首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The northern limits of glacial lake Algonquin in upper Michigan   总被引:1,自引:0,他引:1  
A number of ancient shorelines formed by late-Pleistocene proglacial lakes have been found in eastern upper Michigan. These shorelines delimit several water planes, the uppermost of which is correlated with the Main Lake Algonquin stage. This correlation is based on the continuity of the highest water plane with Main Algonquin shorelines in Wisconsin and Ontario, the strength of the shoreline features, its altitudinal relationship with lower water planes, and a reinterpretation of radiocarbon dates from the Sault Ste. Maria area. The isobases of this water plane have a bearing of S75°E. At the time of the maximum extent of Lake Algonquin, ca. 10,600 yr B.P., its northern, ice-limited border lay along the Munising moraine, the northernmost of the two main morainic systems of eastern upper Michigan. This interpretation lends support to the idea of a period of slow deglaciation from ca. 11,000 to 10,000 yr B.P. An ice lobe occupied the central Lake Superior basin until early Holocene time. Radiocarbon dates on wood found beneath till or outwash at several sites indicate a minor ice readvance from the central Lake Superior basin ca. 10,000 yr B.P. If true, this would have prevented the development of the post-Duluth series of glacial lakes in the western Lake Superior basin until ca. 9900 yr B.P., well after the end of the main Lake Algonquin stage.  相似文献   

2.
Molluscs, ostracodes, diatoms, pollen, plant macrofossils, peat, and wood have been found in glacial Lake Algonquin sediments, and estuarine-alluvial sediments of the same age, in southern Ontario. Molluscs and ostracodes are particularly abundant and widespread. Pollen analysis of Lake Algonquin sediments, bogs on the Algonquin terrace, and upland bogs above the Algonquin terrace, indicate that Lake Algonquin was still in existence at the time of the spruce-pine pollen transition, previously dated at an average of 10,600 yr BP at a number of sites in Michigan, Ohio, and southern Ontario. Wood in estuarine-alluvial sediments graded to the Algonquin level is of similar radiocarbon age. Evidence from several sites in the eastern Great Lakes area suggests the presence of a preceding low-water stage (Kirkfield outlet stage); drowned and alluviated valleys and fining-upward sediment sequences have been identified in this study as further supporting evidence. Lake Algonquin drained from the southern sites by isostatic tilting and eventual opening of the “North Bay outlet” some time shortly after 10,400 yr BP.Our radiocarbon dates suggest the low-water stage has an age of about 11,000 yr BP, and that Lake Algonquin drained 10,000–15,000 y. a. Dates previously published for the Lake Michigan basin are generally too young in comparison with ours, and dates on the Champlain Sea are generally too old. More critical evaluation of all dating results is desirable.From fossil remains we suggest a rapidly expanding fauna in the waters of Lake Algonquin. The spruce pollen period was a time of rapid faunal and floral migration, when the ice front was retreating from Kirkfield to North Bay, Ontario. Diversity of some species and fossil numbers increased substantially at the transition from spruce to pine just before Lake Algonquin drained.  相似文献   

3.
Approximately 8000 km of continuous seismic reflection profiles throughout Lake Superior were examined for evidence of recessional moraines and other ice-margin deposits associated with the retreat of late Wisconsin ice. These features are correlated with the record of glacial-lake evolution in western Lake Superior. An offlapping sequence of glacial and glacial-lacustrine dediments overlying bedrock is recognized in west-central Lake Superior that is progressively younger to the northeast. The sequence underlies more recent glaical-lacustrine and postglacial sediments. Four facies are recognized on the basis of geomorphologic and acoustic properties and are interpreted to represent a southwest-to-northeast assemblage of: proglacial stratified drift (facies A), drift in major end moraines (facies B), till deposited as glacial retreat resumed, or possibly late-stage ablation till (facies C), and basal till (facies D). The prominent moraines of facies B are unusually thick and are believed to mark the ice-margin shorelines of successive major proglacial lakes that formerly occupied parts of western Lake Superior. The moraines are tentatively correlated with Glacial Lake Duluth (unit 1), Glacial Lake Washburn (unit 2), and Glacial Lake Beaver Bay (unit 3), the most prominent of lakes drained via the progressively lower outlets via the Moose Lake/ Brule-St. Croix Rivers, the Huron Mountains, and the Au Train-Whitefish regions, respectively.  相似文献   

4.
A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south‐central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low‐relief ice‐walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice‐walled lake deposit. The semi‐circular basin is about 0.72 km wide and formed of a 4‐ to 16‐m‐thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270 ± 50 14C a BP (21 810 cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil‐bearing horizon was 17 770 ± 40 14C a BP (21 180 cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice‐walled lake succession persisted for between 210 and 860 cal. a (modal value: 610 cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice‐walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice‐walled lake sedimentation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In the north Irish Sea basin (ISB), sedimentary successions constrained by AMS 14C dates obtained from marine microfaunas record three major palaeoenvironmental shifts during the last deglacial cycle. (i) Marine muds (Cooley Point Interstadial) dated to between 16.7 and 14.7 14C kyr BP record a major deglaciation of the ISB following the Late Glacial Maximum (LGM). (ii) Terminal outwash and ice-contact landforms (Killard Point Stadial) were deposited during an extensive ice readvance, which occurred after 14.7 14C kyr BP and reached a maximum extent at ca.14 14C kyr BP. At this time the lowlands surrounding the north ISB were drumlinised. Coeval flowlines reconstructed from these bedforms end at prominent moraines (Killard Point, Bride, St Bees) and indicate contemporaneity of drumlinisation from separate ice dispersal centres, substrate erosion by fast ice flow, and subglacial sediment transfer to ice-sheet margins. In north central Ireland bed reorganisation associated with this fast ice-flow phase involved overprinting and drumlinisation of earlier transverse ridges (Rogen-type moraines) by headward erosion along ice streams that exited through tidewater ice margins. This is the first direct terrestrial evidence that the British Ice Sheet (BIS) participated in Heinrich event 1 (H1). (iii) Regional mud drapes, directly overlying drumlins, record high relative sea-level (RSL) with stagnation zone retreat after 13.7 14C kyr BP (Rough Island Interstadial). Elsewhere in lowland areas of northern Britain ice-marginal sediments and morainic belts record millennial-scale oscillations of the BIS, which post-date the LGM advance on to the continental shelf, and pre-date the Loch Lomond Stadial (Younger Dryas) advance in the highlands of western Scotland (ca. 11–10 14C kyr BP). In western, northwestern and northern Ireland, Killard Point Stadial (H1) ice limits are reconstructed from ice-flow lines that are coeval with those in the north ISB and end at prominent moraines. On the Scottish continental shelf possible H1-age ice limits are reconstructed from dated marine muds and associated ice marginal moraines. It is argued that the last major offshore ice expansion from the Scottish mountains post-dated ca. 15 14C kyr BP and is therefore part of the H1 event. In eastern England the stratigraphic significance of the Dimlington silts is re-evaluated because evidence shows that there was only one major ice oscillation post-dating ca.18 14C kyr BP in these lowlands. In a wider context the sequence of deglacial events in the ISB (widespread deglaciation of southern part of the BIS → major readvance during H1 → ice sheet collapse) is similar to records of ice sheet variability from the southern margins of the Laurentide Ice Sheet (LIS). Well-dated ice-marginal records, however, show that during the Killard Point readvance the BIS was at its maximum position when retreat of the LIS was well underway. This phasing relationship supports the idea that the BIS readvance was a response to North Atlantic cooling induced by collapse of the LIS. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
The North Atlantic Younger Dryas climatic reversal did not cause a glacier advance on Mount Rainier. The glaciers on Mount Rainier seem to have advanced in response to regional or local shifts in climate. However, the Younger Dryas climatic reversal may have affected the Mount Rainier area, causing a cold, but dry, climate unfavorable to glacier advances. Glaciers in the vicinity of Mount Rainier advanced twice during late glacial/early Holocene time. Radiocarbon dates obtained from lake sediments adjacent to the corresponding moraines are concordant, indicating that the ages for the advances are closely limiting. The first advance occurred before 11,300 14C yr BP (13,200 cal yr BP). During the North Atlantic Younger Dryas event, between 11,000 and 10,000 14C yr BP (12,900 and 11,600 cal yr BP), glaciers retreated on Mount Rainier, probably due to a lack of available moisture, but conditions may have remained cold. The onset of warmer conditions on Mount Rainier occurred around 10,000 14C yr BP (11,600 cal yr BP). Organic sedimentation lasted for at least 700 years before glaciers readvanced between 9800 and 8950 14C yr BP (10,900 and 9950 cal yr BP).  相似文献   

7.
Paleoindian peoples migrated into the cul-de-sac between Lake Agassiz, the Superior basin, and the receding ice margin about 9500 years ago. Around Thunder Bay there is a close but not exclusive association of habitation sites with Lake Minong and its subsequent declining stages. Reconstruction of shorelines by detailed morphological mapping provides explanation of known sites, reasonable longshore correlation, and a predictive tool for focusing new investigations. Sites near taconite sources, in sheltered embayments, at river mouths, and near lookout points are preferred, but some occupance continued after water level decline. the full sequence of Paleoindian to Shield Archaic periods is uniquely destroyed by the Nipissing transgression (8000-5500 years BP), which buried and truncated earlier shorelines. This sequence is potentially preserved on the north shore of Superior, but limited archaeological resources exist in the region, despite healthy, interdisciplinary cooperation.  相似文献   

8.
Sharp-crested moraines, up to 120 m high and 9 km beyond Little Ice Age glacier limits, record a late Pleistocene advance of alpine glaciers in the Finlay River area in northern British Columbia. The moraines are regional in extent and record climatic deterioration near the end of the last glaciation. Several lateral moraines are crosscut by meltwater channels that record downwasting of trunk valley ice of the northern Cordilleran ice sheet. Other lateral moraines merge with ice-stagnation deposits in trunk valleys. These relationships confirm the interaction of advancing alpine glaciers with the regionally decaying Cordilleran ice sheet and verify a late-glacial age for the moraines. Sediment cores were collected from eight lakes dammed by the moraines. Two tephras occur in basal sediments of five lakes, demonstrating that the moraines are the same age. Plant macrofossils from sediment cores provide a minimum limiting age of 10,550-10,250 cal yr BP (9230 ± 50 14C yr BP) for abandonment of the moraines. The advance that left the moraines may date to the Younger Dryas period. The Finlay moraines demonstrate that the timing and style of regional deglaciation was important in determining the magnitude of late-glacial glacier advances.  相似文献   

9.
The extent, basal conditions and retreat history of a Loch Lomond Stadial glacier are reconstructed based on detailed geomorphological and sedimentological assessment. We present new evidence from the vicinity of Coire Ardair that supports the former existence of a warm-based, locally-fed valley glacier, with probable cold-based ice on the surrounding plateau. This is broadly consistent with modelled creep-dominated flow in the upper catchment and sliding-dominated flow throughout much of the valley. A dense suite of moraines, primarily formed in ice-marginal environments, records a multi-phase recessional history: (1) active and oscillatory retreat; (2) a prolonged ice stillstand; (3) partial ice stagnation with occasional minor readvances; (4) increased oscillatory retreat with a substantial readvance event; and (5) rapid and uninterrupted retreat. We propose that a Coire Ardair glacier responded to sub-centennial scale climate fluctuations, possibly associated with the periodic delivery of warmer air masses to the region, rather than to a single, prominent shift in climate.  相似文献   

10.
End moraines (called the Herdla Moraines) from the Younger Dryas Stadial arc morphologically mapped along the western coast of Norway, from Hardangerfjorden to north of Sognefjorden. The submarine position of the moraines are found by means of a conventional echo sounder. Stratigraphieal studies with many C14 datings are used for age determination, giving Late Younger Dryas (10,000–10,500 C14 years B.P.) for the Herdla Moraines. The moraines are correlated with the Ra-Salpausselkä Moraines. Isobases for the Younger Dryas are obtained from marine terraces formed contemporaneously with the moraines.  相似文献   

11.
Recessional positions of the Newfoundland ice sheet 14-9 ka BP are represented by fjord-mouth submarine moraines, fjord-head emerged ice-contact marine deltas, and inland moraine belts. The arcuate submarine moraines have steep frontal ramparts and comprise up to 80 m of acoustically incoherent ice-contact sediment (or till) interfingered distally with glaciomarine sediment that began to be deposited c. 14.2 ka BP. The moraines formed by stabilization of ice that calved rapidly back along troughs on the continental shelf. The ice front retreated to fjord-heads and stabilized to form ice-contact delta terraces declining in elevation westward from +26 m to just below present sea level. Stratified glaciomarine sediments accumulated in fjords, while currents outside fjords eroded the upper part of the glaciomarine deposits, forming an unconformity bracketed by dates of 12.8 and 8.5 ka BP. The delta terraces are broadly correlated with the 12.7 ka BP Robinson's Head readvance west of the area. The ice front retreated inland, pausing three or four times to form lines of small bouldery stillstand moraines, heads of outwash, sidehill meltwater channels, and beaded eskers. Lake-sediment cores across this belt yield dated pollen evidence of three climatic reversals to which the moraines are equated: the Killarney Oscillation c. 11.2 ka BP, the Younger Dryas chronozone 11.0-10.4 ka BP, and an unnamed cold event c. 9.7 ka BP. Relative sea level fell in the early Holocene because of crustal rebound, so that outwash and other alluvium accumulated in deltas now submerged due to relative sea-level rise.  相似文献   

12.
The position of the Inland Ice margin during the late Wisconsin-Würm glaciation (ca. 15,000 yr BP) is probably marked by offshore banks (submarine moraines?) in the Davis Strait. The history of the Inland Ice since the late Wisconsin-Würm can be divided into four principal phases: (1) Relatively slow retreat from the offshore banks occurred at an average rate of approximately 1 km/100 yr until ca. 10,000 yr BP (Younger Dryas?) when the Taserqat moraine system was formed by a readvance. (2) At ca. 9500 yr BP, the rate of retreat increased markedly to about 3 km/100 yr, and although nearly 100 km of retreat occurred by ca. 6500 yr BP, it was punctuated by frequent regional reexpansions of the Inland Ice that formed extensive moraine systems at ca. 8800-8700 yr BP (Avatdleq-Sarfartôq moraines), 8400-8100 yr BP (Angujârtorfik-Fjord moraines), 7300 yr BP (Umîvît moraines), and 7200-6500 yr BP (Keglen-Mt, Keglen moraines). (3) Between 6500 and 700 yr BP, discontinous ice-margin deposits and ice-disintegration features were formed during retreat, which may have continued until the ice margin was near or behind its present position by ca. 6000 yr BP. Most of the discontinuous ice-margin deposits occur within 5–10 km of the present ice margin, and may have been formed by two main phases of readvance at ca. 4800-4000 yr BP and 2500-2000 yr BP. (4) Since a readvance at ca. 700 yr BP, the Inland Ice margin has undergone several minor retreats and readvances resulting in deposition of numerous closely spaced moraines within about 3 km of the present ice margin. The young moraines are diffieulto to correlate regionally, but several individual moraines have the following approximate ages: A.D. 1650, 1750, and 1880–1920.Inland Ice fluctuations in West Greenland were very closely paralleled by Holocene glacial events in East Greenland and the eastern Canadian Aretic. Such similarity of glacier behavior over a large area strongly suggests that widespread climatic change was the direct cause of Holocene glacial fluctuations. Moreover, historical advances of the Inland Ice margin followed slight temperature decreases by no more than a few decades, and 18O data from Greenland ice cores show that slight temperature decreases occurred frequently throughout the Holocene. Therefore, we conclude that construction of the major Holocene moraine systems in West Greenland was caused by slight temperature decreases, which decreased rates of ablation and thereby produced practically immediate advances of the ice sheet margin, but did not necessarily affect the long-term equilibrium of the ice sheet.  相似文献   

13.
Archaeological site interpretation can be enhanced by consideration of related geological and geomorphological processes. Lake Superior has a history of glaciation, isostatic recovery, and water-level change. Two examples are given of shoreline sites at which interpretation is enhanced by an understanding of local geologic factors. The archaeologic history of the Lake Superior basin is reviewed, and three cultural traditions are recognized; (1) Paleoindian, (2) Archaic, and (3) Woodland. Three significant factors of geologic history are then discussed: (1) ice margin oscillation, (2) differential isostatic uplift, and (3) lake-level fluctuations. The factors reducing or improving shoreline archaeological site preservation are examined, and a summary model of shoreline site distribution for the Lake Superior basin is offered. It is concluded that the north shore provides the best potential for a complete archaeological record. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
We propose a chronology of late Wisconsinan glacial fluctuations in middle North America, from Alberta to Wisconsin, based on radiocarbon dates derived solely from wood. Previous chronologies of the southwestern margin of the North American Continental Ice Sheet have depended to a considerable degree on radiocarbon dates from fine-grained organic sediment. This material is commonly contaminated with older carbon, resulting in chronologic confusion. By using only dates from wood, much of the confusion disappears. However, because of the scarcity of wood dates, only four of the sixteen identified fluctuations are accurately dated: an advance into Iowa about 14,000 to 13,500 BP, an advance into South Dakota and Iowa about 12,300 BP, an advance into the Lake Michigan basin about 11,700 BP, and an advance into the Lake Superior basin about 9900 BP. In addition, the beginning of late Wisconsinan glaciation, before 20,000 BP, is fairly well documented. None of the fluctuations in the western part of the region are accurately dated.  相似文献   

15.
The last British-Irish Ice Sheet (BIIS) created a landscape with many sedimentary basins that preserve archives of paleoenvironmental and paleoclimatic change during the Last Glacial-Interglacial Transition (LGIT; ~ 18-8 ka BP). The typical lithostratigraphic succession of these archives is composed of minerogenic/allogenic sediments formed during cold climatic conditions and organic-rich/authigenic sediments during warmer climates. This paper presents a multi-core lithostratigraphy compiled from the extant lake and surrounding basin at Llangorse Lake, south Wales, a basin lying within the southernmost limits of the last BIIS. This lake contains one of the longest continuous terrestrial sediment successions in the UK. Uncertainty previously existed concerning the presence and distribution of sediments at the site related to the Windermere Interstadial (~ 14.7 to ~ 12.9 ka BP) and Loch Lomond Stadial (~ 12.9 to 11.7 ka BP). A new borehole survey demonstrates that LGIT-age sediments are present at the site with nekron mud (gyttja), corresponding to the Lateglacial Interstadial, deposited in the deeper part of the lake waters and that these deposits are equivalent in age to marl deposits found at shallower depths at the margins of the basin. These deposits are associated with warmer conditions experienced during the Windermere Interstadial and Holocene, whilst minerogenic-rich sediments were deposited during the colder climatic conditions of the Dimlington Stadial and the Loch Lomond Stadial with rangefinder radiocarbon dates confirming this attribution. A model of lake level changes shows that drainage of the Dimlington Stadial glacial lake caused the largest fall, but there was also a further, smaller lake level fall at the end of the Windermere Interstadial and/or the start of the Loch Lomond Stadial, before the level rose in the early Holocene. The lithostratigraphic results presented here form the framework for further paleoenvironmental and paleoclimatic research at Llangorse Lake.  相似文献   

16.
This paper summarises the evidence for glacial ice advance into lower Glen Spean during the Loch Lomond Stadial which involved the blockage of westward-flowing drainage to form a series of ice-dammed lakes, the former surfaces of which are marked by prominent shorelines. Detailed mapping of glacigenic landforms and instrumental levelling of the shorelines reveals a dynamic interplay between the glacier margins and lake formation. Subsequent deglaciation led to lowering of the lake levels, at times by catastrophic drainage beneath the ice (jökulhlaup). The abandoned shorelines have been warped and dislocated in numerous places as a result of glacio-isostatic deformation, faulting and landslip activity. The pattern of retreat of the ice can be deduced from the mapped distributions of retreat moraines and the levelled altitudes of numerous kame and fluvial terrace fragments. The sequence of events outlined in this paper provides important context for understanding the evolution of the landscape of the Glen Roy area during the Loch Lomond Stadial, and a prelude to more recent studies reported in other contributions to this thematic issue.  相似文献   

17.
High resolution airborne LiDAR (light detection and ranging) and multibeam bathymetry data, supplemented by geomorphological and geological field mapping are used to derive the glacial and post-glacial history of Troutbeck Valley (English Lake District) at a catchment scale. The results inform wider regional and ice sheet wide glacial reconstructions and demonstrate the effectiveness of an integrated approach combining geomorphological and sedimentological signatures with remote sensing. The holistic catchment approach is used to reconstruct palaeo-ice flow and behaviour of a small part of the last British and Irish Ice Sheet, identifying a series of depositional environments that accompanied both ice advance, ice retreat and post-glacial deposition within the Lake District. Drumlins are mapped in the lower catchment and show multiple regional (wider-extent) ice flow events and a sedimentology consistent with deposition by lodgement processes during the Main Late Devensian Stadial. Other subglacial deposits include till sequences formed under variable basal conditions beneath an advancing ice mass. Retreat features include a suite of recessional moraines formed by still-stands or small readvances of an outlet glacier. Following deglaciation, major sediment redistribution led to formation of a large fan delta via paraglacial and post-glacial fluvial sedimentation. This study indicates that an integrated approach, using geomorphology, sedimentology and remote sensing on a catchment scale, is capable of deriving a more in-depth understanding of regional ice sheet reconstructions and highlights the complexity of palaeo-ice sheet dynamics at a range of spatial scales.  相似文献   

18.
早全新世降温事件的湖泊沉积证据   总被引:12,自引:1,他引:12  
我国华北干旱-半干旱区封闭湖泊流域化学风化历史记录了全新世以来次级的气候环境波动过程。高精度的沉积物地球化学、物理及生物参数变化表明,在全新世早-中期过渡阶段存在一次强降温气候事件,具体表现为流域化学风化减弱(高Rb/Sr比)、湖泊产生力减弱(低有机碳)以及湖泊水位下降。虽然该事件的寒冷程度比Younger Dryas弱,但是其与来自湖沼(包括北极、非洲、北美、西欧、青藏高原、祁连山等)、海洋(比北大西洋、地中海、加勒比海等)、欧-美大陆生物组合、极地冰芯等在内的环境记录的冷事件发生时间基本一致,集中发生于8.0-8.5ka B.P.之间。  相似文献   

19.
In Arctic alpine regions, glacio‐lacustrine environments respond sensitively to variations in climate conditions, impacting, for example,glacier extent and rendering former ice‐contact lakes into ice distal lakes and vice versa. Lakefloors may hold morphological records of past glacier extent, but remoteness and long periods of ice cover on such lakes make acquisition of high‐resolution bathymetric datasets challenging. Lake Tarfala and Kebnepakte Glacier, located in the Kebnekaise mountains, northern Sweden, comprise a small, dynamic glacio‐lacustrine system holding a climate archive that is not well studied. Using an autonomous surface vessel, a high‐resolution bathymetric dataset for Lake Tarfala was acquired in 2016, from which previously undiscovered end moraines and a potential grounding line feature were identified. For Kebnepakte Glacier, structure‐from‐motion photogrammetry was used to reconstruct its shape from photographs taken in 1910 and 1945. Combining these methods connects the glacial landform record identified at the lakefloor with the centennial‐scale dynamic behaviour of Kebnepakte Glacier. During its maximum 20th century extent, attained c. 1910, Kebnepakte Glacier reached far into Lake Tarfala, but had retreated onto land by 1945, at an average of 7.9 m year–1. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Between 10,500 and 9000 cal yr BP, δ18O values of benthic ostracodes within glaciolacustrine varves from Lake Superior range from − 18 to − 22‰ PDB. In contrast, coeval ostracode and bivalve records from the Lake Huron and Lake Michigan basins are characterized by extreme δ18O variations, ranging from values that reflect a source that is primarily glacial ( − 20‰ PDB) to much higher values characteristic of a regional meteoric source ( − 5‰ PDB). Re-evaluated age models for the Huron and Michigan records yield a more consistent δ18O stratigraphy. The striking feature of these records is a sharp drop in δ18O values between 9400 and 9000 cal yr BP. In the Huron basin, this low δ18O excursion was ascribed to the late Stanley lowstand, and in the Lake Michigan basin to Lake Agassiz flooding. Catastrophic flooding from Lake Agassiz is likely, but a second possibility is that the low δ18O excursion records the switching of overflow from the Lake Superior basin from an undocumented northern outlet back into the Great Lakes basin. Quantifying freshwater fluxes for this system remains difficult because the benthic ostracodes in the glaciolacustrine varves of Lake Superior and Lake Agassiz may not record the average δ18O value of surface water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号