首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Statistics of ultimate strain are improved by adding new data to the previous ones. The critical value for horizontal strain seems somewhat larger than that for vertical strain, although parameters of a Weibull distribution, which is customarily used for quality-control research and which fits in very well with the present statistics, are calculated for the whole set of data making no distinction between the two subsets because of their scantiness.On the basis of the parameters thus determined and strain rates obtained from geodetic data, probabilities of earthquake occurrence in a few regions in Japan and the U.S. are estimated. Probability of having an earthquake in an area southwest of Tokyo, where we had the 1923 earthquake (magnitude 7.9), at this time amounts to 20%, a value almost the same as that obtained in the previous papers. The probability will reach some 50 and 90% by 2000 and 2050, respectively. In the North Izu district, where an earthquake of magnitude 7.0 occurred in 1930, a shearing crustal motion is going on to an extent for which we have a probability for an earthquake recurring there in these 40 years amounting to 40%. By the end of this century, it will become as high as 85%.Similar estimates of such cumulative probabilities are made for the San Francisco and Fort Tejon regions, where great earthquakes occurred respectively in 1906 and 1857, yielding values of 30 and 80% at present. These probabilities are tentative because of possible errors in evaluating geodetic measurements and uncertainty of the ultimate crustal strain assigned to the San Andreas fault.  相似文献   

2.
Due to the importance of Aswan area, Egypt, it has been selected for the present study. Since 1982, after the main shock of November 14, 1981 with M?=?5.6, several study programmes were initiated for monitoring seismicity and crustal movements at Aswan area (Tealeb 1996). Starting from 1997, GPS geodetic networks were established and observed many times in different campaigns. The observations are repeated twice a year. At the beginning of 2012, a moderate earthquake has occurred in the Aswan region with magnitude of 4.2 located at the southwest of the High Dam along Kalabsha fault. Before and after this event, these local geodetic networks were measured using GPS. Regional, Kalabsha-Sayal and Kalabsha networks were used in the present work. GPS data were processed using Bernese 5.0. The collected data before and after this event have shown that the area southwest of the High Dam and Kalabsha area suffered from stress and strain. The behaviour of the areas has changed after earthquake for pre-earthquake.  相似文献   

3.
The earthquake of 6 October 1987 (M = 6.6), which occurred near the Shipunsky Cape, Kamchatka, was the largest crustal event in the vicinity of the main city of Kamchatka — Petropavlovsk-Kamchatsky — during the last three decades. It was followed by numerous aftershocks. This earthquake allowed us to test the effectiveness of the seismic hazard monitoring in Kamchatka, including the seismological, geodetic and hydrogeochemical surveys. The seismic survey provided the location and source nature of the main shock and aftershocks and the seismic environment of the main shock. The geodetic and hydrogeochemical surveys have yielded data on the response to earthquakes of the Earth's surface deformations, water level, and chemical elements concentration in the underground water. As a result, the following data were obtained:

u

  • The earthquake of 6 October had a seismic moment 4–10 E18 Nm, thrust type of faulting and the source volume of 20 × 20 × 10 km3. The maximum intensity was VI–VII (MSK-64 scale) and maximum acceleration 88 cm/s2.
  • Before this event, a relative increase in the number of the upper mantle (depth more than 100 km) moderate magnitude earthquakes during 5 years and a one-year period of seismic quiescence for small shallow earthquakes, were recognized. Significant anomalies in HCO3 and H3BO3 concentrations in the underground waters were observed in the wells a week before the main shock.
  •   相似文献   

    4.
    First order geodetic measurements show that strain rates in southeastern New South Wales are about 50 × 10‐8 y‐1. These strain rates are much greater than those suggested by seismicity. The direction of the principal axis of compression varies with position, but it is consistent with compression axis directions of the earthquake focal mechanisms in the Bowning area, and with the pattern of late Cainozoic vertical displacements suggested by geomorphology. In southwestern Western Australia strain identified from geodetic measurements is patchy in distribution, and is irregular in magnitude and direction. It is found close to areas of historic faulting, in areas of high measured stress, and across the Darling Fault line of weakness separating the Perth Basin from the Yilgarn Craton.  相似文献   

    5.
    The Maule, Chile, (Mw 8.8) earthquake on 27 February 2010 triggered deformation events over a broad area, allowing investigation of stress redistribution within the upper crust following a mega-thrust subduction event. We explore the role that the Maule earthquake may have played in triggering shallow earthquakes in northwestern Argentina and Chile. We investigate observed ground deformation associated with the Mw 6.2 (GCMT) Salta (1450 km from the Maule hypocenter, 9 h after the Maule earthquake), Mw 5.8 Catamarca (1400 km; nine days), Mw 5.1 Mendoza (350 km; between one to five days) earthquakes, as well as eight additional earthquakes without an observed geodetic signal. We use seismic and Interferometric Synthetic Aperture Radar (InSAR) observations to characterize earthquake location, magnitude and focal mechanism, and characterize how the non-stationary, spatially correlated noise present in the geodetic imagery affects the accuracy of our parameter estimates. The focal mechanisms for the far-field Salta and Catamarca earthquakes are broadly consistent with regional late Cenozoic fault kinematics. We infer that dynamic stresses due to the passage of seismic waves associated with the Maule earthquake likely brought the Salta and Catamarca regions closer to failure but that the involved faults may have already been at a relatively advanced stage of their seismic cycle. The near-field Mendoza earthquake geometry is consistent with triggering related to positive static Coulomb stress changes due to the Maule earthquake but is also aligned with the South America-Nazca shortening direction. None of the earthquakes considered in this study require that the Maule earthquake reactivated faults in a sense that is inconsistent with their long-term behavior.  相似文献   

    6.
    Magnetic properties are reported for the spinel series Fe2.4—t Cr0.6Ti t O4, 0≦t≦0.7, with t=0, 0.2, 0.4, 0.6 and Fe2.1—t Cr0.9Ti t O4, 0≦t≦0.55, with t=0, 0.2, 0.4, 0.45, 0.5. Magnetic moment data are compared with theoretical values derived from different ion distribution models. With increasing Ti concentration the compositions become hard magnetic spinels due to the increased number of Fe2+ ions on A- and B-sites of the spinel lattice.  相似文献   

    7.
    The potential for photo-induced dissociation of ferri- and ferro-cyanide was investigated. The overall reactions followed first order kinetics, judged by the free cyanide analyzed in aqueous solution. The dissociation rates for ferri- and ferro-cyanide were mathematically described by the equations: C (CN,t) = C (CN,O)e1.3t and C (CN,t) = C (CN,O)e0.39t , respectively. In addition, photo-induced dissociation of both iron cyanides was enhanced under an alkaline environment than a neutral condition. Results from the temperature-dependent tests indicated that the dissociation rate of ferri- cyanide was significantly higher than that of ferro-cyanide at all treatment temperatures. The kinetic parameter, activation energy (E a ) was also experimentally determined to be 12.02 and 12.32 kJ/mol for ferri- and ferro-cyanide, respectively. The results obtained suggest that both iron cyanides are susceptible to photo-dissociation and the rates are positively correlated to the change of temperatures. The information collectively also has important implications for waste management of iron cyanides as well as for risk assessment in a field trial.  相似文献   

    8.
    Static stress changes caused by megathrust slip of the 2011 Mw 9.0 Tohoku-Oki earthquake considerably affected the seismicity patterns in inland areas, resulting in the occurrence of numerous earthquakes along several active faults in Japan. On June 30, 2011, the Mj 5.4 central Nagano earthquake occurred at a shallow depth of 5 km, indicating the reactivation of the Gofukuji fault in Central Japan. This study was undertaken to elucidate spatial and temporal changes of 3He/4He ratios around a source region before and after an inland earthquake using both existing and new and helium isotope data from hot spring and drinking water wells. Gas samples near the Gofukuji fault and its surrounding active faults are characterized by an increase in postseismic 3He/4He ratios. In contrast, the postseismic ratios decreased by up to about 30% away from the mainshock epicenter. Episodic faulting could either release stored crustal (radiogenic) helium from host rocks, or enhance the transfer of mantle volatiles through permeable fault zones, such that subsequent fluid flow near to the source region could then explain the spatio-temporal variations in 3He/4He ratios.  相似文献   

    9.
    The Aegean region including western Turkey, mainland Greece, and the Hellenic Arc is the most seismological and geodynamical active domain in the Alpine Himalayan Belt. In this study, we processed 3 years of survey-mode GPS data and present the analysis of a combination of geodetic and seismological data around Izmir, which is the third most populated city in Turkey. The velocities obtained from 15 sites vary between 25 mm/yr and 28 mm/yr relative to the Eurasian plate. The power law exponent of earthquake size distribution (b-value) ranges from 0.8 to 2.8 in the Izmir region between 26.2°E and 27.2°E. The lowest b-value zones are found along Karaburun Fault (b = 0.8) and, between Seferihisar and Tuzla Faults (b = 0.8). A localized stress concentration is expected from numerical models of seismicity along geometrical locked fault patches. Therefore, areas with lowest b-values are considered to be the most likely location for a strong earthquake, a prediction that is confirmed by the 2005 Mw = 5.9 Seferihisar earthquake sequences, with epicentres located to the south of the Karaburun Fault. The north–south extension of the Izmir area is corroborated by extension rates up to 140 nanostrain/yr as obtained from our GPS data. We combined the 3-year GPS velocity field with the published velocity field to determine the strain rate pattern in the area. The spatial distribution of b-value reflects the normal background due to the tectonic framework and is corroborated by the geodetic data. b-Values correlate with strain pattern. This relationship suggests that decrease of b-values signifies accumulating strain.  相似文献   

    10.
    The Xiong’er Group is an important geologic unit in the southern margin of the North China Craton. It is dominated by the volcanic rocks, dated at 1763 ± 15 Ma, that have SiO2 contents ranging from 52.10 wt% to 73.51 wt%. These volcanic rocks are sub-alkaline and can be classified into three subgroups: basaltic andesites, andesites and rhyolites. They unexceptionally show enrichment of light rare earth elements (LREE) and share similar trace element patterns. Depletions in Nb, Ta, Sr, P and Ti relative to the adjacent elements are evident for all the samples. The volcanic rocks are evolved with low MgO contents (0.29–5.88 wt%) and accordingly low Mg# values of 11–53. The Nd isotopes are enriched and show a weak variation with ?Nd(t) = −7.12 to −9.63. Zircon Hf isotopes are also enriched with ?Hf(t) = −12.02 ± 0.45. The volcanic rocks of the Xiong’er Group are interpreted to represent fractional crystallization of a common mantle source. The volcanic rocks might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by the oceanic subduction in the Late Archean. This brings a correlation with the subduction-modified lithospheric mantle in an extensional setting during breakup of the Columbia supercontinent in the late Paleoproterozoic, rather than in an arc setting. The elevated SiO2 contents and evolved radiogenic isotope features indicate the possible incorporation into their source of lower crustal materials that have similar Nd isotopic characteristics to the subcontinental lithospheric mantle. The existence of extensive Xiong’er volcanic rocks (60,000 km2) indicates an early large-scale subduction-related metasomatism in the area and probably suggest a flat subduction model for the plate-margin magmatism in the Late Archean.  相似文献   

    11.
    《地学前缘(英文版)》2019,10(6):2063-2084
    The East African Orogen involves a collage of Proterozoic microcontinents and arc terranes that became wedged between older cratonic blocks during the assembly of Gondwana.The Ediacaran-Cambrian Ambalavao and Maevarano Suites in Madagascar were emplaced during the waning orogenic stages and consist of weakly deformed to undeformed plutonic rocks and dykes of mainly porphyritic granite but also gabbro,diorite and charnockite.U-Pb geochronological data date emplacement of the Ambalavao Suite to between ca.580 Ma and 540 Ma and the Maevarano Suite to between ca.537 Ma and522 Ma.Major and trace element concentrations are consistent with emplacement in a syn-to postcollisional tectonic setting as A-type(anorogenic) suites.Oxygen(δ~(18)O of 5.27‰-7.45‰) and hafnium(ε_(Hf)(t) of-27.8 to-12.3) isotopic data from plutons in the Itremo and Antananarivo Domains are consistent with incorporation of an ancient crustal source.More primitive δ~(18)O(5.27‰-5.32‰) andε_(Hf)(t)(+0.0 to+0.2) isotopic values recorded in samples collected from the Ikalamavony Domain demonstrate the isotopic variation of basement sources present in the Malagasy crust.The Hf isotopic composition of Malagasy zircon are unlike more juvenile Ediacaran-Cambrian zircon sou rces elsewhere in the East African Orogen and,as such,Madagascar represents a distinct and identifiable detrital zircon source region in Phanerozoic sedimentary provenance studies.Taken together,these data indicate that high-T crustal anatexis,crustal assimilation and interaction of crustal material with mantle-derived melts were the processes operating during magma emplacement.This magmatism was coeval with polyphase deformation throughout Madagascar during the amalgamation of Gondwana and magmatism is interpreted to reflect lithospheric delamination of an extensive orogenic plateau.  相似文献   

    12.
    The Aligoodarz granitoid complex (AGC) is located in the Sanandaj-Sirjan Zone (SSZ), western Iran and consists of quartz-diorites, granodiorites and subordinate granites. Whole rock major and trace element data mostly define linear trends on Harker diagrams suggesting a cogenetic origin of the different rock types. (87Sr/86Sr)i and εNdt ratios are in the ranges 0.7074-0.7110 and −3.56 to −5.50, respectively. The trace elements and Sr-Nd isotopic composition suggest that the granitoids from the AGC are similar to crustal derived I-type granitoids of continental arcs. The whole rock suite was produced by assimilation and fractional crystallization starting from a melt with intermediate composition likely possessing a mantle component. In situ zircon U-Pb data on the granites with LA-ICP-MS yield a crystallization age of ∼165 Ma. Inherited grains spanning in age from ∼180 Ma up to 2027 Ma were also found and confirm that assimilation of country rock has occurred.Chemical and chronological data on the AGC were compared with those available for other granitoid complexes of the central SSZ (e.g., Dehno, Boroujerd and Alvand). The comparison reveals that in spite of the different origins that have been proposed, all these granitoid complexes are likely genetically related. They share many chemical features and are derived from crustal melts with minor differences. Alvand granites have the most peculiar compositions most likely related to the presence of abundant pelitic component. All these intrusions are coeval and reveal the presence of an extensive magmatic activity in the central sector of the SSZ during middle Jurassic.  相似文献   

    13.
    Before the Kobe earthquake, an anomalous increase in atmospheric Rn concentration was observed. By separating the measured concentration of atmospheric Rn into three components according to the distance from the monitoring station, the variation of Rn exhalation rate can be estimated for the respective area using the daily minimum and maximum concentrations. The mean rate of Rn exhalation gradually increased in an area of 20 km around the monitoring station, becoming five times higher than normal in the period between October 1994 and the date of the earthquake. This area had a large co-seismic displacement of up to 30 cm, which roughly corresponds to the crustal strain of 10−6-order, and it is considered the main source for the atmospheric Rn prior to the Kobe earthquake. Analyses revealed that the pre-seismic change in the atmospheric Rn concentration exhibited an anomalous pattern which would yield information on the spatial distribution of the mechanical response of the ground.  相似文献   

    14.
    This paper shows a new continuous strain–stress map for Europe obtained from the direct inversion of earthquake focal mechanisms calculated from the centroid tensor method. A total of 1608 focal mechanisms have been selected with several quality criteria from different catalogues (CMT Harvard, ETH, Med-Net, I.G.N. and I.A.G.) from 1973 to the present day. Values for the maximum horizontal shortening direction and brittle strain–stress regime defined by the k′ ratio (ey/ez, horizontal maximum/vertical strain) have been calculated following in Europe and Pannonian Basin the slip model of tri-axial deformation. The individual results including Dey and the shape of the active brittle strain ellipsoid have been interpolated to a final 15′ regular grid taking into account the relationship between the tectonic horizontal strain–stress value and the vertical load. Both continuous strain regime and maximum horizontal shortening (Dey) maps show a good correlation with the primary tectonic forces generated along the plate boundaries, plate kinematics and also some local perturbations related with main crustal heterogeneities and topography, as well as significant spatial variations in integrated crustal strength.  相似文献   

    15.
    Northeast Asian continental margins contain the products of magma emplacement driven by prolonged subduction of the (paleo-)Pacific plate. As observed in many Cordilleran arcs, magmatic evolution in this area was punctuated by high-volume pulses amid background periods. The present study investigates the early evolution of the Cretaceous magmatic flare-up using new and published geochronological, geochemical, and O-Hf isotope data from plutonic rocks in the southern Korean Peninsula. After a long (~50 m.y.) magmatic hiatus and the development of the Honam Shear Zone through flat-slab subduction, the Cretaceous flare-up began with the intrusion of monzonites, granodiorites, and granites in the inboard Gyeonggi Massif and the intervening Okcheon Belt. Compared to Jurassic granitoids formed during the former flare-up, Albian (~111 Ma) monzonites found in the Eopyeong area of the Okcheon Belt have distinctly higher zircon εHf(t) (?7.5 ± 1.3) and δ18O (7.78‰ ± 0.25‰) values and lower whole-rock La/Yb and Sr/Y ratios. The voluminous coeval granodiorite and granite plutons in the Gyeonggi Massif are further reduced in Sr/Y and to a lesser extent, in La/Yb, and have higher zircon εHf(t) values (?13 to ?19) than the Precambrian basement (ca. ?30). These chemical and isotopic features indicate that Early Cretaceous lithospheric thinning, most likely resulting from delamination of tectonically and magmatically overthickened lithospheric keel that was metasomatized during prior subduction episodes, and consequent asthenospheric upwelling played vital roles in igniting the magmatic flare-up. The O-Hf isotopic ranges of synmagmatic zircons from the Albian plutons and their Paleoproterozoic and Jurassic inheritance attest to the involvement of lithospheric mantle and crustal basement in magma generation during this decratonization event. Arc magmatism then migrated trenchward and culminated in the Late Cretaceous, yielding widespread granitoid rocks emplaced at shallow crustal levels. The early Late Cretaceous (94–85 Ma) granites now prevalent in Seoraksan-Woraksan-Sokrisan National Parks are highly silicic and display flat chondrite-normalized rare earth element patterns with deep Eu anomalies. Synmagmatic zircons in these granites mimic their host rock’s chemistry. Delamination-related rejuvenation of crustal protoliths is indicated by zircon εHf(t) values of granites (?6 to ?20) that are consistently higher than the Precambrian basement value. Concomitant core-to-rim variation in zircon O-Hf isotopic compositions reflects a typical sequence of crustal assimilation and fresh input into the magma chamber.  相似文献   

    16.
    Instrumental and historical data on mainshocks for 13 seismogenic sources in western Anatolia have been used to apply a regional time- and magnitude-predictable model. Considering the interevent time between successive mainshocks, the following two predictive relations were computed: log T t = 0.13 M min + 0.21 M p ? 0.15 log M 0 + 2.93 and M f = 0.87 M min ? 0.06 M p + 0.33 log M 0 ? 6.54. Multiple correlation coefficient and standard deviation have been computed as 0.50 and 0.29, respectively, for the first relation, and 0.65 and 0.47, respectively, for the second relation. The positive dependence of T t on M p and the negative dependence of M f on M p indicate the validity of time- and magnitude-predictable model on the area considered in this study. On the basis of these relations and using the occurrence time and magnitude of the last main shocks in each seismogenic source, the probabilities of occurrence Pt) of the next main shocks during the next 50 years with decade interval as well as the magnitude of the expected main shocks were determined. The highest probabilities P 10 = 80 % (M f = 6.8 and T t = 13 years) and P 10 = 32 % (M f = 7.6 and T t = 29 years) were estimated for the seismogenic source 11 (Golhisar-Dalaman-Rhodes) for the occurrence of a strong and a large earthquake during the future decade, respectively.  相似文献   

    17.
    The paper presents data on the Nd-Sr systematics of magmatic rocks of the Khaidaiskii Series of the Anginskaya Formation in the Ol’khon region, western Baikal area, and rocks of the Talanchanskaya Formation on the eastern shore of Lake Baikal. Geochemical characteristics of these rocks are identical and testify to their arc provenance. At the same time, the ɛNdtof rocks of the Khaidaiskii Series in the Ol’khon area has positive values, and the data points of these rocks plot near the mantle succession line in the ɛNdt-87Sr/86Sr diagram, whereas the ɛNdt values of rocks of the Talanchanskaya Formation are negative, and the data points of these rocks fall into the fourth quadrant in the ɛNdt-87Sr/86Sr diagram. This testifies to a mantle genesis of the parental magmas of the Khaidaiskii Series and to the significant involvement of older crustal material in the generation of the melts that produced the orthorocks on the eastern shore of the lake. These conclusions are corroborated by model ages of magmatic rocks in the Ol’khon area (close to 1 Ga) and of rocks of the Talanchanskaya Formation (approximately 2 Ga). The comparison of our data with those obtained by other researchers on the Nd-Sr isotopic age of granulites of the Ol’khon Group and metavolcanics in various structural zones in the northern Baikal area suggests, with regard for the geochemistry of these rocks, the accretion of tectonic nappes that had different isotopic histories: some of them were derived from the mantle wedge and localized in the island arc itself (magmatic rocks of the Anginskaya Formation) or backarc spreading zone (mafic metamagmatic rocks of the Ol’khon Group), while others were partial melts derived, with the participation of crustal material, from sources of various age (metagraywackes in the backarc basin in the Ol’khon Group and the ensialic basement of the island arc in the Talanchanskaya Formation).  相似文献   

    18.
    Detrital zircons from the Ob, Yenisey, Lena, Amur, Volga, Dnieper, Don and Pechora rivers have been analyzed for U-Th-Pb, O and Lu-Hf isotopes to constrain the growth rate of the preserved continental crust in Greater Russia. Four major periods of zircon crystallization, 0.1-0.55, 0.95-1.3, 1.45-2.0 and 2.5-2.9 Ga, were resolved from a compilation of 1366 zircon U/Pb ages. The Archean zircons have δ18O values lying between 4.53‰ and 7.33‰, whereas Proterozoic and Phanerozoic zircons have a larger range of δ18O values in each of the recognized U/Pb time intervals with maximum δ18O values up to 12‰. We interpret the zircons with δ18O between 4.5‰ and 6.5‰ to have been derived from a magmatic precursor that contains little or no sedimentary component. The variable δ18O values of the zircons were used to constrain the 176Lu/177Hf ratios of the crustal source region of the zircons, which, in turn, were used to calculate Hf model ages (TDMV). The crustal incubation time, the time difference between primitive crust formation (dated by TDMV) and crustal melting (dated by zircon U/Pb age), varies between 300 to 1000 Myr for the majority of analyzed zircon grains, but can be up to 2500 Myr. The average TDMV Hf model age weighted by the fraction of zircons in the river load is 2.12 Ga, which is in reasonable agreement with the area-weighted average of 2.25 Ga. The TDMV Hf model age crustal growth curve for zircons with mantle-like δ18O values (4.5-6.5‰), weighted by area, shows that growth of the Great Russian continental crust started at 4.2 Ga, and that there are two principal periods of crustal growth, 3.6-3.3 Ga and 0.8-0.6 Ga, which are separated by an interval of low but more or less continuous growth. An alternative interpretation, in which the average 176Lu/177Hf ratio (0.0115) of the continental crust is used for the Paleoproterozoic zircons from the Lena River, lowers the average TDMV age of these grains by about 500 Myr and delays the onset of significant crustal growth to 3.5 Ga.The two principal growth periods recognized in Greater Russia differ from those identified from the Gondwana and the Mississippi river basin, which show peaks at 1.7-1.9 and 2.9-3.1 Ga (Hawkesworth and Kemp, 2006a) and 1.6-2.2 and 2.9-3.4 Ga (Wang et al., 2009), respectively. The older 3.6-3.3 Ga or 3.5-3.3 Ga peak for Greater Russia is slightly older than the older Gondwana-Mississippi peaks, whereas the younger 0.8-0.6 Ga peak is distinctly younger than the youngest peak in either Gondwana or the Mississippi river basin. This suggests that the two major peaks of crustal growth identified in Gondwana and the Mississippi river basin may not be global periods of enhanced continental growth and that the major periods of crustal growth may differ from continent to continent.  相似文献   

    19.
    The petrogenesis and geodynamic implications of the Cenozoic adakites in southern Tibet remain topics of debate. Here we report geochronological and geochemical data for host granites and mafic enclaves from Wolong in the eastern Gangdese Batholith, southern Tibet. Zircon LA-ICP-MS dating indicates that the Wolong host granites and enclaves were synchronously emplaced at ca. 38 Ma. The host granites are medium- to high-K calc-alkaline, metaluminous (A/CNK = 0.93-0.96), with high Al2O3 (15.47-17.68%), low MgO (0.67-1.18%), very low abundances of compatible elements (e.g., Cr = 3.87-8.36 ppm, Ni = 3.04-5.71 ppm), and high Sr/Y ratios (127-217), similar to those typical of adakite. The mafic enclaves (SiO2 = 51.08-56.29%) have 3.83-5.02% MgO and an Mg# of 48-50, with negative Eu anomalies (δEu = 0.59-0.79). The Wolong host granites and enclaves have similar Sr-Nd isotopic compositions (initial 87Sr/86Sr = 0.7053-0.7055, εNd(t) = − 2.7 to − 1.4), with varying zircon εHf(t) values, ranging from + 6.0 to + 12.6. A comprehensive study of the data available for adakitic rocks from the Gangdese Batholith indicates that the Wolong adakitic host granites were derived from partial melting of a thickened lower crust, while the parental magmas of the mafic enclaves were most likely derived from lithospheric mantle beneath southern Tibet. The Wolong granitoids are interpreted as the result of mixing between the thickened lower crust-derived melts and lithospheric mantle-derived mafic melts, which are likely the protracted magmatic response to the break-off of the Neo-Tethyan oceanic slab at about 50 Ma. Our results suggest that the crustal thickening in southern Tibet occurred prior to ~ 38 Ma, and support the general view that the India-Asia collision must have occurred before 40 Ma.  相似文献   

    20.
    There have been instances of premonitory variations in tilts, displacements, strains, telluric current, seismomagnetic effects, seismic velocities ( Vp, Vs) and their ratio (Vp/Vs), b-values, radon emission, etc. preceding large and moderate earthquakes, especially in areas near epicentres and along faults and other weak zones. Intensity and duration (T) of these premonitory quantities are very much dependent on magnitude (M) of the seismic event. Hence, these quantities may be utilised for prediction of an incoming seismic event well in advance of the actual earthquake. In the recent past, tilts, strain in deep underground rock and crustal displacements have been observed in the Koyna earthquake region over a decade covering pre- and postearthquake periods; and these observations confirm their reliability for qualitative as well as quantitative premonitory indices. Tilt began to change significantly one to two years before the Koyna earthquake of December 10, 1967, of magnitude 7.0. Sudden changes in ground tilt measured in a watertube tiltmeter accompanied an earthquake of magnitude 5.2 on October 17, 1973 and in other smaller earthquakes in the Koyna region, though premonitory changes in tilt preceding smaller earthquakes were not so much in evidence. However, changes in strains in deep underground rock were observed in smaller earthquakes of magnitude 4.0 and above. Furthermore, as a very large number of earthquakes (M = 1–7.0) were recorded in the extensive seismic net in the Koyna earthquake region during 1963–1975, precise b-value variations as computed from the above data, could reveal indirectly the state of crustal (tectonic) strain variations in the earthquake focal region and consequently act as a powerful premonitory index, especially for the significant Koyna earthquakes of December 10, 1967 (M = 7.0) and October 17, 1973 (M = 5.2). The widespread geodetic and magnetic levelling observations covering the pre- and postearthquake periods indicate significant vertical and horizontal crustal displacements, possibly accompanied by large-scale migration of underground magma during the large seismic event of December 10, 1967 in the Koyna region (M = 7.0). Duration (T) of premonitory changes in tilt, strains, etc., is generally governed by the equation of the type logT = A + BM (A and B are statistically determined coefficients). Similar other instances of premonitory evidences are also observed in micro-earthquakes (M = − 1 to 2) due to activation of a fault caused by nearby reservoir water-level fluctuations.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号