770分布有地震可液化层,工程修建后列车动荷载的影响将会有诱发砂土液化的可能性。为了研究通车前自然沉降特征和通车后循环荷载作用下的路基沉降变形规律,本文在具体分析了砂土液化的概念和准则判别的基础上,重点分析了砂土液化区路基沉降特征,包括测试断面竖向分层沉降变形特征分析和路基水平位移特征分析。最后在试验的基础上,从理论上给出了循环荷载下砂土的本构关系。  相似文献   

5.
石佳颖  郝雅萍 《江苏地质》2023,47(2):225-230
确保地震荷载作用下海床场地的动力稳定性是海洋工程全寿命周期安全运行的重要保证,然而对复杂海域环境下饱和粉细砂的液化特性研究尚属少见。基于海域场地动应力计算方法,确定各试验工况的场地循环应力比CSR,并对试样施加与之对应的不排水循环荷载。试验结果表明:可液化的海洋粉细砂在考虑其场地动应力条件的循环荷载作用下出现不同的液化可能性;粉细砂呈循环破坏模式,将双幅轴向应变>5%作为循环破坏标准;海洋粉细砂的液化可能性与土体的埋深及动应力均不呈单一相关性,而是随着干密度的增大,液化振次逐渐增大,当干密度>1.72 g/cm3时土体不再液化。该结果可为杭州湾区抗震区划及海洋工程结构抗震设计提供参考。  相似文献   

6.
During the 2011 Great East Japan Earthquake, severe liquefaction occurred in reclaimed ground in Urayasu city, Chiba prefecture. This liquefaction provided important lessons for us to re-recognize the liquefaction mechanism. A distinct feature of the liquefaction in this earthquake is that severe liquefaction happened not only in the main shock but also in an aftershock with a maximum acceleration of 25 gal. In some areas, liquefaction happened in the aftershock is even more serious than that happened in the main shock. In this paper, focus is placed on the characteristic features in the occurrence of liquefaction and consequent ground settlement. Based on the observed data, a series of dynamic–static analyses, considering not only the earthquake loading but also static loading during the consolidation after the earthquake shocks, are conducted in a sequential way just the same as the scenario in the earthquake. The calculation is conducted with 3D soil–water coupling finite element–finite difference analyses based on a cyclic elasto-plastic constitutive model. From the results of analyses, it is recognized that small sequential earthquakes, which cannot cause liquefaction of a ground in an independent earthquake vibration, cannot be neglected when the ground has already experienced liquefaction after a major vibration. In addition, the aftershock has great influence on the long-term settlement of low permeability soil layer. The observed and predicted liquefaction and settlements are compared and discussed carefully. It is confirmed that the numerical method used in this study can describe the ground behavior correctly under repeated earthquake shocks.  相似文献   

7.
随机地震荷载作用下饱和粉土的液化特性   总被引:3,自引:0,他引:3  
为了考虑随机地震荷载作用下饱和粉土的液化特性,研究了如何通过合理的地震响应分析确定饱和粉土层受到的随机地震荷载,进一步探讨了随机地震荷载作用下的动三轴试验技术,以及利用此种试验分析饱和粉土液化特性的方法。研究结果为形成判别饱和粉土层地震液化可能性的新方法提供了依据。  相似文献   

8.
A large number of constitutive models for geomaterials, such as soils and rocks, have been proposed over the last three decades. Those models have been implemented into computer codes and have been successfully used to solve practical engineering problems particularly under monotonic loading conditions. Compared with the models for monotonic loadings, more improvements for cyclic models are necessary in order to obtain more accurate predictions for the dynamic behavior of geomaterials, e.g., the behavior during earthquakes. A cyclic elastoplastic model has been developed in this study for sandy soils; it is based on the kinematical hardening rule with a yield function that includes the changes in the stress ratio and the mean effective stress considering the degradation of the yield surface. From a simulation with the present model, it has been found that strong non-associativity leads to a large decrease in the mean effective stress during cyclic deformations under undrained conditions, while the model with the associated flow rule does not. This result is quite important because the mean effective stress becomes almost zero at the state of full liquefaction. Compared with the experimental results, the model can accurately reproduce the cyclic behavior of soil.  相似文献   

9.
The liquefaction of clayey soils under cyclic loading   总被引:4,自引:0,他引:4  
This paper seeks to investigate the liquefaction of clayey soils, a phenomenon that has been the trigger for many natural disasters in the last few decades, including landslides. Research was conducted on artificial clay-sand mixtures and natural clayey soils collected from the sliding surfaces of earthquake-induced landslides. The undrained response of normally consolidated clayey soils to cyclic loading was studied by means of a ring-shear apparatus. For the artificial clay-sand mixtures, it was found that the presence of a small amount of bentonite (≤ 7%) would cause rapid liquefaction, while a further increase in bentonite content (≥ 11%) produced the opposite effect of raising soil resistance to liquefaction by a significant degree. It was demonstrated that the bentonite-sand mixture was considerably more resistant to liquefaction than the kaolin-, and illite-mixtures, given the same clay content. The test results of plastic soils revealed the significant influence of plasticity on the liquefaction resistance of soil. The microfabric of clayey soil was investigated by means of a scanning electron microscope. The analysis showed that the liquefaction potential of soil was strongly related to certain particle arrangements. For example, soil vulnerable to liquefaction had an open microfabric in which clay aggregations generally gathered at the sand particle contact points, forming low-strength “clay bridges” that were destroyed easily during cyclic loading. On the other hand, the microfabric of soil that was resistant to liquefaction appeared to be more compact, with the clay producing a matrix that prevented sand grains from liquefying. In the case of the natural soils, the obtained results indicated that their cyclic behavior was similarly influenced by factors such as clay content, clay mineralogy and plasticity. The relation between the liquefaction potential of natural soil and its microfabric was thus also established. On the basis of the obtained results, the authors posited an explanation on the mechanism of liquefaction for clayey soil.  相似文献   

10.
Developing the pore water pressures in loose to medium sands below the water table may lead to liquefaction during earthquakes. The simulation of liquefaction (cyclic mobility and flow liquefaction) in sandy soils is one of the major challenges in constitutive modeling of soils. This paper presents the simulation of sand behavior using a critical state bounding surface plasticity model (Dafalias and Manzari’s model, 2004) during monotonic and cyclic loading. The drained, undrained, and cyclic triaxial tests were simulated using Dafalias and Manzari’s model. The simulation results showed that the model predicts behavior of sand, reasonably well. Also, for CSR?<?0.2, number of cycles for liquefaction is significantly increased. The residual strength of Babolsar sand is produced when it is deformed to an axial strain of 20 to 25%.  相似文献   

11.
Several models describing soil response under cyclic loading and the ‘liquefaction’ potential have been introduced in recent years with limited success. Most of these are over-complex for realistic parameter identification and have not been widely adopted for practical use. In this paper we introduce a relatively simple modification of the well-known critical state model which accounts reasonably well for the phenomena observed under cyclic tests and indeed improves the performance of critical state, models in monotonic loading. This model is compared with experimental results and with the ‘densification model’ introduced earlier by the authors and shows good predicitive capacity. The model is of a generalized plasticity-bounding surface type. In its simplest form, suitable for clay-like materials, it requires the identifications of a single parameter additional to those required for a standard, critical state model.  相似文献   

12.
张珂  贾永刚  刘正银  单红仙  徐建 《岩土力学》2006,27(Z1):1002-1006
由于土体不同透水边界对微振液化的影响不同,选用3种隔水层与透水层的组合情况,进行现场和原位循环荷载试验和室内土样振动试验,结合试验中所观察到的现象和循环荷载作用过程中土样密度、含水率、孔隙比的变化,研究在循环荷载作用下隔水层与透水层的存在以及振动力不同的施加方向对黄河口海床土液化过程的影响。  相似文献   

13.
An anisotropic hardening model for soils is proposed by applying the concept of a field of hardening moduli developed previously for metals. Besides the yield surface, a set of nesting surfaces in the stress-space specifies the variation of hardening moduli during the deformation process. Both drained and undrained soil behaviour can be treated and distortional as well as volumetric strain cycles can be considered. The model can be applied in studying soil behaviour under cyclic loading and in particular to describe densification or liquefaction phenomena.  相似文献   

14.
陈龙伟  袁晓铭  孙锐 《岩土力学》2010,31(12):3823-3828
水平液化场地地表往返位移的求解是基础和地下工程抗震设计的迫切需求。利用双层模型模拟实际水平场地,提出了可考虑液化层存在下的土表位移简化计算方法并给出频域理论解答,同时采用逐循环累计方法给出水平场地任意荷载下土表位移时域解答。采用适于水平场地孔压增量模型,并逐循环修正土层模量,模拟液化引起的土层的非线性过程。振动台试验结果和提出棋型的计算结果吻合,验证了所提方法能够反映土体液化对土表位移影响的基本过程。提出的方法和解答物理意义明确,可代表土体液化对土表位移影响的基本形态,并可用于频域及时域的无量纲分析。  相似文献   

15.
Results of a systematic testing program showed that the cyclic behavior of silt–clay mixtures is greatly influenced by the dominant clay minerals in the mixture. In particular, it was demonstrated that given the same amount of clay/clay mineral and/or same value of plasticity index, the montmorillonitic soils have the highest cyclic strength, followed by the illitic soils, and then by the kaolinitic soils. Moreover, the rate of increase in cyclic strength with increasing % clay mineral and PI is again the highest in the montmorillonitic soil, lowest in the kaolinitic soil and intermediate in the illitic soil. Therefore, without considering clay mineralogy, the % clay fraction, % clay mineral and plasticity index are unreliable indicators of the liquefaction susceptibility of fine-grained soils. The differing adhesive bond strength each clay mineral develops with the silt particles is deemed to largely explain the observed differences in the response of the three different soil mixtures to cyclic loading.  相似文献   

16.
The seismic performance of a tailings impoundment can be adversely affected by the behavior of the retained tailings. However, there remains considerable uncertainty in tailings liquefaction analysis. Twenty cyclic simple shear tests conducted on tailings from a gold mine in Quebec, Canada, were simulated numerically. The simulations indicated that the dynamic behavior of tailings could be modelled reasonably well, except that the weighted cyclic resistance curve of the tailings differed from that of clean sand which was used to develop the constitutive model (UBCSAND). An (N1)60-CS value of 10 blows/30 cm was estimated for the tailings based on calibration at a CSR of 0.10 for 15 cycles of loading. Numerical simulation of the behavior of a 20-m-high deposit of tailings during an earthquake (Mw = 5.9) indicated liquefaction of the upper 8 m of tailings. Liquefaction analysis using the Simplified method with published magnitude scaling factors (MSF) did not predict the occurrence of liquefaction. The use of MSF values calculated from the laboratory testing predicted liquefaction in the upper 8 m of tailings, corresponding quite well with the numerical simulation. The results indicate that both analytical and numerical methods can be used to evaluate the potential for tailings liquefaction under seismic loads.  相似文献   

17.
This paper presents a numerical study of mitigation for liquefaction during earthquake loading. Analyses are carried out using an effective stress based, fully coupled, hybrid, finite element-finite differences approach. The sandy soil behavior is described by means of a cyclic elastoplastic constitutive model, which was developed within the framework of a nonlinear kinematic hardening rule. In theory, the philosophies of mitigation for liquefaction can be summarized as two main concepts, i.e. prevention of excess pore water pressure generation and reduction of liquefaction-induced deformations. This paper is primarily concerned with the latter approach to liquefaction mitigation. Firstly, the numerical method and the analytical procedure are briefly outlined. Subsequently, a case-history study, which includes a liquefaction mitigation technique of cement grouting for ground improvement of a sluice gate, is conducted to illustrate the effectiveness of liquefaction countermeasures. Special emphasis is given to the computed results of excess pore water pressures, displacements, and accelerations during the seismic excitation. Generally, the distinctive patterns of seismic response are accurately reproduced by the numerical simulation. The proposed numerical method is thus considered to capture the fundamental aspects of the problems investigated, and yields results for design purposes. From the results in the case, excess pore water pressures eventually reach fully liquefied state under the input earthquake loading and this cannot be prevented. However, liquefaction-induced lateral spreading of the foundation soils can be effectively reduced by the liquefaction mitigation techniques. An erratum to this article can be found at  相似文献   

18.
王良民  叶剑红  朱长歧 《岩土力学》2015,36(12):3583-3588
利用一个经过广泛验证的数值模型FSSI-CAS 2D为计算工具,采用砂土的高级本构模型Pastor-Zienkiewicz-Mark III (PZIII) 描述海床砂土的动态力学行为,定量研究松散海床地基土在波浪作用下,其内部的液化过程和特征,以加深对波致海床液化特征、性质的认识。计算结果分析表明,开发的耦合数值模型FSSI-CAS 2D能够很好地捕捉到波浪作用下欠密实海床的动力响应特征,以及海床内的累积液化过程等一些列的非线性物理现象。研究表明,波浪导致的松砂海床液化是一个渐进过程,海床表面首先液化,并逐渐向下扩展。  相似文献   

19.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such a model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. The purpose of these two companion papers was to provide such database collected for a fine sand. The database consists of numerous undrained cyclic triaxial tests with stress or strain cycles applied to samples consolidated isotropically or anisotropically. Monotonic triaxial tests with drained or undrained conditions have also been performed. Furthermore, drained triaxial, oedometric or isotropic compression tests with several un- and reloading cycles are presented. Part I concentrates on the triaxial tests with monotonic loading or stress cycles. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

20.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. It is the purpose of these two companion papers to provide such database collected for a fine sand. Part II concentrates on the undrained triaxial tests with strain cycles, where a large range of strain amplitudes has been studied. Furthermore, oedometric and isotropic compression tests as well as drained triaxial tests with un- and reloading cycles are discussed. A combined monotonic and cyclic loading has been also studied in undrained triaxial tests. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号