首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the compelling evidence for orthorhombic perovskite ABO3 structures in a major part of the earth's mantle, the question of whether any of these are ferroelectric (FE) or antiferroelectric should be of supreme importance. To answer this question the authors have conducted dielectric property studies at pressures up to 5.5 GPa on single crystals and polycrystalline aggregates of BaTiO3 as well as other FE materials representing FE polarization mechanisms. The results indicate that: (1) h.p.-induced FE phases are indeed likely to play an important part in the earth's mantle; and (2) existing FE state, occuring as elastic and dielectric inhomogeneities, can persist to much higher pressures than expected on the basis of the pressure dependence of isolated and unclamped FE crystals. It is suggested that the presence of FE states in the earth's mantle may be responsible for some of its anomalous elastic and dielectric features, especially its attenuating properties. It is conjectured that effects of FE states on properties of the Jovian planets might even be more prominant, especially those involving dielectric constant and polarization.  相似文献   

2.
Birch's diagram plotting the hydrodynamic sound velocity versus density for several metals is used in many of his publications and a number of textbooks to demonstrate the chemical changes from the earth's mantle to the core. This diagram is thoroughly discussed in this paper on the basis of theory and the periodic property for the density of elements. Birch's conclusion that “even without information concerning chemical abundances, these relations indicate that the mantle is composed principally of light elements and the core of elements of the iron group” is not convincing in the view of the present study. A more detailed velocity-density plot for all the solid elements having their densities in the range 1.5 – 8 g/cm3 excludes any elements lighter (of lower atomic weight or number) than vanadium as likely candidates for core values.  相似文献   

3.
Remnants of Early Archaean rocks (>FX3000 m.y. old) are reported from most continents. A critical review of the radiometric data shows that few of these are well authenticated and most are very limited in extent. The oldest are predominantly plutonic gneisses of tonalitic-to-granitic composition (e.g., the basement gneisses of West Greenland, Labrador, Rhodesia and South Africa). In all cases there are inclusions of meta-volcanic and sedimentary rocks with greenstone belt affinities which probably represent crust into which the igneous parents of the gneisses were intruded.The trace element chemistry of these very old rocks is reviewed in an attempt to establish the mechanism of formation of early crust and place constraints on the chemical evolution of the earth's mantle. “Mantle-type” Sr isotope compositions show that the sialic members of both early gneisses and greenstone belts were not derived from much older crustal differentiates, either at 3800 or at 2800 m.y. ago. However, trace element ratios such as K/Rb and Sr/Ba, and rare earth element abundances, are not consistent with direct derivation of the plutonic suite from the upper mantle and also rule out a common parentage for the tonalites and granites. An origin by partial melting of metamorphosed juvenile crust with a composition range equivalent to that represented by the greenstone belts is preferred. Tonalites resulted from high-pressure melting of mafic garnet-amphibolite and at least some of the granites from low-pressure melting of more felsic (possibly even sedimentary) material.The trace element chemistry of the greenstone belt volcanics is thought to characterize the composition of early mantle melts, although the best preserved and best documented cases are about 500–1000 m.y. younger than the oldest known gneisses. The dominant type is tholeiite with low incompatible element contents and light-depleted or essentially flat rare earth patterns, features even more marked in the ultramafic komatiites which represent large degrees of melting. More evolved calc-alkaline rocks with relative incompatible and light rare earth element enrichment are also important. With the exception of the ultramafic lavas, all these types can be matched by the chemistry of present-day oceanic volcanism.It is concluded that the range of trace element variations in the earth's mantle was comparable in early Archaean times to that at the present. This is supported by mass balance calculations for the lithophile elements which have been preferentially extracted into the crust. Thus the isotope and trace element evidence of the oldest rocks argues against primary differentiation of the crust either during accretion of the earth or during its first 500 m.y. as a solid body. Crust formation has probably occurred continuously, although worldwide evidence for magmatism at around 2800 m.y. ago probably marks a particularly active period.  相似文献   

4.
In several xenolithic ultramafic rocks from the Kola Peninsula, including a magnetic separate, abnormally high40Ar/39Ar ratios persisted at low and high temperatures. The lowest40Ar/39Ar ratio was consistently observed at intermediate temperatures (900–1100°C), indicating an apparent age of 2.8–3.1 b.y.; however, this may not indicate the formation age.The quantity of excess40Ar was estimated at each temperature fraction, adopting ages inferred from published Rb-Sr ages or the minimum40Ar/39Ar age. Excess40Ar is abundantly trapped both in mineral lattices and nonretentive trapping sites, but the trapping sites are different from those of in-situ radiogenic40Ar. The high temperature component of excess40Ar is considered to represent Ar dissolved during mineral formation in the upper mantle or the lower crust.A correlation between the amount of high temperature excess40Ar and36Ar exists for some samples. The40Arexcess/36Ar ratios of the rocks of probable upper mantle or lower crust origin vary from about 10 000 to 35 000, which may suggest large fluctuations of this ratio in the deep interior of the earth. The high value implies that most36Ar was already degassed from the earth's interior at least 2 or 3 b.y. ago.  相似文献   

5.
Using terrestrial osmium-enriched samples of known ages, we have shown that187Os/186Os varies with time in result of the187Re β? radioactivity. Such a variation in the earth's mantle can be fitted by a straight line corresponding to187Re/186Os = 3.15 for the mantle, comparable to C1 carbonaceous chondrites. Using this result and the Re and Os contents of various rocks, several theoretical considerations and predictions can be deduced for the chemical evolution of the earth, such as a method for distinguishing between different processes of development of the continental crust. The special result of187Os/186Os from Bushveld is discussed with respect to the possible existence of an “enriched” subcontinental mantle.  相似文献   

6.
The electrical conductivity of liquid (Fe90Ni10)3S2 saturated with 2.6 weight percent carbon averages 2.7·105 mho/m at 1000°C and zero pressure. This may imply a slightly lower electrical conductivity for the earth's core than that obtained by extrapolating the properties of pure liquid iron and solid iron alloys to core pressures and temperatures. Although a sulphur-rich core would have a smaller proportion of sulphur, the effect of lowering the sulphur content of the FeNiSC liquid to about 15 weight percent would be unlikely to increase the conductivity above 5·105 mho/m.  相似文献   

7.
Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO2 is about 3.8‰ enriched in 13C, relative to dissolved carbon. Despite this fractionation, δ13CPDB values for all spreading ridge glasses lie within the range ?5.6 and ?7.5, and the δ13CPDB of mantle carbon likely lies between ?5 and ?7. The carbon abundances and δ13CPDB values of Kilauea East Rift glasses apparently are influenced by the differentiation and movement of magma within that Hawaiian volcano. Using 3He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 × 1013 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory.  相似文献   

8.
Pollack and Chapman have shown that the surface heat flow in continental regions is dependent not only on the earth's crust below the observation site, but also on the upper mantle there. Therefore heat flow can be used to investigate the role of the thermal conditions in the creation of the electrically conductive zones in both the crust and mantle.Empirical exponential formulas describe the depth to the conductivity increase in the crust corresponding to granitization, the depth to the conductive zone at the top of the asthenosphere (SLVZ), as a function of heat flow. Comparing the latter with temperature estimations in the asthenosphere it is concluded that partial melting of the upper mantle occurs only where q ? 42m W m?2 ? 1HFU.The depth to the conductivity increase corresponding to the mineralogic phase transition in the upper mantle is increased with high temperatures. Such a conductive zone shows that the maximum temperature difference between stable platform areas and active zones is about 1000°C.  相似文献   

9.
Two new δ18O time scales have been developed for the Brunhes Epoch using equatorial Pacific core V28-238. The first is based on a constant accumulation rate of aluminum, an assumption which has been shown to be acceptable for the last 360,000 years of the record by comparison with 230Th ages determined via the continuous strip-sample technique. The aluminum scale yields an age of 138,000 years for termination II and 693,000 years for the Brunhes-Matuyama reversal. Spectral and cross spectral analysis of the δ18O records of V28-238 and a detailed composite Indian Ocean record, using the aluminum time scale as well as two earlier time scales, indicates that the Pleistocene climate has been forced by periodic fluctuations of the earth's obliquity and precession. Based on this result, the second new time scale (TWEAQ) has been derived by tuning the δ18O record of V28-238 to the record of the earth's obliquity. TWEAQ yields an age of 127,000 years for termination II and 728,000 years for the Brunhes-Matuyama reversal. Spectral analysis of the δ18O record dated by TWEAQ indicates that 30% of the variance of the ice volume record can be ascribed to linear forcing by the earth's orbital parameters, but the trend of the data is consistent with a stochastic model.  相似文献   

10.
Uranium is enriched in the border zones of magmatic bodies and the enrichment is believed to be caused by the migration of hydrous solutions which carry that element along intergranular paths towards the contact zone with the wall rock. We propose that the contact zone is a geochemical barrier at which the uranium, present in the solution, would be deposited if it were not for diffusion away from the increased concentration at the margins.The two particle flows, the one caused by migration and the other caused by diffusion, can be described by a differential equation, whose solution is the concentration of uranium as a function of time, diffusion coefficient and velocity of migration.The distribution of uranium in two intrusive bodies, the Mont Blanc granite (Swiss Alps) and a pluton in the Dshetui-Oguz massif (U.S.S.R.), gives the following parameters: duration of process 0.3–1 m.y., diffusion coefficient 4 × 10?4 to 5 × 10?4 cm2/s, and velocity of migration 0.1–0.3 cm/year.The combined process of migration and diffusion is assumed to be an important mechanism for controlling the distribution of uranium throughout the earth's crust and for its change in geological time.  相似文献   

11.
A practical scheme by which one can construct equations of state of high-pressure solid phases that cannot be determined experimentally given the present state of technology, is proposed and illustrated with three examples for its possible application to the study of elasticity and the constitution of the earth's mantle.  相似文献   

12.
A new analysis of the isotope systematics of sulphide common leads can be made on the basis of examining the deriations of the data from a simple single-stage evolution. Δt, the age discrepancy between the single-stage lead model age and the geologic age, increases systematically from 3.8 Ga to the present. This trend appears to reflect an increase in the μ of the primitive mantle due to incorporation of a large portion of the earth's lead into the core, early in the earth's evolution. Leads associated with shale-hosted lead-zinc deposits show a rapid increase in Δt beginning at 2.5 to 2.0 Ga. This deviation of shale-hosted leads from the general trend is interpreted as a response to concentration of uranium in organic-rich shales subsequent to the evolution of an oxidizing atmosphere. Comparison of common leads in alkali feldspars with the volcanogenic sulphide data suggests that they have a similar evolution of Δt with time. Numerical simulations reveal that even substantial increases in real μ over the last 2.0 Ga are not reflected in significant increases in the single-stage model μs.  相似文献   

13.
Seven deep-sea sediment cores recovered in the central equatorial Pacific collectively span a magneto- and biostratigraphically determined age interval ranging from about 0.1 to 21 m.y. B.P. Measured values of paleomagnetic inclination and their systematic variation with depth in these cores denote relative motion between the central Pacific lithosphere and the magnetic field of the earth. Assuming that the position of the earth's dipole field remained essentially parallel to the present spin axis during the interval, the data provide evidence of a marked decrease in the northward rate of plate motion from about 11 cm/yr to about 6 cm/yr at approximately 12 m.y. B.P. This date of change of motion as well as the northward direction and overall average rate of about 8 cm/yr throughout the last 21 m.y., agree reasonably well with results of other studies of the tectonic history of the Pacific plate and ridge system. More significantly, however, these preliminary results demonstrate the usefulness of the paleomagnetic record in deep-sea sediment cores spanning sufficiently long intervals of time as an aid in reconstructing plate motions.  相似文献   

14.
Benioff's suggestion that the 58-min period sinusoidal oscillation found on a Pasadena strain seismogram after the Kamchatka earthquake of November 4, 1952 may represent the earth's gravest normal mode is re-examined in terms of a slow large-scale post-seismic deformation. The mechanism and the seismic moment of the main shock of the Kamchatka earthquake are determined by using the amplitude and the initial phase of G2 and R2 recorded at Pasadena and R6 recorded at Palisades. By constraining the dip angle and the strike of the fault at 30° (towards NW) and N34°E, respectively, on the basis of the geometry of the Benioff zone, the slip angle is determined as 110° which represents 74% thrust and 26% right-lateral faulting. The direction of the slip angle agrees with the slip direction of the Pacific plate. A seismic moment of 3.5 · 1029 dyn cm is obtained. If a fault area of 650 · 200 km2 is assumed, an average dislocation of 5 m is obtained. Spectral analyses of the Pasadena strain records show that the 58-min sinusoidal oscillation in fact consists of a spectral peak near 54 min which is very close to the 0S2 mode and other high-frequency peaks which can be correlated to the earth's normal modes. The records from two independent recording galvanometers correlate with each other very well, indicating that the recorded oscillation represents a real strain and not instrumental noise. The phase relation between the NS and EW components is consistent with the strain field associated with 0S2 mode. Although these results provide positive evidence for a slow post-seismic deformation, the cause of the abrupt termination of the oscillation and the excitation mechanism remain unresolved.  相似文献   

15.
Numerical experiments have been carried out on two-dimensional thermal convection, in a Boussinesq fluid with infinite Prandtl number, at high Rayleigh numbers. With stress free boundary conditions and fixed heat flux on upper and lower boundaries, convection cells develop with aspect ratios (width/depth) λ? 5, if heat is supplied either entirely from within or entirely from below the fluid layer. The preferred aspect ratio is affected by the lateral boundary conditions. If the temperature, rather than the heat flux, is fixed on the upper boundary the cells haveλ ≈ 1. At Rayleigh numbers of 2.4 × 105 and greater, small sinking sheets are superimposed on the large aspect ratio cells, though they do not disrupt the circulation. Similar two-scale flows have been proposed for convection in the earth's mantle. The existence of two scales of flow in two-dimensional numerical experiments when the viscosity is constant will allow a variety of geophysically important effects to be investigated.  相似文献   

16.
Electromagnetic fluctuations in the ocean have external sources above (ionospheric) and below (secular variation of the earth's magnetic field), and internal, purely oceanic sources associated with interaction between water velocity fields and the earth's field. Energy diagrams indicative of the electromagnetic activity in the sea are presented. From the latter, estimates of the resolution required in electromagnetic research at sea can be made. Absolute minima of 1 γ and 0.05 μV/m are necessary for magnetic and electric fields, respectively. Because the ocean shields overhead sources at frequencies above a few hundred c/h and because motional fields have weak signatures, a resolution at least 10 times higher would considerably enhance the scope of such research.The response of electric field instruments to motionally induced fields depends upon whether they are fixed or drifting, but both types respond similarly to fields of external origin.The most stringent limitation to electric field sampling in the sea is the difficulty in achieving low-noise electrical continuity between measuring circuits and sea water. Even the best matched silver—silver chloride electrodes introduce variable electrochemical signals hard to maintain below a millivolt. These mask very low frequency signals unless sophisticated techniques such as electrode switching are used.  相似文献   

17.
The electrical conductivity of a single crystal of San Carlos olivine (Fo92, 0.16 wt.% Fe2O3) has been measured as a function of temperature and oxygen fugacity (fO2). After heating to 1338°C at fO2 = 10?12 atm., the conductivity at 950°C was 10?5 (ohm-m)?1, almost 3 orders of magnitude less than that measured in air. This decrease is due to the reduction of Fe3+ to Fe2+. Further heating to 1500°C at fO2 = 10?14 atm., decreased the electrical conductivity at 950°C to 10?6 (ohm-m)?1. When recovered at room temperature, the speciment had Fo96 composition and contained small, opaque blebs distributed throughout the crystal. Derivations of temperature profiles for the earth's mantle from conductivity-depth models must take account of the important role played by iron oxidation state in the electrical conductivity of olivine.  相似文献   

18.
Naturally disaggregated specularite-bearing sandstone from the Triassic Moenkopi Formation, artificially deposited in controlled magnetic fields of ~5 × 10?2 mT, acquires a stable remanent magnetization that has systematic errors in inclination and declination. Inclinations about 12° shallower than the applied fields are produced by deposition on a horizontal surface in still water. Deposition from flowing water on a surface inclined 6–10° results in inclination errors of as much as 20°. Water flowing obliquely to the applied field results in declination errors of about 10°, with declinations systematically rotated toward the upstream direction of current flow. These experimental results indicate that specularite-bearing sediment responds to the earth's field in a manner similar to magnetite-bearing sediment, and support observational evidence for a primary magnetization of depositional origin in specularite in red beds of the Moenkopi Formation.  相似文献   

19.
Summary The problem of expressing analytically the magnetic torque, acting on the electrically conducting part of the Earth's mantle, is treated as a function of the system of convection on the surface of the core. The changes of velocities in the system of convection are estimated for decadic changes of the Earth's rotation and for the perturbation of the Earth's rotation in 1897. As regards the decadic changes of the Earth's rotation a change of velocity in the system of convection at the surface of the core of the order of 10–4 m/s corresponds, and as regards the perturbation of the Earth's rotation in 1897 (10–3 s/year) a change of velocity of 10–3 m/s reduced to the whole surface of the core corresponds, and 10–2 m/s corresponds for the region of the focus of the world geomagnetic anomaly (dimension of this region is 106 m).  相似文献   

20.
Marine magnetic anomalies 33 and 34, corresponding to the first two reversals following the long normal polarity interval in the Cretaceous, are anomalously skewed by 30° to 40° throughout the North and South Atlantic. This phenomenon is most likely related to some aspect of the dipole paleomagnetic field. Specifically the magnetic field at the time of anomalies 33 and 34 appears to be characterized by the following: the dipole field gradually decreases in average intensity between reversals and/or there is an increase in the frequency or duration of undetected short polarity events toward the end of long periods (>106 years) of predominantly one polarity. Such long-period trends in the field are in conflict with the popular model for the generation of the earth's magnetic field that treats reversals as a Poisson process and assumes that the core has no memory greater than about 104 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号