首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A numerical model of current F-region theory is use to calculate the diurnal variation of the mid-latitude ionospheric F-region over Millstone Hill on 23–24 March 1970, during quiet geomagnetic conditions. From the solar EUV flux, the model calculates at each altitude and time step primary photoelectron spectra and ionization rates of various ion species. The photoelectron transport equation is solved for the secondary ionization rates, photoelectron spectra, and various airglow excitation rates. Five ion continuity equations that include the effects of transport by diffusion, magnetospheric-ionospheric plasma transport, electric fields, and neutral winds are solved for the ion composition and electron density. The electron and ion temperatures are also calculated using the heating rates determined from chemical reactions, photoelectron collisions, and magnetospheric-ionospheric energy transport. The calculations are performed for a diurnal cycle considering a stationary field tube co-rotating with the Earth; only the vertical plasma drift caused by electric fields perpendicular to the geomagnetic field line is allowed but not the horizontal drift. The boundary conditions used in the model are determined from the incoherent scatter radar measurements of Te, Ti and O+ flux at 800km over Millstone Hill (Evans, 1971a). The component of the neutral thermospheric winds along the geomagnetic field has an important influence on the overall ionospheric structure. It is determined from a separate dynamic model of the neutral thermosphere, using incoherent scatter radar measurements.The calculated diurnal variation of the ionospheric structure agrees well with the values measured by the incoherent scatter radar when certain restrictions are placed on the solar EUV flux and model neutral atmospheric compositions. Namely, the solar EUV fluxes of Hinteregger (1970) are doubled and an atomic oxygen concentration of at least 1011cm3 at 120 km is required for the neutral model atmosphere. Calculations also show that the topside thermal structure of the ionosphere is primarily maintained by a flow of heat from the magnetosphere and the night-time F2-region is maintained in part by neutral winds, diffusion, electric fields, and plasma flow from the magnetosphere. The problem of maintaining the calculated night-time ionosphere at the observed values is also discussed.  相似文献   

2.
Atmospheric expansion through Joule heating by horizontal electric fields   总被引:1,自引:0,他引:1  
Incoherent scatter measurements made along a magnetic field line into aurora during a period of high electric field in the recovery phase of a substorm show (1) considerably increased electron densities well above the normal F-region maximum, and (2) field-aligned plasma drifts that increase with altitude. A model invoking atmospheric expansion through Joule heating by the horizontal electric field driving the auroral electrojet is used to explain the observations. From this study it is concluded that during magnetically disturbed periods (1) Joule heating by the auroral electrojet raises the neutral temperature and density in the auroral zone ionosphere at F-region heights, (2) ionization formed by the aurora is transported upward by the expanding atmosphere, at times producing an appreciable increase in lower exospheric plasma densities on the field lines containing the aurora, and (3) combined satellite, radar, and optical observations during periods of aurora and high electric field could provide measured F-region collision frequencies.  相似文献   

3.
We have solved the coupled momentum and continuity equations for NO+, O2+, and O+ions in the E- and F-regions of the ionosphere. This theoretical model has enabled us to examine the relative importance of various processes that affect molecular ion densities. We find that transport processes are not important during the day; the molecular ions are in chemical equilibrium at all altitudes. At night, however, both diffusion and vertical drifts induced by winds or electric fields are important in determining molecular ion densities below about 200 km. Molecular ion densities are insensitive to the O+ density distribution and so are little affected by decay of the nocturnal F-region or by processes, such as a protonospheric flux, that retard this decay. The O+ density profile, on the other hand, is insensitive to molecular ion densities, although the O+ diffusion equation is formally coupled to molecular ion densities by the polarization electrostatic field. Nitric oxide plays an important role in determining the NO+ to O2+ ratio in the E-region, particularly at night. Nocturnal sources of ionization are required to maintain the E-region through the night. Vertical velocities induced by expansion and contraction of the neutral atmosphere are too small to affect ion densities at any altitude.  相似文献   

4.
We examine the electric field hypothesis as a possible explanation of a stable auroral red arc. An electric field perpendicular to the geomagnetic field in the ionosphere heats the ambient F-region electrons and ions. Given large enough electric fields, the electrons can be heated sufficiently to excite the OI (1D) term of atomic oxygen by electron impact, giving rise to the λ6300 emission characteristic of the red arc. The electron and ion heating rates are determined by the relative drift between the plasma and neutral gas.  相似文献   

5.
Results of a numerical computer investigation of the geomagnetically quiet, high latitude F-region ionosphere are presented. A mathematical model of the steady state polar convective electric field pattern is used in conjunction with production and loss processes to solve the continuity equation for the ionization density in a unit volume as it moves across the polar cap and through the auroral zones.Contours of electron density (~ 300 km altitude) over the polar region are computed for various geophysical conditions. Results show changes in the F-region morphology within the polar cap in response to varying the asymmetry of the global convective electric fields but no corresponding change in the morphology of the mid-latitude ionospheric trough. The U.T. response of the ionosphere produces large diurnal changes in both the polar cap densities and trough morphology. In agreement with observations, the model shows diurnal variations of the polar cap density by a factor of about 10 at midwinter and a negligible diurnal variation at midsummer. The phase of the polar cap diurnal variation is such that the maximum polar cap densities occur approximately when the geomagnetic pole is nearest to the Sun (i.e. when the polar cap photo-ionization is a maximum).Within the accuracy of this model, the results suggest that transport of ionization from the dayside of the auroral zone can numerically account for the maintenance of the polar cap ionosphere during winter when no other sources of ionization are present. In addition, east-west transport of ionization, in conjunction with chemical recombination is responsible for the major features of the main trough morphology.There is little seasonal variation in the depth or latitude of the ionization trough, the predominant seasonal change being the longitudinal extent of the trough.The polar wind loss of ionization is of secondary importance compared to chemical recombination.  相似文献   

6.
The ionization structure of the auroral arc was measured on a sounding rocket which penetrated into a bright auroral arc. The E-region electron density becomes large (2 ~ 5 × 105 el/cm3 only in the moving auroral arc, whose N2+ 4278 Å brightness is 1 ~ 2·5 kR. The electron density in the D-region beneath the lower boundary of the arc (75 ~ 98 km in altitude) is also considerably enhanced to 2 ~ 5 × 104 el/cm3.The observed E-region electron density can be interpreted theoretically as due to the direct ionization by precipitating electrons, whose energy spectrum is approximately represented by an exponential type having the characteristic energy of 2 keV. The correlation between the electron density and the N2+ 4278 Å brightness can be reasonably explained by considering the simultaneous effects on the ionization and the optical excitation caused by the primary electrons having a flux of 9 × 109 el/cm2/sec per 1 kR of the 4278 Å emission.Further analyses using the electron density data from four other sounding rockets have shown that the D-region ionization has good correlations to the cosmic noise absorption (CNA) and the magnetic substorm activities observed simultaneously at the ground station, whereas it has poor correlation to the same quantity of the E-region measured in the same experiment. It is found that the observed D-region ionization is much larger than that predicted by the theory which takes into account the Bremsstrahlung X-ray ionization along with the direct impact ionization when it is applied to the precipitating electron flux spectrum consistent to the E-region ionization and optical excitation.After all the present experimental results suggest a dual nature of the electron precipitation spectrum in the substorm, i.e. the softer part which is localized in the auroral arc and the harder part which is spatially wide-spread over the substorm area.  相似文献   

7.
This is a report upon further data obtained from the auroral OI 5577 Å emission with a Wide Angle Michelson Interferometer (WAMI), and upon our first observations made with it on the 6300 Å emission. The method used for converting emission intensities and temperatures to auroral electron fluxes and energy spectra is described. Data for the 5577 Å emission are presented for the (lack of) heating in auroral forms, vertical temperature profiles in aurora, electron flux and energy spectrum variations in pulsating aurora, and a ‘cold’ subvisual auroral arc. Data from the OI 6300 Å emission are presented for the diurnal variation of exospheric temperature and for the thermalization of O(1D) in the F-region.  相似文献   

8.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

9.
Steady-state calculations are performed for the daytime equatorial F2-region and topside ionosphere. Values are calculated of the electron and ion temperatures and the concentrations and field-aligned velocities of the ions O+, H+ and He+. Account is taken of upward E × B drift, a summer-winter horizontal neutral air wind and heating of the electron gas by thermalization of fast photoelectrons.The calculated plasma temperatures are in accord with experiment: at the equator there is an isothermal region from about 400–550 km altitude, with temperatures of about 2400 K around 800 km altitude. The transequatorial O+ breeze flux from summer to winter in the topside ionosphere is not greatly affected by the elevated plasma temperatures. The field-aligned velocities of H+ and He+ depend strongly on the O+ field-aligned velocity and on the presence of large temperature gradients. For the minor ions, ion-ion drag with O+ cannot be neglected for the topside ionosphere.  相似文献   

10.
Knowledge of the structure of the polar ionosphere during exceptionally quiet periods is basic for studying complicated ionospheric behaviors during disturbances. On the basis of data from an airborne ionosonde as well as a meridian chain of ground-basedionosondes, the circumpolar structure of the E,-and F-regions is elucidated. There are two circumpolar zones of E-region ionization with differing characteristics. The first is an auroral E,-layer and/or retarded type sporadic E-band that has previously (Whalen et al., 1971) been found to be identical with the continuous aurora. The second is a zone of non-retarded type spora die E located poleward of the former band. In general, discrete auroras are co-located with the latter. The main trough, a prominent feature of the night sector F-region, is most pronounced in the early morning. The main trough is bounded on the poleward side by a well defined ‘wall’ of F-region ionization. The night sector poleward trough wall is located approximately three degrees of latitude equatorward of the auroral oval. A ‘plateau’ of F-region ionization extends from the poleward trough wall to the auroral oval.  相似文献   

11.
The ionospheric electric field has been measured in the E region above the Churchill auroral research range under quiet and under disturbed conditions. Results were obtained 112 and 212 hr before local midnight over an altitude range of 115–165 km. The instruments and analysis differ from those used by other workers. An unusually advantageous vehicle motion resulted in dipole measurements along the magnetic field being modulated by the vehicle motion. Under quiet conditions and in the presence of a diffuse, east-west 2 kR auroral arc, the predominant vector component of the electric field was also quiet and between 35 and 40 mVm perpendicular to the magnetic field, southward. Parallel to the magnetic field, the vector component increased from ?17 mV/m at 130 km, reversed direction at 160 km during the latter third of the flight and fluctuated around + 6 mV/m between 155 and 135 km on the descent. Under disturbed conditions during the recovery phase of a large magnetic storm, the electric field was also more disturbed; however, there was no significant electric field along B. Analysis of effects caused when parts of the measurement system are connected by a common magnetic field line, and when one of the probes lies in the wake of the vehicle, shows that measurement perturbations produced by those effects are dominated by the magnetic field line connections and that wake effects are relatively unimportant.  相似文献   

12.
Electric currents, generated by thermospheric winds, flow along the geomagnetic field lines linking the E-and F-regions. Their effects on the electric field distribution are investigated by solving the electrical and dynamical equations. The input data include appropriate models of the F-region tidal winds, the thermospheric pressure distribution and the E-and F-layer concentrations. At the magnetic equator, the calculated neutral air wind at 240 km height has a prevailling eastward component of 55 m sec-1 and the west-east and vertical ion drifts agree in their general form with incoherent scatter data from Jicamarca  相似文献   

13.
In the mid-latitude E-region, the wind-shear mechanism produces thin ionized layers at levels where the vertical ion velocity is zero. We show that such layers conduct electric current only towards the magnetic equator, and not in the zonal direction. We surmise that this property may influence the electric field distribution in the nocturnal ionosphere, and possibly also the coupling between ion drifts and neutral air winds in the F-region. Detailed case studies of nocturnal layers located near the peak of ion Pedersen conductivity (around 130km) are needed to test this idea.  相似文献   

14.
A survey of metallic ions detected by the Bennett Ion Mass Spectrometers flown on the Atmosphere Explorer satellites, including both circular and eccentric orbital configurations, shows that patches of these ions of meteoric origin are frequently present during magnetically active periods on the bottomside of the F-layer at middle and high latitudes. In particular the F-region metals statistically tend to appear at night in the vicinity of the main ionospheric trough (in a band of invariant latitudes approx. 10 degrees wide) and on the day side of the polar cap. These distributions were previously associated with the expected dynamics of ions in the F-region above 140 km where meridional neutral wind drag and convection electric fields are the dominant ion transport mechanisms. However, the main meteor deposition layer—the presumed source region of the metals—is located below 100 km where these transport mechanisms do not prevail. It is demonstrated that the Pedersen ion drifts driven by intense electric fields such as those associated with sub-auroral ion drifts (SAID) are sufficient to transport the long-lived metallic ions upward from the main meteor layer to altitudes where the drag of equatorial directed neutral winds and electric field convection can support them against the downward pull of gravity and transport them to other locations. The spatial and temporal distribution of the middle and high latitude F-region metals are consistent with the known characteristics of the electric fields and with the expected F-region ion dynamics.  相似文献   

15.
Vertical winds have been observed by optical Doppler measurements of the 557.7 nm emission in the aurora, using a Fabry-Perot spectrometer. Both upward and downward winds were observed, of 15 m s?1 magnitude. The upward winds were associated with westward overhead currents, and with low altitude aurora (~ 110 km) as determined by the auroral temperature, while a high altitude aurora (~ 135 km) and eastward currents were associated with the downward wind. The Lorentz force of these currents has the wrong direction to act as a direct forcing mechanism. It is concluded that Joule heating is directly responsible for the upward winds, while the divergence of horizontal winds is responsible for the downward winds.  相似文献   

16.
Observations of vertical and horizontal thermospheric winds, using the OI (3P-1D) 630 nm emission line, by ground-based Fabry-Perot interferometers in Northern Scandinavia and in Svalbard (Spitzbergen) have identified sources of strong vertical winds in the high latitude thermosphere. Observations from Svalbard (78.2N 15.6E) indicate a systematic diurnal pattern of strong downward winds in the period 06.00 U.T. to about 18.00 U.T., with strong upward winds between 20.00 U.T. and 05.00 U.T. Typical velocities of 30 m s?1 downward and 50 m s?1 upward occur, and there is day to day variability in the magnitude (30–80 m s?1) and phase (+/- 3 h) in the basically diurnal variation. Strong and persistent downward winds may also occur for periods of several hours in the afternoon and evening parts of the auroral oval, associated with the eastward auroral electrojet (northward electric fields and westward ion drifts and winds), during periods of strong geomagnetic disturbances. Average downward values of 30–50 m s?1 have been observed for periods of 4–6 h at times of large and long-lasting positive bay disturbances in this region. It would appear that the strong vertical winds of the polar cap and disturbed dusk auroral oval are not in the main associated with propagating wave-like features of the wind field. A further identified source is strongly time-dependent and generates very rapid upward vertical motions for periods of 15–30 min as a result of intense local heating in the magnetic midnight region of the auroral oval during the expansion phase of geomagnetic disturbances, and accompanying intense magnetic and auroral disturbances. In the last events, the height-integrated vertical wind (associated with a mean altitude of about 240 km) may exceed 100–150 m s?1. These disturbances also invariably cause major time-dependent changes of the horizontal wind field with, for example, horizontal wind changes exceeding 500 m s?1 within 30 min. The changes of vertical winds and the horizontal wind field are highly correlated, and respond directly to the local geomagnetic energy input. In contrast to the behaviour observed in the polar cap or in the disturbed afternoon auroral oval, the ‘expansion phase’ source, which corresponds to the classical ‘auroral substorm’, generates strong time-dependent wind features which may propagate globally. This source thus directly generates one class of thermospheric gravity waves. In this first paper we will consider the experimental evidence for vertical winds. In a second paper we will use a three-dimensional time-dependent model to identify the respective roles of geomagnetic energy and momentum in the creation of both classes of vertical wind sources, and consider their propagation and effects on global thermospheric dynamics.  相似文献   

17.
The continuity, momentum and energy hydrodynamic equations for an O+-H+ ionosphere have been solved self-consistently for steady state conditions when a perpendicular (convection) electric field is present. Comparison of the H+ temperature profiles obtained with and without the electric field show that the effect of the electric field is to enhance the H+ temperature at high altitudes from about 3600 to 6400 K. Due to ion heating by the electric field, there is a net reduction of O+ in the F2-region as compared with the case of a non-convecting ionosphere. When the reduction of O+ is neglected, the electric field acts to increase the H+ outward flux from 8.3 × 107 to 2.7 × 108 cm?2 sec?1 for average ionospheric conditions. However, when the reduction of O+ is included, there is a net reduction in the outward H+ flux. Nevertheless, the convection electric field still results in an increase in the rate of depletion of the F-re m?1 electric field.  相似文献   

18.
The theory of dissipation of ionospheric electric currents is extended to include viscosity. In a steady state (i.e. usually above about 140 km altitude) the joule plus viscous heating may be calculated by μ∇2v. E × B/B2. At lower altitudes where viscosity may, in some circumstances, be relatively unimportant the joule dissipation is calculated by the usual formula j. (E + v × B). In a prevalent model of the auroral electrojets it is found that the joule heating can be much more intense outside auroral forms than within them. Heating due to auroral electrojets cause a semi-annual variation in the thermosphere. Movement caused by auroral electric fields make a contribution to the super-rotation of the midlatitude upper atmosphere. Random electric fields lead to an eddy ‘viscosity’ or ‘exchange coefficientrs in the upper thermosphere of magnitude ρER2/B3tR2|∇E|. where tR is the correlation time of the random component of electric fields ER and ρ is air density. Theoretical conditions for significant heating by field-aligned currents are derived.  相似文献   

19.
An intense, localized auroral disturbance observed by Intercosmos-Bulgaria-1300 satellite in the morning sector at the altitude 850 km is analyzed in detail. The disturbance is characterized by strong “jumps” of electric and magnetic fields reaching ~ 80 mV/m and ~ 100 nT, fluctuations of ion density (Δn/n ~ 70%) and bursts of downward and upward energetic electron fluxes. Electric and magnetic disturbances display a distinct spatial-temporal relationship typical for the standing quasi-monochromatic wave (? ~ 1 Hz, λx ~ 10 km). The ratio of amplitudes of electric and magnetic fluctuations is equal to Alfvén velocity (ΔE/ΔBvA/c). However, a strong parallel component of the electric field (~ 30 mV/m) and large ion density fluctuations indicate significant changes of plasma properties (the effects of anomalous resistivity are possible).  相似文献   

20.
A mathematical model has been developed to calculate consistent values for the O+ and H+ concentrations and field-aligned velocities and for the O+, H+ and electron temperatures in the night-time equatorial topside ionosphere. Using the results of the model calculations a study is made to establish the ability of F-region neutral air winds to produce observed ion temperature distributions and to investigate the characteristics of ion temperature troughs as functions of altitude, latitude and ionospheric composition. Solar activity conditions that give exospheric neutral gas temperatures 600 K, 800 K and 1000 K are considered.It is shown that the O+-H+ transition height represents an altitude limit above which ion cooling due to adiabatic expansion of the plasma is extremely small. The neutral atmosphere imposes a lower altitude limit since the neutral atmosphere quenches any ion cooling which field-aligned transport tends to produce. The northern and southern edges of the ion temperature troughs are shown to be restricted to a range of dip latitudes, the limiting dip latitudes being determined by the magnetic field line geometry and by the functional form of the F-region neutral air wind velocity. Both these parameters considerably influence the interaction between the neutral air and the plasma within magnetic flux tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号