首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electromagnetic and particle cascade resulting from the absorption of galactic cosmic rays in the atmosphere of Titan is shown to be an important mechanism for driving the photochemistry at pressures of 1 to 50 mbar in the atmosphere. In particular, the cosmic ray cascade dissociates N2, a process necessary for the synthesis of nitrogen organics such as HCN. The important interactions of the cosmic ray cascade with the atmosphere are discussed. The N2 excitation and dissociation rates and the ionization rates of the principal atmospheric constituents are computed for a Titan model atmosphere that is consistent with Voyager 1 observations. It is suggested that HCN may be formed efficiently in the lower atmosphere through the photodissociation of methylamine. It is also argued that models of nitrogen and hydrocarbon photochemistry in the lower atmosphere of Titan should include the absorption of galactic cosmic rays as an important energy source.  相似文献   

2.
We have studied the chemical evolution in the central core of a contracting cloud representing W3 IRS4. We modified the equation of temperature to satisfy the physical conditions of W3 IRS4. The chemical rate equations and the hydrodynamics are integrated simultaneously. The contraction is followed from a very low density of n = 10 cm−3 to high core density of n = 106 cm−3. The chemical evolution is studied for various chemical conditions, including both the effects of varying cosmic ray ionization rate and the effect of ion–dipole molecule collisions.

The main results by using the more extensive chemical network with the most updating reaction rates show that the calculated fractional abundances are in agreement with observation at intermediate and enhanced cosmic ray ionization rate at high depletion of elemental atoms.  相似文献   


3.
The limitations on the nature of cosmic ray acceleration regions and processes, as deduced from cosmic ray measurements and propagation studies, are reviewed. The power requirements for these acceleration regions are estimated from measurements of the local cosmic ray energy density, anisotropy and spallation-deduced pathlength. Possible constraints on the acceleration spectrum of the cosmic rays and on a charge dependence of the acceleration process, implied by the measured cosmic ray spectrum and composition, are considered. Various suggested sources and processes of cosmic ray acceleration are discussed in the light of these limitations.Astrophysics and Space Science Review Paper.  相似文献   

4.
Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar FUV radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.  相似文献   

5.
A comparison has been made between the overabundance of heavy elements in the primordial cosmic radiation and the cross-section for ionization by charged particle impacts. It is found that there is evidence that this type of ionization is important for the selection of cosmic ray particles.  相似文献   

6.
The antimatter research through the earth moon ion spectrometer (ARTEMIS) experiment is described in terms of searching for the moon's shadow in the primary cosmic radiation at TeV energies. Observations were made using the Whipple 10 m Imaging Atmospheric erenkov Telescope, in conjunction with a special optical filter to suppress unwanted moonlight. Monte Carlo simulations were used to predict that the magnitude of shadowing based on a pure proton beam would be 1% of the cosmic ray background. Observations and event classification are discussed, and results of a search for shadowing based on both protons and antiprotons are presented. Atmospheric fluctuations giving rise to non-statistical event rates constituted a limiting factor to the sensitivity of the shadow search as they rivaled or exceeded statistical errors. It is demonstrated that the experiment does not have sufficient sensitivity to moon shadowing which would allow a search for an antimatter component in the primary cosmic ray flux at the percent level. Possible future improvements of the technique are discussed.  相似文献   

7.
Cosmic ray particles passing through dense lower atmosphere of Venus decay giving rise to various charged and neutral particles. The flux and degradation of dominant cascade particles namely neutrinos and pions are computed and ionization contributions at lower altitudes are estimated. Using the height profile of pion flux, the muon flux is computed and used to estimate ionization at lower altitudes. It is shown that cosmic ray produced ionization descends to much lower altitudes intercepting the thickness of Venus cloud deck. The dynamical features of Venus cloud deck are used to allow the likely charging and charge separation processes resulting into cloud-to-cloud lightning discharges.  相似文献   

8.
Ionization of the atmosphere of Titan by galactic cosmic rays is a very significant process throughout the altitude range of 100 to 400 km. An approximate form of the Boltzmann equation for cosmic ray transport has been used to obtain local ionization rates. Models of both ion and neutral chemistry have been employed to compute electron and ion density profiles for three different values of the H2/CH4 abundance ratio. The peak electron density is of the order 103 cm?3. The most abundant positive ions are C2H9+ and C3H9+, while the predicted densities of the negative ions H? and CH3? are very small (<10?4 that of the positive ions). It is suggested that inclusion of the ion chemistry is important in the computation of the H and CH3 density profiles in the lower ionosphere.  相似文献   

9.
The differential energy spectrum and charge ratio of primary cosmic ray electrons produced by collisions of primary cosmic ray particles with the interstellar medium is calculated by means of the two temperature statistical model of high-energy interactions. Two realistic models for the primary cosmic ray flux are considered. Contributions to the primary cosmic ray electron intensity from both the pion and kaon decay modes have been included. The distribution of matter in the galaxy and energy loss of produced secondaries and electrons are considered. The results are compared to recent experimental data.  相似文献   

10.
弥散宇宙γ射线产生于初级宇宙线的传播过程,本文利用宇宙线传播的“双漏模式”得出与实验观测谱接近的银河系弥散宇宙γ射线谱。  相似文献   

11.
Using the standard GEANT4 code, we calculated the ionization rate of the Mars atmosphere and the dose absorbed by the planet’s soil caused by the galactic cosmic rays and the anomalous cosmic ray component in the heliosphere. Cases of the solar system passing through dense molecular clouds leading to an increase of the energetic particle flux at the orbit of Mars and cases of thickness variation of the atmosphere itself are considered.  相似文献   

12.
The measurement of large scale anisotropies in cosmic ray arrival directions is generally performed through harmonic analyses of the right ascension distribution as a function of energy. These measurements are challenging due to the small expected anisotropies and meanwhile the relatively large modulations of observed counting rates due to experimental effects. In this paper, we present a procedure based on the shuffling technique to carry out these measurements, applicable to any cosmic ray detector without any additional corrections for the observed counting rates.  相似文献   

13.
The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures.We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied.We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth’s position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth’s position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth.Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth that are else-wise attributed to other propagation effects. We show that realistic cosmic ray propagation scenarios have to acknowledge non-axisymmetric source distributions.  相似文献   

14.
At sufficiently low energies, cosmic ray protons capture electrons from interstellar Hi and become neutral. In the subsequent cascade to the ground state a Doppler-shifted Ly- photon may be emitted. The neutral cosmic ray will be excited collisionally by further encounters with the ambient interstellar gas, emitting additional Doppler-shifted Ly- photons. We give the form of the cosmic ray spectrum down to 10 keV, assuming that there is no cosmic ray injection below 1 MeV. The neutral fraction is evaluated as a function of energy, and the diffuse ultraviolet flux is calculated. Comparison is made with observations in the range 1225–1340 Å. We conclude that far more stringent limits on the flux of subcosmic rays may be obtained by consideration of the heating and ionization of Hi regions.  相似文献   

15.
The composition of the primordial cosmic radiation has been compared with the solar system composition and that of interstellar matter. It is found that the overabundance of an element in the radiation is approximately proportional to the cross-section for the ionization of neutral atoms of that element through fast charged particle impacts. The results strongly support the assumption that the selection of cosmic ray particles is governed by the atomic properties of the elements.  相似文献   

16.
An approximate form of the Boltzmann equation has been used to obtain local ionization rates due to the absorption of galactic cosmic rays in the Jovian atmosphere. It is shown that the muon flux component of the cosmic ray-induced cascade may be especially importannt in ionizing the atmosphere at levels where the total number density exceeds 1019 cm?3 (well below the ionospheric layers produced by solar euv). A model containing both positive and negative ion reactions has been employed to compute equilibrium electron and ion number densities. Peak electron number densities on the order of 103 cm?3 may be expected even at relatively low magnetic latitudes. The dominant positive ions are NH4+ and CnHm+ cluster ions, with n ? 2; it is suggested that the absorption of galactic cosmic ray energy at such relatively high pressures in the Jovian atmosphere (M ? 1018to 1020cm?3) and the subsequent chemical reactions may be instrumental in the local formation of complex hydrocarbons.  相似文献   

17.
Influence of cosmic ray pressure and kinetic stream instability on space plasma dynamics and magnetic structure are considered. It is shown that in the outer Heliosphere are important dynamics effects of galactic cosmic ray pressure on solar wind and interplanetary shock wave propagation as well as on the formation of terminal shock wave of the Heliosphere and subsonic region between Heliosphere and interstellar medium. Kinetic stream instability effects are important on distances more than 40–60 AU from the Sun: formation of great anisotropy of galactic cosmic rays in about spiral interplanetary magnetic field leads to the Alfven turbulence generation by non isotropic cosmic ray fluxes. Generated Alfven turbulence influences on cosmic ray propagation, increases the cosmic ray modulation, decreases the cosmic ray anisotropy and increases the cosmic ray pressure gradient in the outer Heliosphere (the later is also important for terminal shock wave formation). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

19.
Nitric oxide is formed in the atmosphere through the ionization and dissociation of molecular nitrogen by galactic cosmic rays. One NO molecule is formed for each ion pair produced by cosmic ray ionization.The height-integrated input (day and night) to the lower stratosphere is of the order of 6 × 107 NO molecules cm?2/sec in the auroral zone (geomagnetic latitude Φ ? 60°) during the minimum of the sunspot cycle and 4 × 107 NO molecules cm?2/sec in the subauroral belt and auroral region (Φ? 45°) at the maximum of solar activity. The tropical production is less than 10?7 NO molecules cm?2/sec above 17 km and at the equator the production is only 3 × 106NO molecules cm?2/sec.  相似文献   

20.
The data on primary cosmic ray fluxes at the top of the atmosphere are given for the period since 1937 till the present time. These data have been obtained from the regular cosmic ray flux measurements in the stratosphere and on the ground level. They have been used to find the relationship of cosmic ray fluxes with solar activity (sunspot number). On the basis of the deduced relationship the cosmic ray fluxes in the past have been recovered, as the sunspot number is known since 1500. The link between the smoothed data on Be-10 atom concentrations and cosmic ray fluxes is established which gives a possibility to calculate cosmic ray fluxes in the far past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号