首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A fluxgate digital magnetometer is used to study the variation of magnitude of H component during geomagnetic storm events of April, July and November 2004 at southern subauroral localized region at “MAITRI” (geom. lat. 62°S, long. 52.8°E). We also study the effect of vertical component of interplanetary magnetic field (IMF) on the variation of the magnitude of H component during storm time of April, July and November 2004. Results show that before sudden storm commencement (SSC) time magnitude of H component and IMF show smooth variation but after SSC of first storm of 22 July 2004, the magnitude of the H component shows fluctuations and at 09:00 UT it increases, but during second storm of 24 July 2004, the magnitude of H component indicates large fluctuations and it increases rapidly at 04:00 UT.  相似文献   

2.
The polar cap magnetic activity MAGPC-index characterizing the intensity of disturbances affected by the IMF vertical component was derived from the antarctic station Vostok data in accordance to method of Troshichev et al. (1979a). The paper examines the statistical relationship between the 15-min values of this index and interplanetary quantities such as IMF components, solar wind velocity, interplanetary electric field and others. The results of the computation show a good correlation of MAGPC indices with interplanetary quantities including the IMF southward component. The best correlation is obtained for the merging electric field. The conclusion is : the MAGPC index derived from the background magnetic data may be used for monitoring of the convection electric field in the polar cap.  相似文献   

3.
The characteristic magnetic signatures of magnetospheric substorms both on the ground and in space have been determined from the analysis of ~1800 substorm events. The timing and properties of these events were objectively determined according to explicit mathematical criteria by a computer pattern-recognition program. This program processed daily magnetograms from a mid-latitude network of geomagnetic observatories.Ground data analyzed, using onsets determined in this manner, included the AE indices and individual magnetograms at different local times in the auroral zone and at midlatitudes. Superposed epoch averages of these data confirm the local time magnetic substorm signatures, determined in earlier studies of fewer events, and demonstrate the validity of the computerized onset determination procedure.Superposed epoch averages of the interplanetary magnetic field (IMF) associated with the onsets demonstrates both a distinct southward component prior to the onsets and a dependence of the substorm amplitude on the integrated preceding southward IMF flux. Superposed epoch averages of the tail lobe magnetic field magnitude and vector components demonstrates field magnitude changes and rotations in association with the substorm onsets. These lobe field changes are consistent with the growth-phase model of substorm activity and with variations in the magnetopause flaring angle.  相似文献   

4.
In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ∼500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ∼-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days. Published in Astrofizika, Vol. 51, No. 2, pp. 255–265 (May 2008).  相似文献   

5.
Vieira  L.E.A.  Gonzalez  W.D.  Echer  E.  Guarnieri  F.L.  Prestes  A.  Gonzalez  A.L.C.  Santos  J.C.  Dal Lago  A.  Schuch  N.J. 《Solar physics》2003,217(2):383-394
In this work we present a methodology to estimate the geomagnetic symmetric index (Sym) based on the wavelet analysis of the time series of the H component of the geomagnetic field measured at mid-latitude stations localized at Kakioka (KAK), Honolulu (HON), Hermanus (HER) and San Juan (SJG). A case study of the intense geomagnetic storm of 17–22 February 1999, caused by intense southward magnetic fields just behind an interplanetary shock driven by a magnetic cloud, is shown as an example of the procedure of derivation of the symmetric index and the capabilities of this analysis to improve the study of the coupling of the solar wind and the Earth's magnetosphere. Other examples are shown in order to demonstrate the applicability of the methodology to different magnetospheric conditions. It is shown that the long period variations of the symmetric index are linearly correlated to variations at the same periods of the H component of the geomagnetic field and that the contribution of short period variations to the symmetric index are biased by localized current systems such as the partial ring current and the field aligned currents.  相似文献   

6.
Coronal Mass Ejections (CMEs) are important phenomena in coronal dynamics causing interplanetary signatures (ICMEs). They eject large amounts of mass and magnetic fields into the heliosphere, causing major geomagnetic storms and interplanetary shocks. Geomagnetic storms are often characterized by abrupt increases in the northward component of the earth’s field, called sudden commencements (SSC) followed by large decreases of the magnetic field and slow recovery to normal values. The SSCs are well correlated with IP shocks. Here a case study of 10–15 February 2000 and also the statistical study of CME events observed by IPS array, Rajkot, during the years 2000 to 2003 and Radio Astronomy Center, Ooty are described. The geomagnetic storm index Dst, which is a measure of geo-effectiveness, is shown to be well correlated with normalized scintillation index ‘g’, derived from Ooty Radio Telescope (ORT) observations.  相似文献   

7.
The problem of solar wind-magnetosphere coupling is investigated for intense geomagnetic storms (Dst < -100nT) that occurred during solar cycle 23. For this purpose interplanetary plasma and field data during some intensely geo-effective transient solar/interplanetary disturbances have been analysed. A geomagnetic index that represents the intensity of planetary magnetic activity at subauroral latitude and the other that measures the ring current magnetic field, together with solar plasma and field parameters (V, B, Bz, σB, N, and T) and their various derivatives (BV,-BVz, BV2, -BzV2, B2V, Bz2V, NV2) have been analysed in an attempt to study mechanism and the cause of geo-effectiveness of interplanetary manifestations of transient solar events. Several functions of solar wind plasma and field parameters are tested for their ability to predict the magnitude of geomagnetic storm.  相似文献   

8.
This paper presents the effect of geomagnetic storm on geomagnetic field components at Southern (Maitri) and Northern (Kiruna) Hemispheres. The Indian Antarctic Station Maitri is located at geom. long. 66.03° S; 53.21° E whereas Kiruna is located at geom. long. 67.52° N; 23.38° E. We have studied all the geomagnetic storms that occurred during winter season of the year 2004–2005. We observed that at Southern Hemisphere the variation is large as compared to the Northern Hemisphere. Geomagnetic field components vary when the interplanetary magnetic field is oriented in southward direction. Geomagnetic field components vary in the main phase of the ring current. Due to southward orientation of vertical component of IMF reconnection takes place all across the dayside that transports plasma and magnetic flux which create the geomagnetic field variation.  相似文献   

9.
We studied the cosmic ray intensity variation due to interplanetary magnetic clouds during an unusual class of low amplitude anisotropic wave train events. The low amplitude anisotropic wave train events in cosmic ray intensity have been identified using the data of ground based Deep River neutron monitor and studied during the period 1981–1994. Even though the occurrence of low amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds, but the possibility of occurrence of these events cannot be overlooked during the periods of the interplanetary magnetic cloud events. It is observed that the solar wind velocity remains higher (> 300) than normal and the interplanetary magnetic field B remains lower than normal on the onset of the interplanetary magnetic cloud during the passage of low amplitude wave trains. It is also noted that the proton density remains significantly low during high solar wind velocity, which is expected. The north south component of interplanetary magnetic field Bz turns southward to one day before the arrival of cloud and remains in the southward direction after the arrival of a cloud. During these events the cosmic ray intensity is found to increase with increase of solar wind velocity. The superposed epoch analysis of cosmic ray intensity for these events during the onset of interplanetary magnetic clouds reveals that the decrease in cosmic ray intensity starts not at the onset of the cloud but after a few days. The cosmic ray intensity increases on arrival of the magnetic cloud and decreases gradually after the passage of the magnetic cloud.  相似文献   

10.
This paper presents some features of the ionospheric response observed in equatorial and mid-latitudes region to two strong geomagnetic storms, occurring during Oct. 19–23, 2001 and May 13–17, 2005 and to understand the phenomena of pre-storm that lead to very intense geomagnetic storms. The result point to the fact that pre-storm phenomena that leads to intense ionospheric storm are; large southward turning of interplanetary magnetic field Bz, high electric field, increase in flow speed stream, increase in proton number density, high pressure ram and high plasma beta. The magnitude of Bz turning into southward direction from northward highly depends upon the severity of the storm and the variation in F2 layer parameter at the time of geomagnetic storm are strongly dependent upon the storm intensity. A detailed analysis of the responses of the ionosphere shows that during the storm periods, foF2 values depleted simultaneously both in the equatorial and mid latitude. Observation also shows that low to moderate variations in ionospheric F2 at the pre-storm period may signal the upcoming of large ionospheric disturbances at the main phase. The ionospheric F2response for low and mid latitude does not show any significant differences during the storm main phase and the pre-storm period. The ionospheric response during the pre-storm period is thought very puzzling. The period is observed to be depleted throughout with low-moderate effect across all the stations in the low and mid latitude.  相似文献   

11.
Geomagnetic disturbances are the results of interplanetary causes such as high-speed streamers (HSSs), interplanetary coronal mass ejections (ICMEs), corotating interaction regions (CIRs), and magnetic clouds. During different forms of geomagnetic disturbances, we observed changes in the count rate at neutron monitors that are kept at various locations. We studied the count rates measured by neutron monitors at four stations at various latitudes during different categories of geomagnetic events and compared them. We analysed five events: a geomagnetically quiet event, a non-storm high-intensity long-duration continuous AE activity (HILDCAA) event, a storm-preceded HILDCAA event, a geomagnetic substorm event, and a geomagnetic moderate storm event. We based our analysis on geomagnetic indices, solar wind parameters, and interplanetary magnetic field (IMF) parameters. We found that the strength of the modulation was least during the quiet event and highest during the storm-preceded HILDCAA. By analysing the cause of these geomagnetic disturbances, we related each decrease in the neutron monitor data with the corresponding solar cause. For the ICME-driven storm, we observed a decrease in neutron monitor data ranging from 6% to 12% in all stations. On the other hand, we observed a decrease ranging from 2% to 5% for the HSS-driven storm. For the non-storm HILDCAA, we observed a decrease in neutron monitor data of about 1% to 1.5%. For the quiet event, the neutron monitor data fluctuated such that there was no overall decrease in all stations.  相似文献   

12.
The equatorward boundary of auroral activity during 1973–1974 has been derived from DMSP photographs and their associated auroral analysis records. On a time scale of days, the equatorward position of the northern auroral oval varied in phase with the average level of geomagnetic activity. In general, this variation was associated with the occurrence of solar flares and coronal holes. On a time scale of hours, the equatorward position of the oval correlated with the AE index of substorm activity and with the strength of the southward component of the interplanetary magnetic field.  相似文献   

13.
The Dst (Disturbance storm time) index is a measurement of earth geomagnetic activity and is widely used to characterize the geomagnetic storm. It is calculated on the basis of the average value of the horizontal component of the earth’s magnetic field at four observatories, namely, Hermanus (33.3° south, 80.3° in magnetic dipole latitude and longitude), Kakioka (26.0° north, 206.0°), Honolulu (21.0° north, 266.4°), and San Juan (29.9° north, 3.2°) and is expressed in nano-Teslas. The strength of the low-latitude surface magnetic field is inversely proportional to the energy content of the ring current around earth caused by solar protons and electrons, which increases during geomagnetic storms. Thus a negative Dst index value indicates that the earth’s magnetic field is weakened which is specifically the case during solar storms. Predicting Dst index is a difficult task due to its structural complexity involving a variety of underlying plasma mechanism. For characterizing and forecasting this complex time series, a formal model must be established to identify the specific pattern of the series. Persistent demand for a fool proof model of Geomagnetic Dst index prompted us to investigate the Dst Time Series mechanism with a very recent technique called Visibility Algorithm and it is observed that the Dst time series follows the same model that of a Stochastic Fractional Brownian motion having long range correlation.  相似文献   

14.
Response of low latitude ionosphere to the geomagnetic storm of May 30, 2005 in the Indian longitude sector has been investigated by using the GPS data recorded at three stations namely, Udaipur, Hyderabad and Bengaluru. The event is noteworthy due to the fact that the Z component of interplanetary magnetic field (IMF Bz) remained southward for about 10 hours, coincident with the local day time for the Indian longitude sector, along with significantly higher values of AE and ASY-H indices. However, we neither found any evidence for the presence of long lasting storm time electric fields nor could we infer episodes of eastward-westward penetration of electric fields under steady southward IMF Bz and unsteady ring current conditions. On the storm day, the maximum enhancement in the total electron content has been found to be about 60%. The ionosonde observations also showed increased critical frequency (foF2) and the height (hPF2) of the F layer. The foF2 was enhanced by ∼60% which is consistent with the enhancement in total electron content. The slow rise and long duration enhancement of hPF2 and foF2 have been attributed to the upwelling by the meridional neutral winds, caused by continuous energy inputs at higher latitudes. The poleward expansion of the equatorial ionization anomaly has also been observed on May 30. On May 31, the following day of the storm, significantly suppressed anomaly with near absence of its northern crest in the Indian longitude sector, revealed the effect of storm induced disturbance dynamo electric fields.  相似文献   

15.
The distance to the dayside magnetopause is statistically analyzed in order to detect the possible dependence of the dayside magnetic flux on the polarity of the interplanetary magnetic field. The effect of changing solar wind pressure is eliminated by normalizing the observed magnetopause distances by the simultaneous solar wind pressure data. It is confirmed that the normalized size of the dayside magnetosphere at the time of southward interplanetary magnetic field is smaller than that at the time of northward interplanetary magnetic field. The difference in the magnetopause position between the two interplanetary field polarity conditions ranges from 0 to 2RE. Statistics of the relation between the magnetopause distance and the magnetic field intensity just inside the magnetopause testifies that the difference in the magnetopause position is not due to a difference in the magnetosheath plasma pressure. The effect of the southward interplanetary magnetic field is seen for all longitudes and latitudes investigated (|λGM|? 45°, |φSM|? 90°). These results strongly suggest that a part of the dayside magnetic flux is removed from the dayside at the time of southward interplanetary magnetic field.  相似文献   

16.
Effects of solar wind parameters on the development of substorms during the events of southward interplanetary magnetic field (IMF) lasting more than one hour were studied. Analysis on 175 events with average magnitude of the southward component of IMF larger than l·5γ as observed in July–December 1965 lead to the following results: (1) The total auroral electrojet (AEJ) current associated with the southward IMF event is approximately proportional to the time integral of the magnitude of the southward component. (2) The azimuthal component of IMF also affects the AEJ development. AEJ about twice as intense were observed when IMF was directed duskward than when IMF was directed dawnward. (3) AEJ intensity is strongly affected by the solar wind velocity during the southward IMF events, the intensity being approximately proportional to the square of the velocity. (4) No indication was found that the angle between the Sun-Earth line and the Earth's dipole axis plays any role on the development of substorms if effects of the solar wind parameters as described above are eliminated.  相似文献   

17.
The previously established connection between the occurence of AQDs (“abnormal quiet days” when the phase of the solar diurnal variation of horizontal magnetic field, Sq(H), at a mid-latitude northern hemisphere station is anomalous) at sunspot minimum and the magnitude of the following sunspot maximum is examined in the light of our recent improved understanding of the nature and cause of AQDs. A small contribution to the relationship is found to arise from variations from cycle to cycle in the additional northward field which is characteristic of AQDs and leads to a reduced Sq(H) amplitude at stations poleward of the Sq focus. However, the main factor which determines the connection is a variation from one sunspot minimum to another of the amplitude of the small southward bay-like field perturbations which constitute the AQD events, and evidence is presented which suggests that this parameter may be quantitatively related to the extent of southward swing of the Bz component of the interplanetary magnetic field which determines the energy transfer from the solar wind into the magnetospheric tail. It thus appears that the magnitude of southward swing in Bz might be another solar parameter which anticipates the size of a forthcoming sunspot cycle during its build-up over the declining phase of the previous cycle and at the minimum.  相似文献   

18.
Relationships between the North-South asymmetry of the geomagnetic activity associated with the sector polarity of the interplanetary magnetic field (IMF) and various solar wind parameters are examined using the subauroral zone magnetic activity indices an and as. It is found that: (1) the effect of the sector polarity of IMF on the North-South asymmetry is due to the By-component of IMF, not to the Bx-component; (2) the asymmetry appears only when IMF is directed southward, being augmented by the increment of the magnitudes of the southward component and the solar wind velocity.  相似文献   

19.
The dependence of geomagnetic activity during a recurrent magnetic storm on the solar-wind magnetic field and plasma parameters has been studied. According to variations of solar-wind magnetic field strength B, a recurrent magnetic storm is divided into two stages: the first proceeding during the peak of B, and the second proceeding after the return of B to quiet level. The Kp index vs solar-wind parameters scattering diagrams for stages I and II differ significantly. In particular, the random scattering for stage I is much larger than for stage II. It was found that for stage I the Kp index correlates with B, with the sign and value of northsouth field component Bz and with the magnitude ΔB of field fluctuations, the situation being similar to that during sporadic magnetic storms, though the scale of the event is smaller. For stage II, the Kp index does not correlate with B, but strongly correlates with ΔB and weaker—with Bz. So geomagnetic activity at stage II is supported mainly by solar-wind magnetic field fluctuations. The dependence of the Kp index on plasma parameters (concentration of protons n, bulk velocity v and temperature T) is weak for both stages.  相似文献   

20.
The effects of the orientation of the interplanetary magnetic field (IMF) on the structure of the distant magnetotail are studied by superposing a uniform magnetic field on a magnetospheric model. It is shown that a southward component of the IMF alone can reduce the closed field region in the magnetotail, while a northward turning of the IMF can produce a new closed field region. It is suggested that these two effects can explain thinning and thickening, respectively, of the plasma sheet during magnetospheric substorms without invoking internal instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号