首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 399 毫秒
1.
借助于弱散射理论和模式拟合方法,单站行星际闪烁观测可以诊断太阳风速度,本文讨论了太阳风参数和射电源角尺度对闪烁谱的影响,以及太阳风速度的积分效应,结果表明,闪烁谱的特征是与视线上距太阳最近处的太阳风速度直接相关的。  相似文献   

2.
The solar wind velocity near Earth shows systematic structure in and around the heliospheric current sheet. The solar wind velocity measurements at IMF sector boundary crossings at 1 AU during 1972–1977 have been used to infer the azimuthal structure of the solar wind velocity in the current sheet. We found that the solar wind velocity in the in-ecliptic portion of the current sheet varies from longitude to longitude, where it originates from the corona. Also, the yearly average value of solar wind velocity in the HCS is found to vary with the phase of the solar cycle; with a maximum value around 1974. TheK-corona brightness on the source surface corresponding to the IMF sector boundary crossings during the period of study also shows a similar but opposite pattern of variation when the data are averaged over a long period. However, this relation is not observed when we considered them individually. So, we conclude that there exists a longitudinal variation of solar wind velocity in the heliospheric current sheet.  相似文献   

3.
Dust devils – convective vortices made visible by the dust and debris they entrain – are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites.We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements.Daily (10:00–16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10–20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction.The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.  相似文献   

4.
Eccentric-orbit binary models for transient X-ray sources are investigated. In these models, a compact star is in an eccentric orbit around a more massive star. As the compact star accretes mass from the stellar wind of the massive star, the accretion rate becomes time-dependent. The accretion rate is determined by Bondi's accretion radius, which depends on both the relative velocity of the stellar wind to the compact star and the sound velocity through the stellar wind. With reasonable sets of the eccentricity, the semi-major axis, the stellar wind velocity and the sound velocity, we obtain the variations of the light curves compatible with observations for the transient X-ray sources. It is likely that many transient X-ray sources are explainable by eccentric-orbit binary models.  相似文献   

5.
Employing Vlasov-Poisson model for nonthermal distributed permeating plasma consisting of electron-positron-ion plasma of our earth’s magnetosphere and the solar wind plasma with some fixed streaming velocity, can drive ion-acoustic waves unstable. The growth rates are computed with respect to the variation in spectral index of the kappa or generalized Lorentzian distribution and streaming velocity of the solar wind. It is found that the growth rate increases with the decrease of spectral index and increases with the streaming velocity of the solar wind. The numerical results are also presented by choosing some suitable parameters.  相似文献   

6.
Cross-correlation functions have been computed between green-line intensity (Kislovodsk) and Vela solar wind velocity January–June 1967. They are calculated separately for east and west limb observations in 5° latitude increments, and the solar wind velocites are correlated at their estimated emission times by correcting for the plasma Earth-Sun transit time using the observed velocities. The cross-correlation patterns appear to be dominated by two competing effects: a tendency of quasi-stationary green-line emission and solar wind velocity to anti-correlate; and a tendency of transient green-line emission and solar wind velocity enhancements to correlate positively. We also find evidence for simultaneous (same-day) emission brightenings over 2 to 4 limb quadrants. It is therefore recommended that, following a well-known practice in solar terrestrial studies, recurrent and transient events in both solar wind and green-line emissions should be studied separately.  相似文献   

7.
The annual average values of the solar wind velocity over the period 1962–1972 were investigated on the basis of data obtained from different space probes. The comparison of the pattern of the annual average solar wind velocities observed by the Vela and Pioneer 6 satellites indicates that the pattern presented by Gosling et al. (1971) is realistic. The long-range trend in the solar wind velocity during the 11-year cycle is governed by the number and intensity of irregularities occurring in the corona. These irregularities may represent motions of mass or some types of MHD shock waves and they are responsible for the increased heating of the corona which then in turn causes an increase in the values of the solar radar cross-section and of the solar wind velocity. A close relation is demonstrated between the monthly and annual average values of the solar wind velocity and of the cross-section.  相似文献   

8.
Line-driven winds from hot stars and accretion disks are thought to follow a unique, critical solution that corresponds to a maximum mass-loss rate and a particular velocity law. We show that in the presence of negative velocity gradients, radiative-acoustic (Abbott) waves can drive shallow wind solutions toward larger velocities and mass-loss rates. Perturbations that are introduced downstream from the critical point of the wind lead to a convergence toward the critical solution. By contrast, low-lying perturbations cause evolution toward a mass-overloaded solution, developing a broad deceleration region in the wind. Such a wind differs fundamentally from the critical solution. For sufficiently deep-seated perturbations, overloaded solutions become time-dependent and develop shocks and shells.  相似文献   

9.
Vertical profiles of the turbulence parameters calculated for the planet-averaged conditions from the experimental data on the turbulent fluctuations of temperature and wind velocity are presented. Improved formulas accounting for the difference between the atmospheric gas on Venus and an ideal one, and the large difference in its thermal capacity at different altitudes, are used. The commonly used formula for the potential temperature describing the atmospheres of the Earth and Mars is inapplicable to the atmosphere of Venus. It has been shown that the opinion on the absence of turbulence in the atmosphere of Venus is based on overestimated values of the dynamic Richardson number obtained from the smoothed profiles of wind velocity, while its actual values are below unity due to the large wind velocity gradients produced by buoyancy waves. To improve the global circulation models of the atmosphere of Venus, it is necessary to use the currently available turbulence parameters calculated from experimental data.  相似文献   

10.
The accretion disc in active galactic nucleus (AGN) is expected to produce strong outflows, in particular an ultraviolet (UV)-line-driven wind. Several observed spectral features, including the soft X-ray excess, have been associated with the accretion disc wind. However, current spectral models of the X-ray spectrum of AGN observed through an accretion disc wind, known to provide a good fit to the observed X-ray data, are ad hoc in their treatment of the outflow velocity and density of the wind material. In order to address these limitations we adopt a numerical computational method that links a series of radiative transfer calculations, incorporating the effect of a global velocity field in a self-consistent manner { xstar Simulation Chain for Outflows with Radiative Transfer ( xscort )}. We present a series of example spectra from the xscort code that allow us to examine the shape of AGN X-ray spectra seen through a smooth wind with terminal velocity of 0.3 c , as appropriate for a UV-line-driven wind. We calculate spectra for a range of different acceleration laws, density distributions, total column densities and ionization parameters, but all these have sharp features that contrast strongly with both the previous 'smeared absorption' models, and with the observed smoothness of the soft X-ray excess. This rules out absorption in a radiatively driven accretion disc wind as the origin of the soft X-ray excess, though a larger terminal velocity, possibly associated with material in a magnetically driven outflow/jet, may allow outflow models to recover a smooth excess.  相似文献   

11.
Assuming a stationary, radial, spherically symmetric solar wind and a radial magnetic field direction in the vicinity of the sun, an equation of motion for ions heavier than protons in the solar wind is derived. The general properties of this equation are discussed and the results of numerical integrations are given. These results are based on the assumption of maxwellian velocity distribution functions for electrons, protons and ions, but the effects of first order deviations from such distributions are also presented and discussed. It is shown that dynamical friction, i.e. momentum transfer from protons to heavier ions accounts for the observed fact that heavier ions - if accelerated at all - normally reach the same velocity as the protons in the solar wind. Because of the non-linear relation between dynamical friction and proton-ion velocity difference a minimum proton flux is required to carry a certain ion species in the solar wind. Formulae comparing the minimum fluxes for different ions are given. It is shown that elements up to and beyond iron will be carried along in the solar wind as long as helium is carried along. Substantial isotopic fractionation is possible, in particular in the case of helium. The effects of ion motion and escape on abundances in the corona and in the outer convective zone of the sun are discussed.  相似文献   

12.
Wang  S.  Wang  X.Y.  Wu  C.S.  Li  Y.  Chao  J.K.  Yeh  T. 《Solar physics》2001,202(2):385-393
In this note a kinetic interaction process between a fast plasmoid ejected by the Sun, which represents another form of CME, and the background solar wind in the corona is discussed. We consider a system which consists of the plasmoid ions moving faster than the solar wind. We are interested in the time evolution of the ion distribution functions due to wave–particle interactions. Simulation results show that both perpendicular and parallel temperatures of the solar wind ions increase when the relative velocity between the plasmoid and the solar wind is sufficiently greater than the Alfvén velocity of the plasmoid ions. We suggest that this process is significant for the heating and acceleration of the solar wind in the low-heliographic latitude regions near the Sun.  相似文献   

13.
We consider the existence of a neutron star magnetic field by the detected cyclotron lines. We collected data on nine sources of high-mass X-ray binaries with supergiant companions as a test case for our model, to demonstrate their distribution and evolution. The wind velocity, spin period and magnetic field strength are studied under different mass loss rates. In our model, correlations between mass-loss rate and wind velocity are found and can be tested in further observations. We examine the parameter space where wind accretion is allowed, avoiding the barrier of rotating magnetic fields, with robust data on the magnetic field of neutron stars. Our model shows that most sources(six of nine systems) can be fed by the wind with relatively slow velocity, and this result is consistent with previous predictions. In a few sources,our model cannot fit the standard wind accretion scenario. In these peculiar cases, other scenarios(disk formation, partial Roche lobe overflow) should be considered. This would provide information about the evolutionary tracks of various types of binaries, and thus exhibit a clear dichotomy behavior in wind-fed X-ray binary systems.  相似文献   

14.
The results of a 12 month radiometeor wind study at Christchurch, New Zealand (43°S), from November 1970 to November 1971, are given for a height of 90–100 km. The analysis procedure of the wind velocity data is fully discussed and the characteristics of the resulting wind spectrum are compared with those of other meteor wind studies.  相似文献   

15.
Data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and synoptic maps from Kitt Peak are used to analyze the polar coronal holes of solar activity cycles 22 and 23 (from 1990 to end of 2003). In the beginning of the declining phase of solar cycles 22 and 23, the north polar coronal holes (PCHs) appear about one year earlier than the ones in the south polar region. The solar wind velocity and the solar wind ionic charge composition exhibit a characteristic dependence on the solar wind source position within a PCH. From the center toward the boundary of a young PCH, the solar wind velocity decreases, coinciding with a shift of the ionic charge composition toward higher charge states. However, for an old PCH, the ionic charge composition does not show any obvious change, although the latitude evolution of the velocity is similar to that of a young PCH.  相似文献   

16.
Opitz  A.  Karrer  R.  Wurz  P.  Galvin  A. B.  Bochsler  P.  Blush  L. M.  Daoudi  H.  Ellis  L.  Farrugia  C. J.  Giammanco  C.  Kistler  L. M.  Klecker  B.  Kucharek  H.  Lee  M. A.  Möbius  E.  Popecki  M.  Sigrist  M.  Simunac  K.  Singer  K.  Thompson  B.  Wimmer-Schweingruber  R. F. 《Solar physics》2009,256(1-2):365-377

The two STEREO spacecraft with nearly identical instrumentation were launched near solar activity minimum and they separate by about 45° per year, providing a unique tool to study the temporal evolution of the solar wind. We analyze the solar wind bulk velocity measured by the two PLASTIC plasma instruments onboard the two STEREO spacecraft. During the first half year of our measurements (March?–?August 2007) we find the typical alternating slow and fast solar wind stream pattern expected at solar minimum. To evaluate the temporal evolution of the solar wind bulk velocity we exclude the spatial variations and calculate the correlation between the solar wind bulk velocity measured by the two spacecraft. We account for the different spacecraft positions in radial distance and longitude by calculating the corresponding time lag. After adjusting for this time lag we compare the solar wind bulk velocity measurements at the two spacecraft and calculate the correlation between the two time-shifted datasets. We show how this correlation decreases as the time difference between two corresponding measurements increases. As a result, the characteristic temporal changes in the solar wind bulk velocity can be inferred. The obtained correlation is 0.95 for a time lag of 0.5 days and 0.85 for 2 days.

  相似文献   

17.
The initially supersonic flow of the solar wind passes through a magnetic shock front where its velocity is supposed to be reduced to subsonic values. The location of this shock front is primarily determined by the energy density of the external interstellar magnetic field and the momentum density of the solar wind plasma. Interstellar hydrogen penetrating into the heliosphere undergoes charge exchange processes with the solar wind protons and ionization processes by the solar EUV radiation. This results in an extraction of momentum from the solar wind plasma. Changes of the geometry and the location of the shock front due to this interaction are studied in detail and it is shown that the distance of the magnetic shock front from the Sun decreases from 200 to 80 AU for an increase of the interstellar hydrogen density from 0.1 to 1.0 cm−3. The geometry of the shock front is essentially spherical with a pronounced embayment in the direction opposite to the approach of interstellar matter which depends very much on the temperature of the interstellar gas. Due to the energy loss by the interaction with neutral matter the solar wind plasma reduces its velocity with increasing distance from the Sun. This modifies Parker's solution of a constant solar wind velocity.  相似文献   

18.
Chalov  S.V.  Fahr  H.J. 《Solar physics》1999,187(1):123-144
As known for a long time, interstellar wind neutral helium atoms deeply penetrate into the inner heliosphere and, when passing through the solar gravity field, form a strongly pronounced helium density cone in the downwind direction. Helium atoms are photoionized and picked-up by the solar wind magnetic field, but as pick-up ions they are not simply convected outwards with the solar wind in radial directions as assumed in earlier publications. Rather they undergo a complicated diffusion-convection process described here by an appropriate kinetic transport equation taking into account adiabatic cooling and focusing, pitch angle scattering and energy diffusion. In this paper, we solve this equation for He+pick-up ions which are injected into the solar wind mainly in the region of the helium cone. We show the resulting He+pick-up ion density profile along the orbit of the Earth in many respects differs from the density profile of the neutral helium cone: depending on solar-wind-entrained Alfvénic turbulence levels, the density maximum when looking from the Earth to the Sun is shifted towards the right side of the cone, the ratio of peak-densities to wing-densities varies and a left-to-right asymmetry of the He+-density profile is pronounced. Derivation of interstellar helium parameters from these He+-structures, such as the local interstellar medium (LISM) wind direction, LISM velocity and LISM temperature, are very much impeded. In addition, the pitch-angle spectrum of He+pick-up ions systematically becomes more anisotropic when passing from the left to the right wing of the cone structure. All effects mentioned are more strongly pronounced in high velocity solar wind compared to the low velocity solar wind.  相似文献   

19.
It has been pointed out in the past that it is impossible to accelerate molecular material to velocities ≥ 25 km s−1 with gasdynamic shocks without dissociating the gas. Because of this, it has been argued that observations of molecular emission with radial velocities ∼ 20–100 km s−1 imply the presence of 'C-shocks' (which have much lower post-shock temperatures, and therefore do not dissociate the gas) and the existence of strong (∼ 10–100 μG) magnetic fields.   In this paper, we discuss an alternative mechanism for accelerating molecular material to high velocities: a high-velocity, low-density wind drives a non-dissociative shock (with shock velocity v cs ≤ 25 km s−1) into a high-density, molecular clump. Once this shock wave has gone through the clump, the molecular material is moving at a velocity ∼  v cs and has a gas pressure approximately equal to the ram pressure of the impinging wind. The compressed molecular clump can now be accelerated directly by the ram pressure of the wind (without the passage of further shocks through the molecular material), and will eventually move at the wind velocity.   This mechanism has been previously invoked to explain high-velocity molecular emission. However, numerical simulations have shown that a wind/clump interaction leads to the fragmentation of the clump before it can be accelerated to large velocities. In our numerical simulation (which includes an approximate treatment of the relevant microphysics) we find that the fragments that are produced are still largely molecular, and that they are rapidly accelerated to velocities comparable to the wind velocity. We therefore conclude that a wind/molecular clump interaction is indeed a valid mechanism for producing high-velocity molecular features.  相似文献   

20.
We search for persistent and quasi-periodic release events of streamer blobs during 2007 with the Large Angle Spectrometric Coronagraph on the Solar and Heliospheric Observatory and assess the velocity of the slow solar wind along the plasma sheet above the corresponding streamer by measuring the dynamic parameters of blobs. We find ten quasi-periodic release events of streamer blobs lasting for three to four days. In each day of these events, we observe three – five blobs. The results are in line with previous studies using data observed near the last solar minimum. Using the measured blob velocity as a proxy for that of the mean flow, we suggest that the velocity of the background slow solar wind near the Sun can vary significantly within a few hours. This provides an observational manifestation of the large velocity variability of the slow solar wind near the Sun.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号