首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that the dependence of the variations of vertical component of the polar cap magnetic field on the sector structure (actually, the azimuthal or Y component) of the interplanetary magnetic field as first discovered by Svalgaard (1968) and Mansurov (1969) extends to variations as brief as 1 hr or even less. The relation between sector structure dependent variations and substorm fields as indicated by the southward-directed component of the interplanetary magnetic field is investigated by comparing brief variations over selected intervals of time. The independence of the variations of the polar cap vertical and horizontal components suggests that there are at least two different current systems which produce brief variations in the polar cap. One of the current systems is related to the substonn field; the other is strongly seasonally dependent and is confined to the dayside sector of the Earth.  相似文献   

2.
It is assumed that the three-dimensional current system of a substorm passes three successive stages. (1) When a dawn-to-dusk magnetospheric electric field appears, a current system with field-aligned currents at the poleward boundary of the auroral zone arises. An equivalent ionospheric current system calculated, taking into account a day-night asymmetry of ionospheric conductivity, looks like the well-known DP-2 system including an eastward low-latitude current and a greater magnitude of the dusk vortex in comparison with the dawn one. (2) An electric drift of plasma towards the Earth leads to the appearance of a westward partial ring current increasing in time. This current is closed by field-aligned currents at the equatorward boundary of the auroral zone. The calculated equivalent current system is similar to the well-known one of the precursory phase. (3) An increase of the auroral ionospheric conductivity during the expansive phase produces an increase of all currents and a turning of field-aligned currents at the equatorward boundary of the auroral zone relative to those at the poleward one. The calculated equivalent current system is similar to the DP-1 system.  相似文献   

3.
Magnetic field variations in the noon-midnight plane during the magnetospheric substorm are studied in terms of changes of three current systems: the dynamo-driven current on the magnetopause, the cross-tail current and the field-aligned current-auroral electrojet system. The field-aligned current is assumed to be generated as a result of interruption and subsequent diversion of the cross-tail current to the ionosphere. It is concluded that the available observations are consistent with a large increase of the three currents.  相似文献   

4.
The relationship between substorm ionospheric currents and the corresponding ground magnetic perturbations is examined, by using the height-integrated ionospheric current density deduced from the Chatanika incoherent scatter radar and the simultaneous magnetic variations along the Alaska meridian chain of stations. Although time variations of the H component near the radar site on the Earth's surface are in good agreement with those of the east-west ionospheric current, there is a substantial disagreement between the current deduced from the D perturbations and the observed north-south current in the evening sector. It is shown that the disagreement can be removed by introducing a new finding by Yasuhara et al. (1975) that the upward field-aligned current on the poleward side of the auroral oval in the evening sector is more intense than its counterpart fieldaligned current and that it contributes greatly to the ground D perturbations.  相似文献   

5.
The magnetic perturbation patterns in the polar cap and auroral zone regions are obtained for extremely quiet days using two different techniques. It is shown that the form of the equivalent current flow pattern is extremely sensitive to the level of quietness, and that even so-called quiet days are at times disturbed by substorm activity. Certain characteristic equivalent flow not typically observed during substorms is noted in the polar cap, and this flow appears to be associated with effects associated with polar cap perturbations discussed by Svalgaard (1973). As well a region of equatorward flow appears at high latitudes near the dawn meridian, which appears to be Hall current driven by an eastward electric field. The dayside sub-auroral zone is dominated by the Sq-current system, while the nightside shows no significant current flow in the absence of substorm activity.  相似文献   

6.
Evidence is presented from spectral analysis of Pi2 pulsations detected during a substorm by the University of Alberta meridian chain of magnetometers to support the conclusion that at auroral latitudes there is no apparent correlation between the principal spectral components of Pi2 pulsations and the latitude of the observations. From these data we infer that the Pi2 magnetic variations observed at the Earth's surface are not generated by simple MHD eigenoscillations of magnetospheric field. As well, the data show clear contributions to the Pi2 pulsation spectrum by ionospheric currents. These observations lead to the suggestion that Pi2 pulsation spectra are produced by the sudden changes in magnetospheric and ionospheric current systems which take place at the beginning of a substorm.  相似文献   

7.
Using a three-dimensional, time-dependent, global model, we have simulated the response of the thermosphere to an isolated substorm. The substorm is characterized by a time variance of the high latitude convective electric field with an associated enhancement of auroral E region electron density, from an initially quiet thermosphere. We have simulated such an impulsive energy input with both separated and co-incident geographic and geomagnetic poles and have found that, in both cases, in the lower thermosphere ( ~ 120 km), a long-lived vortex phenomenon is generated. Initially, two contra-rotating vortices are generated by the effects of ion drag during the period of enhanced high latitude energy input centred on the polar cap/auroral oval boundary, one at dusk (18.00 L.T.) and the other at dawn (06.00 L.T.). After the end of the substorm, the cyclonic vortex (dawn) dissipates rapidly while the dusk anti-cyclonic vortex appears virtually self-sustaining and survives many hours after the substorm input has ceased. A theory is derived to explain and interpret the results and it appears that the effect is analogous to a meteorological weather system. In this case, however, the dusk anti-cyclonic vortex has, instead of pressure, the centrifugal acceleration balancing the Coriolis force. The equivalent anti-clockwise dawn vortex, unlike a low pressure system, has no balancing force, since Coriolis and the centrifugal term assist and this vortex rapidly disappears.  相似文献   

8.
Magnetospheric physics owes its beginnings to the seventeenth- and eighteenth-century scientists who were fascinated by one of the most spectacular natural phenomena, the aurora. In the first section, a brief historical account of the growth of magnetospheric physics and solar-terrestrial physics is given.The main part of the paper reviews recent progress in magnetospheric physics, in particular, in understanding the magnetospheric substorm. A number of magnetospheric phenomena can now be understood by viewing the solar wind-magnetosphere interaction as an MHD dynamo; auroral phenomena are powered by the dynamo. We have also succeeded in identifying magnetospheric responses to variations of the north-south and east-west components of the interplanetary magnetic field.The magnetospheric substorm is entirely different from the responses of the magnetosphere to the southward component of the interplanetary magnetic field. It may be associated with the formation of a neutral line within the plasma sheet and with an enhanced reconnection along the line. A number of substorm-associated phenomena can be understood by noting that the new neutral line formation is caused by a short-circuiting of a part of the magnetotail current.  相似文献   

9.
The resonant interaction between the whistler mode waves and the energetic electrons near the plasmapause boundary has been studied in the presence of field aligned currents which seem to exist during substorm activity. It is shown that the electrons which carry the current along the direction of the magnetic field enhance the whistler mode growth considerably if the streaming velocity is small compared to the phase velocity of the wave. It is likely that this is one of the mechanisms explaining the intense VLF emissions observed near the plasmapause during substorm activity.  相似文献   

10.
The accuracy of the AE index as a measure of the joule heat production rate is examined for a typical substorm event on 18 March 1978 by estimating the global joule heat production rate, as a function of time, using data obtained from the IMS six meridian chains. In spite of the fact that the AE index had had an initial slow growth which was followed by a rapid growth, the joule heat production rate attained a high level during the slow growth and thus their variations were considerably different from those of the AE index. Therefore, although the AE index is statistically linearly related to the global joule heat production rate, one should be cautious in assuming that details of time variations of the AE index during individual events represent those of the joule heat production rate.  相似文献   

11.
The characteristic magnetic signatures of magnetospheric substorms both on the ground and in space have been determined from the analysis of ~1800 substorm events. The timing and properties of these events were objectively determined according to explicit mathematical criteria by a computer pattern-recognition program. This program processed daily magnetograms from a mid-latitude network of geomagnetic observatories.Ground data analyzed, using onsets determined in this manner, included the AE indices and individual magnetograms at different local times in the auroral zone and at midlatitudes. Superposed epoch averages of these data confirm the local time magnetic substorm signatures, determined in earlier studies of fewer events, and demonstrate the validity of the computerized onset determination procedure.Superposed epoch averages of the interplanetary magnetic field (IMF) associated with the onsets demonstrates both a distinct southward component prior to the onsets and a dependence of the substorm amplitude on the integrated preceding southward IMF flux. Superposed epoch averages of the tail lobe magnetic field magnitude and vector components demonstrates field magnitude changes and rotations in association with the substorm onsets. These lobe field changes are consistent with the growth-phase model of substorm activity and with variations in the magnetopause flaring angle.  相似文献   

12.
Explorer 34 observations of the low-latitude tail field beyond 25 RE are critically examined to see if the signature of the neutral-line formation is always visible during substorm expansion phases. Cases are found where a clear signature cannot be recognized. However, comparison of the simultaneous tail observations by multiple satellites suggests that the absence of a clear signature can largely be due to the spatial effect, namely due to the presence of the satellite outside the region where the local magnetic field condition is influenced by the neutral-line formation. On the other hand, evidences supporting the close association between the neutral-line and the expansion phase are found for substorm events having double expansion-phase onsets.  相似文献   

13.
A comparison of the variations in the count of electrons E > 36 keV on the satellite Vela 4A, and in the Macquarie Island magnetometer H trace, shows for a time lag of 22-8 min a correlation, r = 0.95, over a 90 min period of the recovery phase of a magnetospheric substorm on 17 August 1968. All-sky camera data suggest that during the correlation period the auroral electrojet showed very little latitudinal movement. Each peak in electron count relates to a current surge in the electrojet as shown by a deepening of the negative bay at Macquarie Island.Using the Fairfield (1968) model of the location of auroral shells in the solar magnetic equatorial plane, and the known location of the satellite, an estimate of the velocity of tail to Earth plasma convection in the plasma sheet of about 0·33 Re/min is obtained for the recovery phase.The relationship is discussed between plasma sheet thinning and subsequent broadening, and the extension of the magnetic field lines into the tail region and their subsequent return. This discussion makes use of the estimated time lags between electron count at the satellite and the time of arrival of auroral particles at the antisolar meridian.From a somewhat speculative explanation, but one largely supported from the literature, of the magnetospheric processes involved in this auroral substorm, a plasma velocity estimate of 0·42 Re/min for the initial phase of the substorm is obtained. These velocities are of the same order as the 0·5 Re/min obtained by Lezniak and Winkler (1970) at 6·6 Re.  相似文献   

14.
The influence of the three-dimensional current system of the precursory phase of a substorm on the magnetic field in the dayside magnetosphere is considered. The current system includes the field-aligned currents flowing into the high-latitude ionosphere at dawn and flowing out at dusk. These currents decrease the magnetic field in the dayside magnetosphere and cause the transference of part of the dayside magnetic field lines into the magnetotail. As a result two kinds of deformation arise: the shrinkage of the dayside magnetopause and the equatorward displacement of the dayside polar cusps.  相似文献   

15.
A mechanism of the Earth's magnetospheric substorm is proposed. It is suggested that the MHD waves may propagate across the magnetopause from the magnetosheath into the magnetotail and will be dissipated in the plasma sheet, heating the plasma and accelerating the particles. When the solar wind parameters change, the Poynting flux of the waves transferred from the magnetosheath into the tail, may be greater than 1018 erg s?1. The heated plasma and accelerated particles in the plasma sheet will be injected into the inner magnetosphere, and this may explain the process of the ring current formation and auroral substorm.The Alfvén wave can only propagate along the magnetic force line into the magnetosphere in the open magnetosphere, but the magnetosonic wave can propagate in both the open and closed magnetosphere. When the IMF turns southward, the configuration of the magnetosphere will change from a nearly closed model into some kind of open one. The energy flux of Alfvén waves is generally larger than that of the magnetosonic wave. This implies that it is easy to produce substorms when the interplanetary magnetic field (IMF) has a large southward component, but the substorm can also be produced even if the IMF is directed northward.  相似文献   

16.
It is suggested that the ionosphere plays an active role in many substorm processes by generating field-aligned currents associated with the Hall current. Various substorm phenomena, such as the cross-tail current interruption, the asymmetric main phase field and the poleward expanding auroral bulge, may be closely related to the closure of the Hall current circuits in the magnetosphere.  相似文献   

17.
On 11 November 1976, after a magnetically quiet period with the interplanetary magnetic field (IMF) directed northward, a sudden southward turning of the IMF immediately led to a world-wide intensification of convection which was observed to start almost simultaneously at stations within the auroral zone and polar cap. The two-dimensional equivalent current system over the northern hemisphere had a typical two-cell convection pattern with a maximum disturbance of ΔH = ?300 nT observed on the morningside in the westward electrojet region. This enhancement of activity ended after 35 min in a localized substorm onset in the midnight sector over Scandinavia.The recordings made in this area indicate large fluctuations of various ionospheric parameters starting several minutes before the substorm onset. Two subsequent stages can be resolved: (1) high-energy particle precipitation recorded by balloon X-ray detectors and maximum ionospheric current density increase, while the electrojet halfwidth shrinks and the total electrojet current becomes weaker; (2) the maximum ionospheric current density stays constant and the high-energy particle precipitation decreases, while the auroral brightness increases and the total electrojet current and its half-width show a growing trend prior to the final breakup. A suggestion is made that the time interval of these two stages should be called “trigger phase”. A short discussion explains the trigger phase observations in a magnetospheric scale. The energy coupling between solar wind and magnetosphere during the pre-substorm phases is discussed by utilizing the energy coupling function ? defined by Perreault and Akasofu (Geophys. J. R. Astr. Soc.54, 547, 1978). The ? values appear to be on substorm level during the period of enhanced convection. A good correlation between ? and the growth of the Joule heating rate (estimated from the AE data) is found in the beginning, but during the last 20 min before substorm triggering ? is high while the Joule heating rate decreases. The behaviour of ? during the two stages of the trigger phase suggests that the start of the trigger phase is purely internally controlled while the length of the trigger phase and the final substorm onset may be influenced by the variation in ?.  相似文献   

18.
The latitudinal morphology of > 100 keV protons at different local times has been studied as a function of substorm activity. A characteristic pattern is found: during quiet-times there is an isotropic zone centred around 67° near midnight, but located on higher latitudes towards dusk and dawn. This zone moves slightly equatorward during the substorm growth phase. During the expansive phase the precipitation spreads poleward apparently to ~ 71° near midnight. The protons are precipitated over a large local time interval on the nightside, but the most intense fluxes are found in the pre-midnight sector. A further poleward expansion, to more than 75° near midnight, seems to take place late in the substorm. Away from midnight, the expansion reaches even higher latitudes. During the recovery phase the intensity of the expanded region decreases gradually; the poleward boundary is almost stationary if the interplanetary magnetic field (IMF) has a northward component and no further substorm activity takes place. Mainly protons with energy below ~ 500 keV are precipitated in the expanded region. On the dayside no increase in the precipitation rates is found during substorm expansion, but late in the substorm an enhanced precipitation is found, covering several degrees in latitude. The low-latitude anisotropic precipitation zone is remarkably stable during substorms. A schematic model is presented and discussed in relation to earlier results.  相似文献   

19.
Synoptic auroral photographs acquired by a United States Air Force DMSP satellite have provided the data necessary for an improved understanding of the common auroral phenomena that occur during the substorm expansive phase. Specifically, it is recognized that diffuse auroras (patches, large scale wave structures and Omega bands) form an integral part of the auroral substorm and that their morphological features should be added in the substorm pattern proposed by Akasofu (1964). Several other important auroral substorm features have been added to or corrected in the original pattern. A revised substorm pattern at about the maximum epoch of the substorm is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号