首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Earthquakes in regions underlain by soft clay have amply demonstrated the detrimental effects of soil–structure interaction (SSI) in such settings. This paper describes a new three dimensional Finite Element model utilizing linear elastic single degree of freedom (SDOF) structure and a nonlinear elasto-plastic constitutive model for soil behavior in order to capture the nonlinear foundation–soil coupled response under seismic loadings. Results from an experimental SSI centrifuge test were used to verify the reliability of the numerical model followed by parametric studies to evaluate performance of linear elastic structures underlain by soft saturated clay. The results of parametric study demonstrate that rigid slender (tall) structures are highly susceptible to the SSI effects including alteration of natural frequency, foundation rocking and excessive base shear demand. Structure–foundation stiffness and aspect ratios were found to be crucial parameters controlling coupled foundation–structure performance in flexible-base structures. Furthermore, frequency content of input motion, site response and structure must be taken into account to avoid occurrence of resonance problem.  相似文献   

2.
The majority of currently available analytical tools to predict ground stresses due to impact are based on linear spring-dashpot dynamic models. Although these simple models adequately represent stiff ground possessing linear visco-elastic behaviour, they suffer from two striking limitations when applied to relatively softer ground; (1) the inability to account for the permanent deformation resulting from impact, (2) failure to incorporate stiffness changes of softer soil within the impact duration. In this paper, the authors present an improved analytical approach formulated on the basis of a series of laboratory impact tests, to address the shortcomings of the current dynamic models in relation to soft soils. In this procedure, the impact zone is modelled as three distinct zones; (1) a zone beneath the falling weight undergoing non-linear axial deformation while being in vertical motion, (2) an inner zone immediately surrounding zone 1 with non-linear shear deformation, and (3) an outer zone undergoing a relatively lower degree of (linear) shear deformation. The soil constitutive parameters pertinent to the model are obtained from a modified dynamic compression test that simulates the impact conditions. It is shown that analytical predictions of the impact stress history and penetration are in agreement with test results. The findings are useful in the exploration of dynamic compaction techniques that will be effective in soft soil improvement.  相似文献   

3.
This paper presents a non‐linear soil–structure interaction (SSI) macro‐element for shallow foundation on cohesive soil. The element describes the behaviour in the near field of the foundation under cyclic loading, reproducing the material non‐linearities of the soil under the foundation (yielding) as well as the geometrical non‐linearities (uplift) at the soil–structure interface. The overall behaviour in the soil and at the interface is reduced to its action on the foundation. The macro‐element consists of a non‐linear joint element, expressed in generalised variables, i.e. in forces applied to the foundation and in the corresponding displacements. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. Mechanisms of yielding and uplift are modelled through a global, coupled plasticity–uplift model. The cyclic model is dedicated to modelling the dynamic response of structures subjected to seismic action. Thus, it is especially suited to combined loading developed during this kind of motion. Comparisons of cyclic results obtained from the macro‐element and from a FE modelization are shown in order to demonstrate the relevance of the proposed model and its predictive ability. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper the results of 2D FE analyses of the seismic ground response of a clayey deposit, performed adopting linear visco-elastic and visco-elasto-plastic constitutive models, are presented. The viscous and linear elastic parameters are selected according to a novel calibration strategy, leading to FE results comparable to those obtained by 1D equivalent-linear visco-elastic frequency-domain analyses. The influence of plasticity on the numerical results is also investigated, with particular reference to the relation between the hysteretic and viscous damping effects. Finally, different boundary conditions, spatial discretisation and time integration parameters are considered and their role on the FE results discussed.  相似文献   

5.
We perform a combined stochastic-deterministic analysis of local site response using two computer codes, an equivalent linear analysis program SHAKE and a fully nonlinear finite element code SPECTRA. Our goal is to compare the relative sensitivity of the two codes to statistical variations in soil properties. For the case studies, we re-analyze two ground motion records in Lotung, Taiwan, and one ground motion record in Gilroy, California, utilizing the recorded ground motions at the site deterministically as input into the two codes while treating the uncertain soil parameters as random variables. We then obtain empirical cumulative distribution functions of the Arias intensity and acceleration spectrum intensity, two measures of cumulative damage, to compare the relative sensitivity of the two codes to variations in model parameters. We show that the two codes exhibit comparable sensitivities to statistical parameter variations, indicating that even in the presence of fluctuations in the soil parameter values it is possible to pursue a fully nonlinear site response analysis with SPECTRA and benefit from its superior accuracy.  相似文献   

6.
Significant insight into the dynamic local site response of a horizontally layered sediment deposit to seismic excitation can be gained from numerical simulations. In this paper we use a nonlinear local site response analysis code SPECTRA to estimate the coseismic sediment deformation at a seismically active site in Lotung, Taiwan. We address some basic issues relevant for interpreting the simulation results, including the impact of noise and baseline offsets present in the input ground motion. We also consider the sensitivity of the predicted deformation responses to statistical variations of sediment constitutive properties. Finally, we apply a suite of hypothetical strong ground motions to the base of the sediment deposit to better understand the pattern of inelastic deformation likely to result from strong seismic shaking.  相似文献   

7.
In geotechnical earthquake engineering, wave propagation plays a fundamental role in engineering applications related to the dynamic response of geotechnical structures and to site response analysis. However, current engineering practice is primarily concentrated on the investigation of shear wave propagation and the corresponding site response only to the horizontal components of the ground motion. Due to the repeated recent observations of strong vertical ground motions and compressional damage of engineering structures, there is an increasing need to carry out a comprehensive investigation of vertical site response and the associated compressional wave propagation, particularly when performing the seismic design for critical structures (e.g. nuclear power plants and high dams). Therefore, in this paper, the compressional wave propagation mechanism in saturated soils is investigated by employing hydro-mechanically (HM) coupled analytical and numerical methods. A HM analytical solution for compressional wave propagation is first studied based on Biot’s theory, which shows the existence of two types of compressional waves (fast and slow waves) and indicates that their characteristics (i.e. wave dispersion and attenuation) are highly dependent on some key geotechnical and seismic parameters (i.e. the permeability, soil stiffness and loading frequency). The subsequent HM Finite Element (FE) study reproduces the duality of compressional waves and identifies the dominant permeability ranges for the existence of the two waves. In particular the existence of the slow compression wave is observed for a range of permeability and loading frequency that is relevant for geotechnical earthquake engineering applications. In order to account for the effects of soil permeability on compressional dynamic soil behaviour and soil properties (i.e. P-wave velocities and damping ratios), the coupled consolidation analysis is therefore recommended as the only tool capable of accurately simulating the dynamic response of geotechnical structures to vertical ground motion at intermediate transient states between undrained and drained conditions.  相似文献   

8.
The effect of foundation stiffness upon the dynamic response of an offshore structure is investigated. The non-linear deformation behaviour of a stratified seabed is included in the finite element simulation. The seabed is represented by a simplified spring model. In the linear elastic analyses the stiffnesses are derived using elastic half-space theory. For the non-linear problems, elastic-plastic finite element analyses are used to generate equivalent properties.An example of the method is given as applied to a three towered concrete gravity platform. Variation of natural frequency is used to indicate the significance of changes in parameters such as soil shear modulus, structural stiffness and deck mass. The forced response behaviour to random wave excitation is also investigated using a linear elastic analysis. The effect of the interaction of the foundation — soil with the structure on the dynamic response is demonstrated by the results.  相似文献   

9.
土-结构-流体动力相互作用的实时耦联动力试验   总被引:3,自引:0,他引:3  
迟福东  王进廷  金峰  汪强 《岩土力学》2010,31(12):3765-3770
针对振动台试验中无限地基难以模拟和数值分析中流-固耦合作用难以计算两个难题,将最近发展的实时耦联动力试验方法引入土-结构-流体动力相互作用问题的研究。以一个渡槽结构为例,其中渡槽-水体作为物理子结构,采用振动台进行物理试验,而无限地基作为数值子结构,采用集总参数模型进行数值模拟。两个子结构之间实时交换数据,联合评估整个耦合体系的动力响应。试验结果和有限元数值模拟结果吻合良好,表明该试验方法具有较高精度。对不同特性地基土进行的试验对比分析结果表明:对于软土地基,考虑土-结构相互作用(SSI)的结构反应幅值明显减小,周期延长;随着地基土变硬,SSI效应逐渐变弱,结构反应最终收敛至刚性地基解。  相似文献   

10.
为研究综合管廊动力边界条件对地震动力响应的影响,以厦门地区的代表性土层为例,建立动力有限元数值模型,土体本构采用小应变硬化模型,分别设定固定边界、黏性边界和自由场3种人工边界条件,进行Rayleigh波和地震底部剪切波作用下的场地响应研究;并根据变形特征及拟绝对加速度反应谱(PSA)评价3种边界的有效性,提出综合管廊地震动力分析的优化动力边界组合方法。研究表明:在地震波(底部水平加速度时程)及Rayleigh波的作用下,由于考虑了黏性边界对外行波的吸收,但未考虑地震动的输入问题及边界外半无限介质的弹性恢复性能,边界会对模型内部土体的水平位移产生限制作用,使得场地内水平位移响应偏小,而采用自由场边界则基本不存在这种限制作用,表现出强烈的振荡;采用激励侧固定边界、远离激励侧黏性边界、其余侧自由场边界的优化组合动力边界,在Rayleigh波和底部加速度时程共同作用下,二者引起的动力响应交叉干扰较少,可按线性叠加处理;同时,黏性边界对地震波引起的动力响应有一定范围的吸收,自由场边界对Rayleigh波引起的动力响应也有一定范围的变形限制影响。研究成果可供地下综合管廊结构地震响应精细化数值模拟及抗震设计参考。  相似文献   

11.
This paper presents a numerical study on the desiccation cracking process of clayey soil. The initiation and propagation of cracks were investigated using finite element code, including the damage-elastic cohesive fracture law to describe the behaviour of cracks. The coupling between the hydraulic behaviour (moisture transfer in the soil matrix and in the cracks) and the mechanical behaviour (volume change of the soil matrix and development of cracks) were also considered. The results of a laboratory experiment performed on clay soil, taken from a literature review, were used to evaluate the numerical modelling. The results show that the code can reproduce the main trends observed in the experiment (e.g., shrinkage related to drying, crack development). In addition, the numerical simulation enables the identification of other phenomena, such as the evolution of suction and stress related to drying and the development of a single crack. These phenomena are difficult to observe experimentally.  相似文献   

12.
Seismic site effect has been a major issue in the field of earthquake engineering due to the large local amplification of the seismic motion. This paper presents the importance of an appropriate soil behavior model to simulate earthquake site response and gives an overview of the field of site response analysis. Some of the well-known site response analysis methods are discussed. The objective of this paper is to investigate the influences of nonlinearity on the site response analysis by means of a more precise numerical model. In this respect, site responses of four different types of one-layered soil deposit, based on various shear wave velocities with the assumption of linear and rigid base bedrock, were analyzed by using the equivalent linear and fully nonlinear approaches. Nonlinear analyses?? results were compared with those of the linear method, and both of the similarities and differences are discussed. It is concluded that in the case of nonlinearity of soil under strong ground motions, 1-D equivalent linear modeling overestimates the amplification patterns in terms of absolute amplification level, and cannot correctly account for resonant frequencies and hysteric soil behavior. Therefore, more practical and appropriate numerical techniques for ground response analysis should be surveyed.  相似文献   

13.
综合管廊由于埋深较浅,在抗震分析中应考虑Rayleigh波的作用,为研究Rayleigh波与底部地震加速度共同作用下综合管廊的动力响应特征,建立双仓的综合管廊三维动力有限元数值模型,土体采用考虑滞回环特性的高级本构模型(HSS模型),通过边界上多次脉冲荷载生成Rayleigh波,模型底部横向分别作用Upland波、Kobe波、Taft波,并与仅考虑底部横向作用的常规时程分析进行对比。研究表明:综合管廊结构的横向动力响应主要受横向地震波影响,结构纵向动力响应受沿其轴向入射的Rayleigh波影响相对较大;采用Rayleigh波+底部地震波的输入方法比单独底部地震波输入得到的结构动力响应整体上要更显著一些;输入不同的地震加速度时程,管廊动力反应规律相似,但综合管廊结构影响大小有差异,可见底部地震波与地表Rayleigh波作用的匹配程度对结构动力响应结果有一定影响。研究成果可供地下综合管廊结构地震动力响应精细化数值分析及抗震设计参考。  相似文献   

14.
汾渭盆地是我国乃至世界上地裂缝最为发育,灾害最为严重的地区。考虑到地裂缝灾害对场地条件的影响,尤其是对场地土体的动力特性及动力响应的影响,本文在等压固结条件下,对西安地区地裂缝带黄土进行不同围压下的固结不排水(CU)动三轴试验,获取动力学参数,在此基础上分析了地裂缝带黄土动剪切模量随动剪应变变化特征曲线以及阻尼比随动剪应变变化特征曲线,并对所获得实验曲线进行回归拟合,进而建立了地裂缝带黄土的等效黏弹性动力本构模型,为进一步分析场地土体的动力响应奠定基础。  相似文献   

15.
The present study makes an attempt to investigate the soil–structure resonance effects on a structure based on dynamic soil–structure interaction (SSI) methodology by direct method configuration using 2D finite element method (FEM). The investigation has been focused on the numerical application for the four soil–structure models particularly adjusted to be in resonance. These models have been established by single homogenous soil layers with alternating thicknesses of 0, 25, 50, 75 m and shear wave velocities of 300, 600, 900 m/s-a midrise reinforced concrete structure with a six-story and a three-bay that rests on the ground surface with the corresponding width of 1,400 m. The substructure has been modeled by plane strain. A common strong ground motion record, 1940 El Centro Earthquake, has been used as the dynamic excitation of time history analysis, and the amplitudes, shear forces and moments affecting on the structure have been computed under resonance. The applicability and accuracy of the FEM modeling to the fundamental period of soils have been confirmed by the site response analysis of SHAKE. The results indicate that the resonance effect on the structure becomes prominent by soil amplification with the increased soil layer thickness. Even though the soil layer has good engineering characteristics, the ground story of the structure under resonance is found to suffer from the larger soil layer thicknesses. The rate of increment in shear forces is more pronounced on midstory of the structure, which may contribute to the explanation of the heavily damage on the midrise buildings subjected to earthquake. Presumably, the estimated moment ratios could represent the factor of safeties that are excessively high due to the resonance condition. The findings obtained in this study clearly demonstrate the importance of the resonance effect of SSI on the structure and can be beneficial for gaining an insight into code provisions against resonance.  相似文献   

16.
This paper presents a non‐linear interface element to compute soil–structure interaction (SSI) based on the macro‐element concept. The particularity of this approach lies in the fact that the foundation is supposed to be infinitely rigid and its movement is entirely described by a system of global variables (forces and displacements) defined in the foundation's centre. The non‐linear behaviour of the soil is reproduced using the classical theory of plasticity. Failure is described by the interaction diagram of the ultimate bearing capacity of the foundation under combined loads. The macro‐element is appropriate for modelling the cyclic or dynamic response of structures subjected to seismic action. More specifically, the element is able to simulate the behaviour of a circular rigid shallow foundation considering the plasticity of the soil under monotonic static or cyclic loading applied in three directions. It is implemented into FedeasLab, a finite element Matlab toolbox. Comparisons with experimental monotonic static and cyclic results show the good performance of the approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
This paper outlines the development as well as implementation of a numerical procedure for coupled finite element analysis of dynamic problems in geomechanics, particularly those involving large deformations and soil-structure interaction. The procedure is based on Biot’s theory for the dynamic behaviour of saturated porous media. The nonlinear behaviour of the solid phase of the soil is represented by either the Mohr Coulomb or Modified Cam Clay material model. The interface between soil and structure is modelled by the so-called node-to-segment contact method. The contact algorithm uses a penalty approach to enforce constraints and to prevent rigid body interpenetration. Moreover, the contact algorithm utilises a smooth discretisation of the contact surfaces to decrease numerical oscillations. An Arbitrary Lagrangian–Eulerian (ALE) scheme preserves the quality and topology of the finite element mesh throughout the numerical simulation. The generalised-α method is used to integrate the governing equations of motion in the time domain. Some aspects of the numerical procedure are validated by solving two benchmark problems. Subsequently, dynamic soil behaviour including the development of excess pore-water pressure due to the fast installation of a single pile and the penetration of a free falling torpedo anchor are studied. The numerical results indicate the robustness and applicability of the proposed method. Typical distributions of the predicted excess pore-water pressures generated due to the dynamic penetration of an object into a saturated soil are presented, revealing higher magnitudes of pore pressure at the face of the penetrometer and lower values along the shaft. A smooth discretisation of the contact interface between soil and structure is found to be a crucial factor to avoid severe oscillations in the predicted dynamic response of the soil.  相似文献   

18.
This paper presents numerical simulations of Cone Penetration Test (CPT) in water-saturated soft soils taking into account pore pressure dissipation during installation. Besides modelling interaction between soil skeleton and pore fluid, the problem involves large soil deformations in the vicinity of the penetrometer, soil–structure interaction, and complex non-linear response of soil. This makes such simulations challenging. Depending on the soil’s permeability and compressibility, undrained, partially drained or drained conditions might occur. Partially drained conditions are commonly encountered in soils such as silts and sand–clay mixtures. However, this is often neglected in CPT interpretation, which may lead to inaccurate estimates of soil properties. This paper aims at improving the understanding of the penetration process in different drainage conditions through advanced numerical analyses. A two-phase Material Point Method is applied to simulate large soil deformations and generation and dissipation of excess pore pressures during penetration. The constitutive behaviour of soil is modelled with the Modified Cam Clay model. Numerical results are compared with experimental data showing good agreement.  相似文献   

19.
Results from field observations of dynamic behaviour of an underground excavation have been compared with numerical studies of the rock deformation history. The field behaviour shows progressive accumulation of rock displacement and excavation deformation under successive episodes of dynamic loading. It is possible to reproduce the modes of rock response quite well using a Distinct Element model of the rock mass, but the way displacements develop is dependent on the joint model used in the analysis. It is suggested that, in rock masses subject to repeated dynamic loading, excavation design may need to take account of the prospect of repeated episodes of transient loading at the excavation site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号