首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastic moduli of single-crystal LiF and NaF have been determined by the ultrasonic pulse superposition technique as a function of temperature from T = 298–650° K. These new data are consistent with low-temperature (T < 298° K) data obtained by other ultrasonic pulse techniques and are superior to previous high-temperature data from resonance experiments. The elastic moduli (c) are represented by quadratic functions in T over the experimental temperature range although the curvature is not in the same sense for all modes. For LiF, NaF, MgO and CaO, evaluation of the temperature derivatives of the elastic moduli at constant volume (V) indicates that the elastic moduli are only weakly dependent on T at constant volume. The fluoride—oxide analogue pair LiFMgO both exhibit high-temperature elastic behaviour at approximately the same absolute temperature. Mitskevich's theory and observed KS-V systematics imply that (?c/?T)P should be a function of the nearest neighbour distance for rocksalt fluorides and oxides; this result lends further support to a fluorideoxide modelling scheme based on similar ionic radii.  相似文献   

2.
Ultrasonic data for the velocities of a large number of perovskite-structure compounds have been determined as a a function of pressure to 6 kbar at room temperature for polycrystalline specimens hot-pressed at pressures up to 100 kbar in solid-media devices: ScAlO3, GdAlO3, SmAlO3, EuAlO3, YAlO3, CdTiO3, CdSnO3, CaSnO3 and CaGeO3. The elasticity data for these orthorhombic and cubic perovskites define systematic patterns on bulk modulus (KS)-volume (VO) and bulk sound velocity (υφ—mean atomic weight (M) diagrams which are insensitiv to the details of cation chemistry and crystallographic structure. These isostructural trends are used to estimate KS = 2.5 ± 0.3 Mbar and υφ = 7.9 ± 0.4 km/s for the perovskite polymorph of MgSiO3. On a Birch diagram of veloc vs. density, the perovskite data define linear trends which lead to erroneous estimates of velocity for MgSiO3 unless specific account is taken of ionic radius effects in isomorphic substitutions.  相似文献   

3.
The main causes of the main phases of geomagnetospheric storms (D st min = ?(37?226) nT) have been studied using a cluster analysis in the form of the nearest neighbor method. Weak, moderate, strong and severe storms (samples) related to the IMF B Z component have been distinguished based on the two-dimensional (with respect to the IMF B Z component and D st index) scale cluster classification of storm main phases. The correlation clustering of 32 interrelated physical processes characterizing each main phase made it possible to determine that interrelated physical processes included the common part of the internal structure for all samples. The studied samples of storm main phases are characterized by different physical development levels, depending on the event scale. The presence of a common part indicates that magnetospheric activity mostly depends on the IMF B Z and B Y components and the coupling functions between them, as well as on the total IMF B value during the main phases of storms of all D st index scales. It has been established that the closest relationships are typical of D st (V 2 B S ) and D st (VB S ), where B S is the IMF southward component, and V is the solar wind velocity. Substorm activity (AE) generated by V 2 B S and VB S is only substantial during the main phases of weak and moderate storms, whereas grouping with respect to the velocity V only shows substantial activity during severe magnetic storms. The role of the Akasofu parameter (?) proved to be less pronounced. It has been indicated that, in a first approximation, it is preferred to use the V 2 B S and VB S coupling functions in order to predict the D st index and estimate the injection function Q during the main phases of geomagnetospheric storms.  相似文献   

4.
The elastic moduli of single-crystal CaF2, SrF2 and BaF2 have been determined by the ultrasonic pulse superposition technique as a function of temperature from T = 298 to T = 650°K. These new data are consistent with other data obtained by ultrasonic pulse techniques in the region of room temperature and are superior to previous high-temperature data from resonance experiments. The elastic moduli (c) are represented by quadratic functions in T over the experimental temperature range with the curvature in the same sense for all the moduli. Evaluation of the temperature derivatives of the elastic moduli at constant volume indicates that the dominant temperature effect is extrinsic for (?KS/?T)P and intrinsic for (/?T)P, where KS and μ are the isotropic bulk and shear moduli, respectively. For the series CaF2SrF2BaF2, |(?c/?T)p| decreases with increasing molar volume for all moduli; however there are no theoretical or empirical grounds on which to derive a simple relationship between (?c/?T)P and crystallographic parameters.  相似文献   

5.
Pressure-induced phase transformations in each of the rutile-structured difluorides (NiF2, MgF2, CoF2, ZnF2, FeF2 and MnF2) exhibit unique behavior; however, a general trend is found in the major structural changes: rutile phase → “distorted fluorite” phase → post-“distorted fluorite” phase with volume changes of about 5–10%. For a given phase transformation sequence found commonly in two or more difluorides, the phase transformation pressure is related inversely to the unit cell volume and thus inversely to the mean cation-anion bond length. The relationship in oxides (SnO2, TiO2 and GeO2) is much less systematic. It is therefore not possible to predict without uncertainty the post-stishovite phases in the lower mantle.Velocity-density systematics in the difluorides and oxides are governed, to a large extent, by cationic radius. The pressure dependence of shear elastic constant CS = (C11 ? C12)/2 is negative in all of the nine difluorides and oxides. However, the CS mode does not vanish at the initial phase transformation pressure; rather, the ratios of CSKS are 0.10 and 0.04 to 0.10 for transitions of rutile → orthorhombic and of rutile → “distorted fluorite”, respectively, and are in agreement with the approach of Demarest et al.  相似文献   

6.
A new phase which is much denser than the component oxides of spinel (MgAl2O4) was synthesised at loading pressures greater than 250 kbar and at about 1000°C in a diamond-anvil press coupled with laser heating. The new phase (ε-MgAl2O4) was indexed on the basis of an orthorhombic cell with a = 8.507 ± 0.004, b = 2.740 ± 0.003, c = 9.407 ± 0.005Å, and Z = 4 at room temperature and 1 bar pressure. Thus the molar volume for ε-MgAl2O4 at the above conditions was calculated to be 33.01 ± 0.07 cm3, which is 10.3% less than that of the mixture corundum plus periclase. The dense phase of spinel found in shock-wave experiments can be reasonably interpreted as ε-MgAl2O4, and this may be a potentially important mineral component of the earth's lower mantle. The new structure may also provide a possible candidate for the dense phases of Fe3O4 and Mg2SiO4 which were found by shock experiments.  相似文献   

7.
Samples from the surface of lava flows discharged by the 2012–2013 Tolbachik Fissure Eruption were found to contain oxysulfates of copper, sodium, and potassium: K2Cu3O(SO4)2 (fedotovite), NaKCu2O(SO4)2, and Na3K5Cu8O4(SO4)8. The last two phases have no naturally occurring or synthetic analogues that we are aware of. They form flattened crystals of prismatic to long-prismatic habits. The crystals of Na3K5Cu8O4(SO4)8 have a chemical composition corresponding to the empirical formula Na2.22K5.47Cu8.02S8.05O36. An X-ray analysis of this compound showed that it has a monoclinic symmetry, P2/c, a = 13.909(4), b = 4.977(1), c = 23.525(6) Å, β = 90.021(5)°, V = 1628.3(7) Å3. The crystal structure was determined by direct techniques and refined to yield R 1 for 3955 reflexes//web// with F 2 > 4σF. The compound NaKCu2O(SO4)2 also belongs to the monoclinic system, P2/c, a = 14.111(4), b = 4.946(1), c = 23.673(6) Å, β = 92.052(6)°, V = 1651.1(8) Å3. The structure was determined by direct techniques to yield a tentative structural model that has been refined up to R 1 = 0.135 for 4088 reflexes with F 2 > 4σF. The crystal structure of Na3K5Cu8O4(SO4)8 is based on chains of [O2Cu4]4+ consisting of rib-coupled oxy-centered tetrahedrons of (OCu4)6+. The chains are surrounded by sulfate radicals, resulting in columns of {[O2Cu4](SO4)4}4? aligned along the b axis. The interchain space contains completely ordered positions of Na+ and K+ cations. The principle underlying the connection of NaKCu2O(SO4)2 columns in the crystal structure of {[O2Cu4](SO4)4}4? is different, in view of the relation Na:K = 1 as contrasted with 3:5 for the compound Na3K5Cu8O4(SO4)8. The presence of oxy-centered tetrahedrons in the structure of these new compounds furnishes an indirect hint at the importance of polynuclear copper-oxygen radicals with centering oxygen atoms as forms of transport of copper by volcanic gases.  相似文献   

8.
Absolute18O content of standard mean ocean water   总被引:1,自引:0,他引:1  
The absolute values of the18O/16O ratio (Rs) and the relative18O content (Xs) in SMOW have been determined by comparing SMOW mass spectrometrically with well-defined synthetic mixtures of pure D218O and H216O. The results are:RS = (2005.20 ± 0.45) × 10?6, XS = (2000.45 ± 0.45) × 10?6  相似文献   

9.
Three physical quantities define the essentials of the cosmic ray exposure history of a sample of an iron meteorite: (1) the cosmic ray exposure age T, (2) the pre-atmospheric “size” S of the irradiated body, and (3) the location, i.e. the “depth” D, of the samples within the body. To establish these quantities for a given sample three independent quantities must be determined experimentally. In the present work T is ascertained by the 41K/40K method and the 4He and 21Ne concentrations (C4 and C21) are measured by the isotope dilution method. Signer and Nier's evaluation of the rare gas distribution in the meteorite Grant and the measured exposure age for this meteorite provide the relationships allowing to ascertain for any meteorite the quantities S and D from the 21Ne production rate (P21 = C21/T) and the 4He/21Ne ratio.Earlier measurements have provided data on the isotopic composition of potassium in 74 different iron meteorites. New rare gas measurements are reported for some 40 samples. Results on the age, size and depth are obtained for almost 60 samples. These data suggest that Signer and Nier's model is well suited for describing not only the rare gas distribution in a single selected meteorite (Grant) but also the exposure histories of the great majority of all irons. For a few samples, however, secondary breakups of the meteoroid and a two- or multiple-stage irradiation must be invoked. Further measurements are proposed for testing and, possibly, refining the still somewhat uncertain relationships between the abundances of cosmogenic nuclides and the quantities T, S, and D in very large meteorites.Histograms are presented showing the age distributions for irons of different chemical groups and of different size ranges.The feasibility and the relative merits of other methods for the determination of T, S, and D are discussed.  相似文献   

10.
The melting curves of the fluorides ZnF2 and NiF2 (rutile structure), CaF2, SrF2 and BaF2 (fluorite structure), and of the fluoroberyllates Na2BeF4 and Li2BeF4 have been studied at pressures ? 40 kbar by differential thermal analysis in a piston-cylinder high-pressure device. The initial slopes (dTm/dP)0 of these melting curves are respectively 7.2, 5.8, 16.7, 15.2, 15.7, 15.1 and <0°C/kbar. A new Li2BeF4 polymorph, apparently of the olivine structure type, is stable at pressures > 10 kbar and its melting curve has an average slope of ~6.7°C/kbar. These new data and those for SiO2, BeF2, GeO2, LiF and MgF2, recently studied by Jackson, are combined with existing data for elements, ionic compounds and silicates to assess the influence of crystal structure, molar volume and the nature of interatomic bonding on the initial slopes of melting curves. It is found that the entropy of fusion (ΔSm) is primarily a function of crystal structure while the volume change on fusion (ΔVm) is controlled by crystal molar volume within each isostructural series. Such systematics have recently facilitated estimation of the initial slopes of the melting curves of periclase and stishovite. New and existing melting data for silicates and their analogues have been analysed and a systematic dependence of (dTm/dP)0 on SiO2 concentration has been demonstrated. Possible implications of this trend for partial melting of upper-mantle garnet lherzolite are illustrated. Finally, the use of the traditional silicate-germanate and oxide-fluoride modelling schemes is reviewed in the light of information from this present study.  相似文献   

11.
Based on the experimental and calculated data, the model of depth variations in density, as well as the velocities of longitudinal (P) and transverse (S) waves, within the upper, middle, and lower crusts of the Kola-Norwegian block down to a depth of about 40 km is suggested. The variations in density and the velocities of the P- and S-waves are primarily caused by the changes in the mineral composition of the rocks. The relative reduction in the velocities of the P- and S-waves under the action of the increasing pressure and temperature in the depth interval from 5 to 37 km is estimated at ~2%.  相似文献   

12.
Abstract

We have contrived a model E(αω) α μ?1ω?p+1(ω 2?ω i 2)?+ for the distribution of internal wave energy in horizontal wavenumber, frequency-space, with wavenumber α extending to some upper limit μ(ω) α ω r-1 (ω 2?ω i 2)½, and frequency ω extending from the inertial frequency ω i to the local Väisälä frequency n(y). The spectrum is portrayed as an equivalent continuum to which the modal structure (if it exists) is not vital. We assume horizontal isotropy, E(α, ω) = 2παE1, α2, ω), with α1, α2 designating components of α. Certain moments of E1, α2, ω) can be derived from observations. (i) Moored (or freely floating) devices measuring horizontal current u(t), vertical displacement η(t),…, yield the frequency spectra F (u,η,…)(ω) = ∫∫ (U 2, Z 2,…)E1, ∞2, ω) dα12, where U, Z,… are the appropriate wave functions. (ii) Similarly towed measurements give the wavenumber spectrum F (…)(α1) = ∫∫… dα2 dω. (iii) Moored measurements horizontally separated by X yield the coherence spectrum R(X, ω) which is related to the horizontal cosine transform ∫∫ E(α1, α2 ω) cos α1 Xdα11. (iv) Moored measurements vertically separated by Y yield R(Y, ω) and (v) towed measurements vertically separated yield R(Y, α1), and these are related to similar vertical Fourier transforms. Away from inertial frequencies, our model E(α, ω) α ω ?p-r for α ≦ μ ω ω r, yields F(ω) ∞ ω ?p, F1) ∞ α1 ?q, with q = (p + r ? 1)/r. The observed moored and towed spectra suggest p and q between 5/3 and 2, yielding r between 2/3 and 3/2, inconsistent with a value of r = 2 derived from Webster's measurements of moored vertical coherence. We ascribe Webster's result to the oceanic fine-structure. Our choice (p, q, r) = (2, 2, 1) is then not inconsistent with existing evidence. The spectrum is E(∞, ω) ∞ ω ?1(ω 2?ω i 2 ?1, and the α-bandwith μ ∞ (ω 2?ω i 2)+ is equivalent to about 20 modes. Finally, we consider the frequency-of-encounter spectra F([sgrave]) at any towing speed S, approaching F(ω) as SS o, and F1) for α1 = [sgrave]/S as SS o, where S o = 0(1 km/h) is the relevant Doppler velocity scale.  相似文献   

13.
The attenuation characteristics of Indian lithosphere and its comparison with different tectonic settings in the world are determined from the observations of the Q for Lg(QLg)-, and S(QS)-waves in the 1-30 Hz frequency range. The scattering is approximated with a Gaussian distribution of spherical scatterers. To approximate single scattering, we use Dainty's [Geophy. Res. Lett. 8 (11) (1981) 1126] model that attenuation is given by 1/Q(ω) = 1/Qi + g(ω)v/ω, where Qi is intrinsic Q due to anelastic attenuation, v is shear wave velocity, ω is angular frequency, g = ∫n(a)σ da is the total scattering coefficient for S-to-S scattering, n(a) da is the number of scattering spheres of radius a per unit volume, and σ is the scattering cross-section for the sphere. We find that if n(a) is described by a simple two parameter (a0 and c) Gaussian of amplitude c and standard deviation and mean a0, the attenuation data for different regions of the world are well approximated over the frequency band of seismic observations. Our major findings are: (1) the maximum effect of scattering on attenuation occurs at 0.84 Hz or a wavelength of 4.16 km; (2) the values of g are frequency dependent. Values of g are of the order of 10−3 km−1 at 1-30 Hz, varying from 0.0031 to 0.01 and 0.001 to 0.0083 km−1 for tectonically active and stable regions, respectively; (3) regions of active tectonics and seismicity generally have lower Qi values (1000) than that in stable regions (2000); and (4) regions of high Qi value exhibit low intensity of scattering.  相似文献   

14.
Emission rates of sulfur dioxide (SO2) were measured at Erebus volcano, Antarctica in December between 1992 and 2005. Since 1992 SO2 emissions rates are normally distributed with a mean of 61 ± 27 Mg d− 1 (0.7 ± 0.3 kg s− 1) (n = 8064). The emission rates vary over minutes, hours, days and years. Hourly and daily variations often show systematic and cyclic trends. Long-wavelength, large amplitude trends appear related to lava lake area and both are likely controlled by processes occurring at depth. Time series analysis of continuous sequences of measurements obtained over periods of several hours reveals periodicity in SO2 output ranging from 10 to 360 min, with a 10 min cycle being the most dominant. Closed and open-system degassing models are considered to explain observed variable degassing rates. Closed-system degassing is possible as rheological stiffening and stick/slip may occur within the system. However, the timescales represented in these models do not fit observations made on Erebus. Open-system degassing and convection fits the observations collected as the presented models were developed for a system similar to Erebus in terms of degassing, eruptive activity and process repose time. We show that with the observed emission rate (0.71 kg s− 1) and a crystal content of 30%, magma will cool 65 °C to match observed heat fluxes; this cooling is sufficient enough to drive convection.  相似文献   

15.
In this paper the locations where ρapp = ρ1 and ? = π/4 and where these parameters reach an extreme value in two-layer magnetotelluric (MT) sounding curves are summarized in an extremely compact form. The key parameters over two-layer models with conductivities σ1, σ2 and upper layer thickness h are the real S and α, where S is the conductivity contrast and α is the distance between the observation site and the conductivity interface, normalized to the half skindepth in the first layer. If the impedance components, various resistivity definitions ( ρRe Z, ρIm Z and ρ|Z|, based on different parts of the complex impedance Z ) and the magnetotelluric phase ? are derived as a function of S and α, then the conditions for the apparent resistivity ρapp and the phase ? are that they either satisfy ρapp = ρ1 and ? = π/4 or attain extreme values which can be given in terms of simple algebraic equations between S and α. All equations are valid for observation sites at any depth 0 ≤ zh in the first layer. The set of equations, presented in a tabular form, may make it possible to determine a layer boundary from the short period part of the sounding curves, in particular the ρRe Z and the ?MT curves.  相似文献   

16.
Phase transformations in baddeleyite (ZrO2) and zircon (ZrSiO4) have been investigated in the pressure range between 100 and 300 kbar at about 1000°C in a diamond-anvil press coupled with laser heating. Baddeleyite has been found to transform to an orthorhombic cotunnite-type structure at pressures greater than 100 kbar, and is the first oxide known to adopt this structure. The lattice parameters of the cotunnite-type ZrO2 at room temperature and atmospheric pressure area = 3.328 ± 0.001 ,b = 5.565 ± 0.002 , andc = 6.503 ± 0.003A? withZ = 4 , and its volume is 14.3% smaller than baddeleyite and 7.6% smaller than the fluorite-type ZrO2. It is suggested that all the polymorphic structures of ZrO2 are possible high-pressure models for the post-rutile phase of SiO2. The polyhedral coordination in these model structures varies from 7 to “9”, compared with 6 for stishovite. If SiO2 were to adopt any of these structures in the deep mantle, Birch's hypothesis of a mixed-oxide lower mantle may still be viable, but the primary coordination of silicon would be greater than 6. Zircon has been found to transform to a scheelite-type structure at about 120 kbar as noted earlier. The scheelite-type ZrSiO4 was found to decompose further into a mixture of ZrO2 (cotunnite-type) plus SiO2 (stishovite) in the pressure range 200–250 kbar. As implied by the transitions in zircon, the large cations of U and Th in the earth's deep mantle are most likely to occur in dioxides with structures such as the cotunnite-type, rather than to occur in silicates.  相似文献   

17.
Majorite-garnet solid solutions are major mineral phases in the Earth’s upper mantle and transition zone. Here we present the first Brillouin scattering measurements of the elasticity of majorite (Mj, Mg4Si4O12)-pyrope (Py, Mg3Al2Si3O12) solid solutions (Mj50Py50 and Mj80Py20) and single-crystal elasticity of pure synthetic pyrope at temperatures up to 800°C. The temperature derivatives of the adiabatic bulk (KS) and shear (μ) moduli for all compositions along the Mj-Py join are the same within the experimental uncertainties (−∂KS/∂T=14.0-14.5(20) MPa/K, −∂μ/∂T=8.3-9.2(10) MPa/K). The temperature dependence of the acoustic velocities for Mj-Py solid solutions is about half that of other major transition zone minerals. This implies that temperature variations in the transition zone, inferred from lateral velocity heterogeneity, can be significantly underestimated if the properties of majoritic garnet are not taken into account.  相似文献   

18.
A spatial and temporal study on data collected along the longitudinal gradient of the Principal Channel of Bahía Blanca estuary, Argentina, was carried out during 1992–1993. At nine stations, phytoplankton abundance, chlorophyll a (Chl-a) concentration, inorganic nutrient levels, Secchi disk depth, euphotic depth:mixing depth ratio (Zeu:Zm), salinity and temperature were recorded. Phytoplankton abundance, Chl-a concentration and nutrient levels decreased towards the outer zone of the estuary. The inner zone (stations 1 and 2), which was characterized by high turbidity, high nutrient concentrations and high Zeu:Zm (>0.16, [critical mixing ratio]), registered the highest phytoplankton abundance and Chl-a concentrations. Temporal variability of data was also noteworthy in this zone. The highest biomass values thus corresponded to June, July, August and the beginning of spring (18 μg Chl-a L−1 and 9×106 cells L−1) concomitantly with a diatom bloom. In the middle zone (stations 3–6), a strong phytoplankton biomass decrease was observed and it coincided with both deep-mixed depths and low Zeu:Zm (<0.16). The outer zone (stations 7–9), which was characterized by low phytoplankton biomass values and low nutrient levels all along the year, was the area mostly influenced by waters from the adjacent continental shelf. In view of the above, it can be concluded that the most important primary production in the Bahía Blanca would be produced in the shallow inner zone during winter, being the spatial reach of the phytoplankton biomass principally limited to estuarine waters. Presumably, less than 5% of such biomass may reach the coastal area of the estuary.  相似文献   

19.
The most abundant mineral on Earth has a perovskite crystal structure and a chemistry that is dominated by MgSiO3 with the next most abundant cations probably being aluminum and ferric iron. The dearth of experimental elasticity data for this chemically complex mineral limits our ability to calculate model seismic velocities for the lower mantle. We have calculated the single crystal elastic moduli (cij) for (Mg, Fe3 +)(Si, Al)O3 perovskite using density functional theory in order to investigate the effect of chemical variations and spin state transitions of the Fe3+ ions. Considering the favored coupled substitution of Mg2+-Si4 + by Fe3+-Al3+, we find that the effect of ferric iron on seismic properties is comparable with the same amount of ferrous iron. Ferric iron lowers the elastic moduli relative to the Al charge-coupled substitution. Substitution of Fe3+ for Al3+, giving rise to an Fe/Mg ratio of 6%, causes 1.8% lower longitudinal velocity and 2.5% lower shear velocity at ambient pressure and 1.1% lower longitudinal velocity and 1.8% lower shear velocity at 142 GPa. The spin state of the iron for this composition has a relatively small effect (< 0.5% variation) on both bulk modulus and shear modulus.  相似文献   

20.
Using acoustic measurement interfaced with a large volume multi-anvil apparatus in conjunction with in situ X-radiation techniques, we are able to measure the density and elastic wave velocities (VP and VS) for both ortho- and high-pressure clino-MgSiO3 polymorphs in the same experimental run. The elastic bulk and shear moduli of the unquenchable high-pressure clinoenstatite phase were measured within its stability field for the first time. The measured density contrast associated with the phase transition OEN → HP-CEN is 2.6-2.9% in the pressure of 7-9 GPa, and the corresponding velocity jumps are 3-4% for P waves and 5-6% for S waves. The elastic moduli of the HP-CEN phase are KS=156.7(8) GPa, G = 98.5(4) GPa and their pressure derivatives are KS′=5.5(3) and G′ = 1.5(1) at a pressure of 6.5 GPa, room temperature. In addition, we observed anomalous elastic behavior in orthoenstatite at pressure above 9 GPa at room temperature. Both elastic wave velocities exhibited softening between 9 and 13-14 GPa, which we suggest is associated with a transition to a metastable phase intermediate between OEN and HP-CEN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号