首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
Radiolarian assemblages were examined in two Quaternary cores (V24-58; RC11-209) from the tropical Padific Ocean. Eight radiolarian datum levels were identified in each core, and “absolute” ages were estimated for these levels by interpolation between paleomagnetic reversal boundaries previously established for the cores. The tropical radiolarian zonation for the Quaternary proposed by Nigrini (1971) appears to be most useful in terms of the reliability and ease of identification of the proposed zonal boundaries. Our estimated ages for the base of each of these zones are: Buccinosphaera invaginata Zone (Zone 1): 210,000 yr BP; Collosphaera tuberosa Zone (Zone 2): 370,000 yr BP; Amphirhopalum ypsilon Zone (Zone 3): 940,000 yr BP; Anthocyrtidium angulare Zone (Zone 4): 1,700,000 yr BP.A comparison of our age estimates with those of Quaternary radiolarian datum levels in cores from other regions suggests that significant diachroneity on a scale of up to several hundred thousand years may exist for some (and perhaps all) of these “events.” Diachroneity is most readily studied and documented in late Neogene cores where the absolute ages of the magnetic polarity reversals are known most precisely, but may also exist (though difficult to recolve) in earlier Cenozoic sediments. The existence of such diachroneity, if demonstrated through further studies, would have significant implications for our understanding of evolutionary patterns of planktonic communities in different biogeographic regions.  相似文献   

2.
Objective quantitative estimates of paleo-oceanographic conditions in the North Pacific can be made by analyses of radiolarian assemblages. With appropriate computation, transfer functions developed in a study of surface sediments can be used to estimate oceanographic conditions in cores containing late Pleistocene radiolarian faunas. Analysis of core V21-173 indicates that conditions as warm as the Holocene were rare during the past 800,000 yr, and that the region experienced marked near-surface temperature drops correlative with Caribbean and continental records for the past 250,000 yr. A major world-wide warm event at about 400,000 yr is also indicated.  相似文献   

3.
The distribution of radiolarian assemblages identified by Q-mode factor analysis of radiolarian microfossils in surface sediments from low latitudes in the Pacific Ocean reflects their associations with surface water masses. Downcore fluctuations of these radiolarian assemblages at two sites, RC10-65 and V19–29, indicate changes in circulation in the eastern equatorial Pacific during the past 500,000 yr. Surface-water radiolarian assemblages characteristic of zonal flow have dominated siliceous sedimentation in the eastern equatorial Pacific, except during times of intense upwelling which can occur along the coast of Peru and in the Equatorial Undercurrent. Fluctuations in the importance of this upwelling have not been consistent with glacial/interglacial changes in ice volume throughout the late Quaternary. Intensification of upwelling in the equatorial divergence, however, has consistently coincided with increases in ice volume in the past 500,000 yr. The times at which changes in the nature of the relationship between upwelling and ice volume occur (approximately 240,000 and 380,000 yr B.P.) roughly coincide with times of observed changes in other proxy indicators of oceanographic conditions in the Pacific and Indian oceans.  相似文献   

4.
The distributions of the radiolarian assemblages in the Northeastern Pacific Ocean were determined and correlated with the average summer temperature of the near surface waters of this region. These assemblages were compared with those in three sediment cores taken beneath the Transition Zone waters. This comparison indicates that the assemblage off Oregon at the last maximum cold interval (24,000 yr B.P.) was like that now found off southern Alaska. The correlation of the radiolarian assemblages with temperature gives an estimate of 11°C for the average summer temperature at that time. This is approximately 4°C cooler than present day conditions in the area. Superimposed on the general warming trend that began 24,000 y.a., there are minor oscillations in the assemblages which correspond to estimates of temperature change of about 2°C in the Pleistocene and about 1°C in the Holocene. In the Holocene, these minor warm intervals appear to be approximately synchronous with advances in mountain glaciers.  相似文献   

5.
A deep-sea core over 16 m long from the crestal area of the Mediterranean Ridge has been investigated with different techniques, including quantitative micropaleontology, stable isotopes (measured on the epipelagic species Globigerinoides ruber and on the mesopelagic species Globorotalia inflata), and clay mineralogy. The resulting record of climatic fluctuations can be cross correlated to other Mediterranean cores by means of isochronous lithologies (tephra layers and sapropels). The climatic record of the Mediterranean is similar in character, phase, and chronology to the records investigated in the equatorial Pacific and in the Caribbean. Isotope stages 1 to 17 have been recognized. Cyclically repeated stagnant cycles resulting in sapropel deposition complicate both the isotopic and the faunal signal. The isotopic investigations reveal that the temperature change in the surface layers of the eastern Mediterranean was no greater than 8°C in the late “glacial” Pleistocene. The chronostratigraphic and biostratigraphic interpretation of Core KS09 indicate that the mean sedimentation rate was 2.4 cm/1000 years, a value very close to the 2.5 cm/1000 years calculated for the entire Quaternary section at DSDP Site 125, also located in the crestal area of the Mediterranean Ridge in the Ionian Basin. The base of KS09 is likely to be very close to the Brunhes/Matuyama boundary dated at 0.7 my.  相似文献   

6.
Early Acheulian assemblages in fluviolacustrine contexts at the Early Pleistocene site of ‘Ubeidiya (Jordan Valley, Israel) have been described as “living floors.” A study of variation in the surface abrasion of stone tools from several such “living floors” suggest a mixture of cultural and geological factors were involved in the formation of these assemblages. © 1999 John Wiley & Sons, Inc.  相似文献   

7.
This paper on “Temperature changes in earth-history” is an extension of a lecture given as an introduction to a section of equal title on the annual meeting of the Geologische Vereinigung, March 1976, in Hannover. The general development of paleoclimatological research in the last 300 years is represented on two diagrams (fig. 1–2) showing also the part of different climatic indicators. Otherwise, however, mostly new results and problems of the last years are treated (mainly papers since 1973; references of older literature are to be found in the 3rd edition of the author's book on “Climates of the Past” = “Klima der Vorzeit”, Enke/Stuttgart 1974). This paper refers a) to some short comments on certain climatic indicators as diamictites (a similar term isSchermerhorn's “mixtite”, but “diamictite” is 6 years older and has therefore priority to “mixtite”) and “stellate nodules” (in the chapter “Mesozoic”) indicating perhaps cool climate in the Arctic. - b) Some great ice-ages are briefly discussed: Huronian (very important because of its old age); Late Proterozoic (“Eocambrian”) with many problems on account of its pretended worldwide extension. but with many uncertainities (partly pseudotillites, inconsistent paleomagnetic poles, combination of tillites with dolomites etc.); Permo-Carboniferous (many hypothesises up to 1975 try to explain the pretended “equatorial” position of tillites); Cenozoic ice-age (once “Quaternary” ice-age), with table 1 indicating some possibilities to evaluate the beginning of glaciations in Tertiary time (fig. 4). Why does glaciation start in Antarctica in the Tertiary? (Not or not only on account of drift via South Pole, but perhaps because of high relief and changes in global paleogeography). — c) Diagram of the great ice-ages in earth-history (fig. 6 b): it probably shows not all ice-ages but only the known ones indicating their maxima (i. e. times when inlandice extended to middle latitudes). This curve is probably essentially correct back to 300–400 m. y. yet especially the Precambrian time is still mostly paleoclimatic noman's-land. It is not possible to fix beginning and end of the Pre-Tertiary ice-ages exactly but at any rate the “akryogene” climates lasted longer than the “kryogene” ones (“kryogene” defined as climate with “much ice” [“pleistokryogene”], “akryogene” not as climate “without ice” but as climate with “a little ice” [“oligokryogene”]). - d) Periodicities in the temperature history: before exact dates were available (especially for Late Proterozoic and Huronian ice-ages) and before the Sahara glaciation of the Old Paleozoic was known, a periodicity of 250–300 m. y. was likely to exist. Therefore relations to the “Galactic year” were reasonable, stimulating attempts to find out plausible mechanisms for such a relation. But now, such a periodicity seems unlikely to exist (and much more one of 155 m. y., supposed byWilliams). The relative constancy of global earth temperatures over at least more than 2 billion years is more striking than their variations, though regionally the depressions may be very conspicious (in the middle, “sensitive” latitudes). Such depressions, however, are triggered by very small climatic changes on account of the existence of a hydrosphere with temperatures very favorable for a transformation of water into ice and vice versa. No other celestial body of our solar system has these optimal conditions with the consequences of occasional initiation of ice-ages. Ice ages, so to speak, are an inherited pecularity of the earth. The earth is the only “Ice-age Planet”. Under these circumstances, relatively small factors may cause ice-ages: multilateral origin of climatic changes. The most efficient parameters may be paleogeographic variations (relief etc. inclusive continental drift). Some comments are made on the radiation curves reflecting not the direct cause of glacials and interglacials but perhaps shorter climatic variations as they appear possibly in the curves of ocean temperatures (Emiliani etc.). Volcanic ashes seem not to have any farreaching influence on global temperatures; at least it is geologically impossible to support appropriate hypothesises by observations on continental volcanic sequences. The number of ash-layers in deep-sea cores may reveal sounder arguments though much more observations are needed to corroborate this supposition. — Table 2 gives a summary of the primary (planetary), secondary (multilateral) and — in special situations — tertiary “autocyclic” causes of climatic changes. Table 3 focuses on autocycles i. e. mechanisms which run. off automatically and could have caused the regular climatic variations in the Late Pleistocene with the classic glacialinterglacial sequence (not known from the older Quaternary or Pre-Tertiary ice-ages). In my opinion the most probable hypothesises on autocycles are those which were founded on wide extending subarctic continents of the northern hemisphere (qualified for the formation of large inlandice) in combination with mighty oceanic heat storage (Stokes, D. P. Adam, R. E. Newell).  相似文献   

8.
Global atmospheric and oceanic circulation effects of expansion of continental ice sheets initiated upwelling in the western equatorial Pacific and simultaneously intensified upwelling in the eastern equatorial Pacific; contraction of the ice sheets reversed the process. Published Pleistocene paleoclimatic stratigraphies correlated across the entire equatorial Pacific exhibit eight such cycles in the Brünhes epoch. The extrapolated chronostratigraphies for the equatorial Pacific compare favorably with published paleoclimatic schemes for the southeastern, eastern, and northern Pacific Ocean. The Southern Ocean record exhibits fewer, and possibly also consistently older, climatic variations. A time progression or lack of synchrony of marine Pleistocene climatic events is not inconsistent with modified “Milankovitch” hypotheses, such as that involving Antarctic ice-sheet instability.  相似文献   

9.
In the present investigation, an age model of carbonate‐rich cores from a seamount top in the Central Indian Basin (CIB) was constructed using both isotopic (230Thexcess, AMS 14C, oxygen isotopes) and biostratigraphic methods. The chronologies using the two methods are in good agreement, yielding a record of the late Middle Pleistocene to the Pleistocene–Holocene transition (550 to 11.5 ka). The first appearance datum (FAD) of the radiolarian Buccinosphaera invaginata (180 ka) and coccolith Emiliania huxleyi (268 ka) and the last appearance datum (LAD) of the radiolarian Stylatractus universus (425 ka) were used. A monsoon‐induced productivity increase was inferred from carbonate, organic carbon and δ13C records in response to the Mid‐Brunhes Climatic Shift (MBCS), consistent with an increased global productivity. While the coccolith diversity increased, a decrease in coccolith productivity was found during the MBCS. At nearly the same time period, earlier records from the equatorial Indian Ocean, western Indian Ocean and eastern Africa have shown an increased productivity in response to the influence of westerlies and increased monsoon. The influence of easterlies from Australia and the intensification of aridity are evidenced by increased kaolinite content and clay‐sized sediments in response to the MBCS. An increased abundance of Globorotalia menardii and other resistant species beginning from marine isotope stage (MIS) 11 and the proliferation of coccolith Gephyrocapsa spp. indicate increased dissolution, which is consistent with the widespread global carbonate dissolution during this period. The relatively high carbonate dissolution during the transition period of MIS 3/2 and glacial to interglacial periods (MIS 6, 7 and 8) may be due to the enhanced flow of corrosive Antarctic Bottom Water (AABW) into the CIB.  相似文献   

10.
The terms “glaciation” and “interglacial” are considered from the point of view of palaeoclimatic proxies obtained from the Pleistocene deep-water and continental deposits. It is shown that the crucial factor in substantiation of these notions is determination of the cause-and-effect mechanism in the considered climatic oscillations. It is noted that oxygen isotope data on deep-water deposits have an undoubted advantage because a more accurate quantitative estimate of climatic oscillation parameters can be made on their basis. It is concluded that the role played by quantitative estimates of palaeoclimatic changes, represented by, first of all, amplitude and time characteristics of climatic oscillations, will become more significant as the methods of paleogeographic studies of both continental and deep-water deposits of the Pleistocene improve; in contrast, the formal determination of the rank of palaeoclimatic oscillations will become less significant. Special attention is paid to the cases of misfits between the Pleistocene deep-water and continental paleoclimatic records and to the necessity to make them consistently as good as possible, especially in the case of Early Pleistocene deposits.  相似文献   

11.
The comprehensive study of the upper 1283 cm of sediment from Lake El’gygytgyn, which formed nearly 4 Ma ago following a meteorite impact in northern Chukotka, yielded the first continuous record of the extreme changes in the Beringian climate and vegetation from the middle Middle Pleistocene to recent time (equivalent of marine isotope stages of 1–7 and the upper part of isotope stage 8). During this period, the climate was warmer than at present between 8600 and 10 7000 14C years and during the Late Pleistocene (isotope substage 5e, 116–128 ka ago). In 2003, the German-Russian-USA expedition continued studying sediments of Lake El’gygytgyn to obtain new evidence of the change in the vegetation cover in the Middle Pleistocene and the first information on the Middle Pleistocene interglacial (isotope stage 9; 297–347 ka ago). Pollen spectra characterizing the Middle Pleistocene interglacial are similar to spectra of the early stage of the Early Pleistocene interglacial and the climatic optimum in the Pleistocene to Holocene transitional period. The climatic history of Lake El’gygytgyn is basic for stratigraphic interpretations and correlations in the eastern sector of the Arctic. These data also expand our understanding of climatic changes that are studied within the framework of the “Pole-Equator-Pole Paleoclimate,” “Past Global Changes,” and other international projects.  相似文献   

12.
洞庭盆地两护村孔孢粉组合及其气候与地层意义   总被引:6,自引:0,他引:6       下载免费PDF全文
两护村ZKC1孔位于洞庭盆地安乡凹陷的东南部,孔内第四系(底部跨上新世)厚达294 m,为河流和湖泊沉积,自下而上依次为上新世—早更新世华田组、早更新世汨罗组、中更新世洞庭湖组、晚更新世坡头组以及全新统等。对ZKC1孔第四系进行了详细的孢粉分析,自下而上划分出16个孢粉组合带。ESR年龄和孢粉组合及其反映的气候特征指示华田组下段形成于上新世末。根据孢粉组合特征,结合构造—沉积演化和区域气候背景,重塑洞庭盆地上新世末以来的气候演化过程:上新世末期由孢粉带Ⅰ和Ⅱ指示具暖干气候。早更新世经历了凉干(孢粉带Ⅲ、Ⅳ)→暖湿间凉干(孢粉带Ⅴ~Ⅶ)→冷干间温湿(孢粉带Ⅷ~Ⅹ)→暖较湿(孢粉带Ⅺ,Ⅻ)的气候演变过程。中更新世早期无孢粉样品(洞庭湖组下部砾石层),其沉积环境暗示冷干气候条件;中期由孢粉带ⅩⅢ反映出暖稍湿的气候特征;晚期因构造抬升缺失沉积,同期湿热化事件指示暖湿气候。晚更新世早期缺乏沉积,据区域对比应为寒冷气候;中期由孢粉带ⅩⅣ指示温较湿的气候特征;晚期缺失沉积,系寒冷气候下区域海平面下降所致。全新世经历了暖稍湿(孢粉带ⅩⅤ)→暖稍干(孢粉带ⅩⅥ)的演变。上述气候演变过程与ZKC1孔化学蚀变指数曲线反映的气候演变过程以及中国东部第四纪气候演化基本吻合。以孔深140 m为界,上部孢粉数量显著高于下部,种属也更为丰富。这一变化很可能对应于一次重要的地质事件,其成因有待今后深入研究。  相似文献   

13.
Coral reef growth and development depend on several environmental factors, including tectonic and climatic parameters and local ecological drivers. Reef growth is especially sensitive to sea-level variations. Paleo-water depth reconstructions are essential tools used to determine reef growth patterns during different periods of reef growth. Assemblages of corals and/or coralline algae have been commonly used in such paleodepth reconstructions. This study shows that using microendolith ichnocoenoses can sometimes provide better accuracy than traditional coralgal analyses, particularly in the depth-range 0–10 m where coralgal assemblages usually show broad distribution ranges. Holocene and Pleistocene cores from two barrier reef sites on the west coast of Grande Terre in New Caledonia are examined here. Holocene reef development at these sites feature examples of microendolith ichnocoenoses that document rapid environmental changes and small sea-level variations of about 2–5 m in amplitude, and record these changes with more accuracy than coral and coralline algae assemblages which are highly dependant on the hydrodynamic energy of the setting. During the Pleistocene, which was less chronologically constrained, the microendolith ichnocoenoses also reflect paleo-water depths and reef-growth patterns at different periods of reef history.  相似文献   

14.
The deglacial transition between oxygen-isotope Stages 6 and 5e (about 127,000 yr B.P.) is marked by both oxygen isotopic depletion and estimated sea-surface temperature (SST) increase in two subantarctic Indian Ocean cores. The data show synchroneity between warming of foraminifera-based SST estimates and depletion of δ18O, but an earlier warming trend on the basis of radiolarian SST estimates. These data have been previously interpreted to indicate that the high-latitude Southern Ocean warms prior to significant melting of glacial-age ice sheets. Comparison of core-top assemblages with surface and subsurface conditions in the Southern Indian Ocean reveals that (1) a three-part foraminiferal zonation reflects the surface hydrographic regime, with abrupt faunal transitions at two major fronts: the Subtropical Convergence (STC) and the Antarctic Polar Front (APF); and (2) a two-part radiolarian zonation coincides with a two-part subsurface hydrographic regime, with an abrupt faunal transition corresponding to the southern terminus of subtropical lower water (STLW) between the STC and the APF. It is suggested that shifts of these surface and subsurface regimes are recorded by these foraminiferal and radiolarian assemblages. In this interpretation, the observed lead of radiolarian SST with respect to δ18O indicates an early response to a southward shift of STLW, while the later foraminiferal SST warming indicates a southward shift of the STC. Thus, the origin of the Southern Hemisphere SST lead may be related to STLW, which emanates from the subtropical gyres, rather than the polar regions.  相似文献   

15.
In the equatorial Pacific, between the Galapagos Islands and the coast of South America, two kinds of upwelling of oceanic waters occur. One is related to coastal upwelling and the other to surfacing of the Equatorial Undercurrent. Both of those processes are associated with the development of the southeast trade winds blowing in this area. Coastal upwelling is increased when the trade winds are intensified, and the surfacing of the Equatorial Undercurrent occurs when the trades weaken. The development of coastal upwelling and the surfacing of the Equatorial Undercurrent are inferred from the radiolarian assemblages in the sediments. The abundance of quartz, opal, and radiolarian assemblages in the deep-sea sediments of this area, as well as the distance from the sample locations to land and to the quartz source, is correlated with the intensity of the trade winds (in February and August) through multiple regression analysis. The chronostratigraphy of core V1929 (3°35′S, 83°56′W), used in this study, is inferred on basis of its δ180 record. During the last 75,000 years, the fluctuations in intensity of the trade winds have been concurrent with or preceded the fluctuations in the amount of ice stored on the continents. In general, the wind velocity of the winter trades has been intensified during cool climatic stages of the earth (δ180 stages 4 and 2) and they have been relaxed during warm stages (δ180 stages 3 and 1). Seasonal contrast of the trade winds has also fluctuated within time, having been relatively high during the upper part of δ180 stage 3.  相似文献   

16.
The problem of correlating the isolated outcrops of allochthonous Middle Mesozoic deposits developed in northeastern Asia and western North America includes several aspects: (1) the stratigraphic subdivision of the sequences using the radiolarian assemblages and taking into account the complex nappe-thrust structure of the region; (2) the analysis of their facies composition with reconstructing the geodynamic depositional settings; (3) the search for features in common (with respect to the previous two aspects) in all these localities. The first widely applied radiolarian analysis revealed that the Middle Mesozoic marine rocks from separate nappes and slices of tectono-stratigraphic sections in East Asia enclose 20 different-age (Norian to Hauterivian) radiolarian assemblages. The correlation of these assemblages revealed the wide lateral distribution of their host Middle Mesozoic marine sequences in the regions under consideration. The significance of the presented materials is determined by the following facts: (1) using the radiolarian analysis, the Middle Mesozoic marine sequences of northeastern Asia are first subdivided into stage and substage units with defining their analogs in western North America; (2) despite the discrete distribution of Mesozoic allochthons, it is shown that the defined stratigraphic units are widespread in northeastern Asia; (3) it is established that these allochthons consist of rocks formed in different geodynamic depositional settings: ocean floor, island arc, fore-arc, and marginal-sea domains. This spectrum of heterogeneous rocks is traceable practically through the entire northeastern Asia region.  相似文献   

17.
The analysis of radiolarian assemblages and lithological types of siliceous rocks yielded new data on the structure of different sequences constituting the northern Algan terrane in the Pereval’naya River basin. Three tectonic slices formed by different lithothectonic complexes can be defined in this area. The radiolarian assemblages from the volcanogenic-siliceous slice allow the oceanic section to be dated back to the Kimmeridgian-Valanginian. The tuffaceous-terrigenous slice contains cherts of two types: (1) formed in situ and (2) reworked. The reworked deep-sea cherts yielded Bathonian-Kimmerdgian and Bathonian-Oxfordian radiolarians, while late Aalenian-late Bathonian radiolarian assemblages were extracted from the Kimmerdgian-Tithonian matrix of siliceous rocks.  相似文献   

18.
南沙深水区第四纪生物地层学研究   总被引:5,自引:1,他引:5  
根据南沙深水区17957和17959两柱状样多门类的生物事件研究,发现9个生物事件。其中放射虫事件6个,有孔虫事件2个,钙质超微化石事件1个。这些生物事件直接与氧同位素和古地磁资料对比所得的年龄,与赤道太平洋和印度洋的年龄均相对应。这是中国海深海区第四纪地层第一次多门类的生物地层学研究,将为南海第四纪古海洋学研究提供重要的地层学基础。这两个柱状样沉积速率的计算结果表明,该海区为南海最低沉积速率区(1.0~19cm/10a).  相似文献   

19.
Abstract

The evolution of Neogene and Quaternary littoral basins in the Eastern Betic Cordillera is largely related to tectonic activity along the Eastern Betic sinistral shear zone.

Detailed mapping of sedimentary units in these basins, together with sedimentological and paleomagnetic analysis lead to the proposal of a new chronostratigraphie framework for Pliocene and Quaternary deposits.

This chronostratigraphie setting rejects the synchronous character of the “Pliocene Unite” previously referred to as: “P.I” (grey-blue marls), “P.H” (yellow calcarenites), and “Р.Ш” (variegated silts and clays). Instead, tectonics would have controlled the paleogeographic evolution of the Eastern Betic realms, causing the lithofacies to occur repeated in space and time. The Plio-Pleistocene boundary in these basins is not accompanied by changes in geodynamic behaviour or climatic conditions. According to the paleomagnetic data, these changes occurred at different times during the Pleistocene in the different studied basins.  相似文献   

20.
Planktonic foraminiferal assemblages have been examined in 25 trigger core top samples and 51 piston core top samples collected between latitudes 28° S and 55° S and longitudes 79° E and 120° E from the southern Indian Ocean during cruises of the U.S.N.S. Eltanin. Samples taken from water depths exceeding 4000 m and/or showing evidence of calcium carbonate dissolution were eliminated from further analysis. The final piston core data set consists of 34 samples; the trigger core data set containing 21 samples. A close relationship exists between changes in the planktonic foraminiferal assemblages in the surface sediments and surface water temperatures. Species diversity values were computed for each of the core top assemblages using the Shannon-Wiener Index and the Brillouin Index, each of which takes into consideration the number of species and the proportionment of individuals among the species. The Shannon and Brillouin diversity values for all samples are positively correlated (correlation coefficient (r) = +.999). Regression analysis of latitude versus Shannon diversity values in the trigger core samples clearly shows a decrease in diversity with increasing latitude (r = ?.979). Furthermore, a strong correlation (r = +.977) exists between decreasing species diversity (Shannon) and decreasing average summer-winter temperature of the overlying surface waters. A paleotemperature equation derived from the relationship of diversity in trigger core samples and surface water temperature was used to generate paleotemperature curves for five trigger cores and a 6 m piston core of Late Pleistocene age, located beneath the present position of the Subtropical Convergence. A 7–8° C temperature range is suggested between the interglacial and glacial episodes in this Late Pleistocene sequence, and probably reflects latitudinal shifts of the Subtropical Convergence and Australasian Front during the Late Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号