首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plots of sporadic E vs height show clear evidence for semidiurnal winds with maximum amplitude in local summer. A combination of 2,2, 2,3 and 2,4 mode winds represents the type of pattern observed. This system while strongest in local summer also occurs weakly in other seasons. In winter one sees a combination of a weak pattern arising in the winter hemisphere plus the effects of the pattern from the summer hemisphere.  相似文献   

2.
Though Titan is in synchronous rotation around Saturn, it experiences gravitational tides as a consequence of its eccentric orbit. It is proposed that the vertical transport of aerosols by these tides produces the haze layers in Titan's upper atmosphere. Analysis shows that the zonal winds in Titan's superrotating atmosphere have a profound influence on which tidal components are effective in establishing the multiple detached-haze layers. If the Huygens Doppler winds are representative of the equatorial global superrotation, then the westward propagating s=2 mode is the responsible tidal component even though its forcing is significantly weaker than that of the s=0 and eastward s=2 components. The eastward s=2 tidal mode is eliminated by critical levels while the s=0 mode is viscously damped in the strong high altitude winds. At polar latitudes, however, the gravest s=0 mode is the one most likely to produce layering. It is also suggested that the atmospheric gravitational tides could be responsible for decelerating the superrotating atmosphere as seen in the Huygens Doppler wind velocity profile at about 80 km altitude.  相似文献   

3.
The dynamics of Venus’ mesosphere (60–100 km altitude) was investigated using data acquired by the radio-occultation experiment VeRa on board Venus Express. VeRa provides vertical profiles of density, temperature and pressure between 40 and 90 km of altitude with a vertical resolution of few hundred meters of both the Northern and Southern hemisphere. Pressure and temperature vertical profiles were used to derive zonal winds by applying an approximation of the Navier–Stokes equation, the cyclostrophic balance, which applies well on slowly rotating planets with fast zonal winds, like Venus and Titan. The main features of the retrieved winds are a midlatitude jet with a maximum speed up to 140 ± 15 m s?1 which extends between 20°S and 50°S latitude at 70 km altitude and a decrease of wind speed with increasing height above the jet. Cyclostrophic winds show satisfactory agreement with the cloud-tracked winds derived from the Venus Monitoring Camera (VMC/VEx) UV images, although a disagreement is observed at the equator and near the pole due to the breakdown of the cyclostrophic approximation. Knowledge of both temperature and wind fields allowed us to study the stability of the atmosphere with respect to convection and turbulence. The Richardson number Ri was evaluated from zonal field of measured temperatures and thermal winds. The atmosphere is characterised by a low value of Richardson number from ~45 km up to ~60 km altitude at all latitudes that corresponds to the lower and middle cloud layer indicating an almost adiabatic atmosphere. A high value of Richardson number was found in the region of the midlatitude jet indicating a highly stable atmosphere. The necessary condition for barotropic instability was verified: it is satisfied on the poleward side of the midlatitude jet, indicating the possible presence of wave instability.  相似文献   

4.
Electric currents, generated by thermospheric winds, flow along the geomagnetic field lines linking the E-and F-regions. Their effects on the electric field distribution are investigated by solving the electrical and dynamical equations. The input data include appropriate models of the F-region tidal winds, the thermospheric pressure distribution and the E-and F-layer concentrations. At the magnetic equator, the calculated neutral air wind at 240 km height has a prevailling eastward component of 55 m sec-1 and the west-east and vertical ion drifts agree in their general form with incoherent scatter data from Jicamarca  相似文献   

5.
Two Skylark rockets carrying ion and R.F. electron probes, lithium and sodium vapourisers and proton precession magnetometers were launched from Woomera, Australia in November and December 1965 and made at least four encounters with sporadic E ionization. A magnetic field minimum was detected on only one of these encounters, and the minimum was found to be 2–3 km below the observed ion layer. The wind measurements deduced from observations of the vapour trails indicated that the sporadic E layer occurred in a region of ion divergence.  相似文献   

6.
Auroral E region neutral winds determined from incoherent scatter radar observations at Chatanika, AK, during geomagnetic disturbances (15 May 1974) are compared with detailed theoretical calculations of neutral velocities for these conditions. The theoretical velocities are obtained by numerically solving the ion and neutral momentum equations in the ion drag approximation, including coriolis and viscous forces, using observed electric fields and electron densities. Large vertical gradients are found in the calculated velocities for altitudes below about 130 km. As a consequence of this structure and fluctuations in the electron density profiles, the data analysis procedure of Brekke et al. (1973) for obtaining neutral winds from radar data is found to underestimate the wind speed by up to 40%, but it determines the direction and temporal structure reasonably well. Comparison of observed neutral velocities with calculated values shows that ion drag alone cannot account for the observations. An equation is derived to estimate the pressure gradients required to resolve the discrepancy between calculated and observed neutral winds. Accelerations due to these pressure gradients are of the same order as those due to ion drag, but at least an order of magnitude larger than those due to solar heating. Directions of the horizontal pressure gradients are consistent with expected locations of auroral heating. During geomagnetic disturbances, ion drag and auroral heating both appear to play important roles in the generation and modification of neutral winds.  相似文献   

7.
In this paper we review and interpret the values of upper-atmosphere rotation rate (zonal winds) obtained by analysing satellite orbits determined from observations. The history of the method is briefly reviewed, the basic principles are explained, objections to the method are answered, and three examples are given. Existing analyses of the atmospheric rotation rate A are critically reviewed, and, after rejecting some and revising others, we are left with 85 values. These are divided according to local time and season, to give the variation of A with height in nine situations—namely morning, evening and average local time, for summer, winter and average season. These observational results indicate that the value of Λ (in rev/day), averaged over both local time and season, increases from 1.0 at 125 km to 1.22 at 325 km and then decreases to 1.0 at 430 km and 0.82 at 600 km. The value of Λ is higher in the evening (18–24 h), with a maximum value (near 1.4) corresponding to a West-to-East wind of 150 m s?1 at heights near 300 km. The value of Λ is lower in the morning (06–12 h), with East-to-West winds of order 50 m s?1 at heights of 200–400 km. There is also a consistent seasonal variation, the values of Λ being on average 0.15 higher in winter and 0.1 lower in summer than the average seasonal value. No significant variation with solar activity is found, but there is a slight tendency for a greater rotation rate at lower latitudes for heights above 300 km. Unexpectedly, the values for the 1960s are found to be significantly higher than those for the 1970s. Finally, these observational values are compared with the theoretical global model of Fuller-Rowell and Rees: there is complete agreement on the trends, though there are some differences in the mean values.  相似文献   

8.
Ionospheric drifts using total reflections from the E-region have been compared with neutral winds measured by meteor radar. Close agreement was found when both measurements were made in a common volume of atmosphere. Even with a separation of 700 km between the measuring regions the results were very similar. It is concluded that the drift technique does measure the movement of the neutral atmosphere in the altitude range 95–120 km. The agreement between measurements from widely separated regions indicates the horizontal scale of the wind structure is at least 700 km.  相似文献   

9.
The atmospheres of Jupiter and Saturn exhibit strong and stable zonal winds. How deep the winds penetrate unabated into each planet is unknown. Our investigation favors shallow winds. It consists of two parts. The first part makes use of an Ohmic constraint; Ohmic dissipation associated with the planet's magnetic field cannot exceed the planet's net luminosity. Application to Jupiter (J) and Saturn (S) shows that the observed zonal winds cannot penetrate below a depth at which the electrical conductivity is about six orders of magnitude smaller than its value at the molecular-metallic transition. Measured values of the electrical conductivity of molecular hydrogen yield radii of maximum penetration of 0.96RJ and 0.86RS, with uncertainties of a few percent of R. At these radii, the magnetic Reynolds number based on the zonal wind velocity and the scale height of the magnetic diffusivity is of order unity. These limits are insensitive to difficulties in modeling turbulent convection. They permit complete penetration along cylinders of the equatorial jets observed in the atmospheres of Jupiter and Saturn. The second part investigates how deep the observed zonal winds actually do penetrate. As it applies heuristic models of turbulent convection, its conclusions must be regarded as tentative. Truncation of the winds in the planet's convective envelope would involve breaking the Taylor-Proudman constraint on cylindrical flow. This would require a suitable nonpotential acceleration which none of the obvious candidates appears able to provide. Accelerations arising from entropy gradients, magnetic stresses, and Reynolds stresses appear to be much too weak. These considerations suggest that strong zonal winds are confined to shallow, stably stratified layers, with equatorial jets being the possible exception.  相似文献   

10.
In the mid-latitude E-region, the wind-shear mechanism produces thin ionized layers at levels where the vertical ion velocity is zero. We show that such layers conduct electric current only towards the magnetic equator, and not in the zonal direction. We surmise that this property may influence the electric field distribution in the nocturnal ionosphere, and possibly also the coupling between ion drifts and neutral air winds in the F-region. Detailed case studies of nocturnal layers located near the peak of ion Pedersen conductivity (around 130km) are needed to test this idea.  相似文献   

11.
Data on the variation of the orbital inclination of the balloon satellite Explorer 24 (1964-76A) from 1964 to 1968 have been used to determine zonal winds between 540 and 620 km. In this height region the effect of zonal winds on the orbital inclination may become very small compared to other perturbations like accelerations due to the geopotential, lunisolar gravitation and the solar radiation pressure. It is demonstrated especially that the solar radiation pressure may become the most significant force changing the orbital inclination. The diurnal mean zonal winds derived from Explorer 24 point to an exospheric rotation rate which is about 6–10% less than the rotation rate of the Earth in the analyzed height region. Since the possible errors of the data analysis are of a similar order of magnitude, it can not be excluded that the exosphere corotates with the Earth. Furthermore, a local time dependence of the zonal winds could be detected. The diurnal varitation of the zonal wind is shown to be in good agreement with the theoretical model of Blum and Harris. Our results are discussed and compared with all previous investigations of orbital inclination changes of satellites above 350 km.  相似文献   

12.
The strength and direction of the Interplanetary Magnetic Field (IMF) controls the transfer of solar wind momentum and energy to the high latitude thermosphere in a direct fashion. The sense of “ Y” component of the IMF (BY) creates a significant asymmetry of the magnetospheric convection pattern as mapped onto the high latitude thermosphere and ionosphere. The resulting response of the polar thermospheric winds during periods when BY is either positive or negative is quite distinct, with pronounced changes in the relative strength of thermospheric winds in the dusk-dawn parts of the polar cap and in the dawn part of the auroral oval. In a study of four periods when there was a clear signature of BY, observed by the ISEE-3 satellite, with observations of polar winds and electric fields from the Dynamics Explorer-2 satellite and with wind observations by a ground-based Fabry-Perot interferometer located in Kiruna, Northern Sweden, it is possible to explain features of the high latitude thermospheric circulation using three dimensional global models including BY dependent, asymmetric, polar convection fields. Ground-based Fabry-Perot interferometers often observe anomalously low zonal wind velocities in the (Northern) dawn auroral oval during periods of extremely high geomagnetic activity when BY is positive. Conversely, for BY negative, there is an early transition from westward to southward and eastward winds in the evening auroral oval (excluding the effects of auroral substorms), and extremely large eastward (sunward) winds may be driven in the auroral oval after magnetic midnight. These observations are matched by the observation of strong anti-sunward polar-cap wind jets from the DE-2 satellite, on the dusk side with BY negative, and on the dawn side with BY positive.  相似文献   

13.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed within the mesospheric to lower thermospheric altitude (70–120 km) region of the Venus atmosphere, have been mapped across the nightside disk of Venus during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as described in a companion paper (Clancy et al., 2012). Here, we consider the analysis of the sharp line absorption cores of these CO spectra in terms of accurate Doppler wind profile measurements at 95–115 km altitudes versus local time (~8 pm–4 am) and latitude (~60N–60S). These Doppler wind measurements support determinations of the nightside zonal and subsolar-to-antisolar (SSAS) circulation components over a variety of timescales. The average behavior fitted from 21 retrieved maps of 12CO Doppler winds (obtained over hourly, daily, weekly, and interannual intervals) indicates stronger average zonal (85 m/s retrograde) versus SSAS (65 m/s) circulation at the 1 μbar pressure (108–110 km altitude) level. However, the absolute and relative magnitudes of these circulation components exhibit extreme variability over daily to weekly timescales. Furthermore, the individual Doppler wind measurements within each nightside mapping observation generally show significant deviations (20–50 m/s, averaged over 5000 km horizontal scales) from the simple zonal/SSAS solution, with distinct local time and latitudinal characters that are also time variable. These large scale residual circulations contribute 30–70% of the observed nightside Doppler winds at any given time, and may be most responsible for global variations in nightside lower thermospheric trace composition and temperatures, as coincidentally retrieved CO abundance and temperature distributions do not correlate with solution retrograde zonal and SSAS winds (see companion paper, Clancy et al., 2012). Limited comparisons of these nightside submillimeter results with dayside infrared Doppler wind measurements suggest distinct dayside versus nightside circulations, in terms of zonal winds in particular. Combined 12CO and 13CO Doppler wind mapping observations obtained since 2004 indicate that the average zonal and SSAS wind components increase by 50–100% between altitudes of 100 and 115 km. If gravity waves originating from the cloud levels are responsible for the extension of zonal winds into the thermosphere (Alexander, M.J. [1992]. Geophys. Res. Lett. 19, 2207–2210), such waves deposit substantial momentum (i.e., break) in the lower nightside thermosphere.  相似文献   

14.
Fabry-Perot interferometer measurements of the Doppler shifts and widths of the nightglow 630.0 nm line at Laurel Ridge Observatory, Pennsylvania are presented for the period 1975 to 1979, covering both solar minimum and solar maximum conditions. The F-region neutral wind vectors vn and temperatures Tn deduced from these measurements show both day-to-day changes and overall seasonal patterns in the nocturnal variations during geomagnetically quiet conditions. Divergence in both the meridional and zonal horizontal flow is noted on occasion. The vn results are compared with models including only solar EUV heating and those with EUV plus a high latitude heat source. The aggregate vn data for solar cycle minimum conditions agree best with model predictions for winter zonal and equinoctal meridional winds and worst for winter meridional and summer zonal winds. At solar cycle maximum the predicted, rapid transition at equinox from summer to winter wind patterns and vice-versa is observed. The Tn data are in reasonable agreement with the MSIS model predictions.  相似文献   

15.
Titan has been observed with UVES, the UV-Visual Echelle Spectrograph at the Very Large Telescope, with the aim of characterizing the zonal wind flow. We use a retrieval scheme originally developed for absolute stellar accelerometry [Connes, P., 1985. Astrophys. Space Sci., 110, 211-255] to extract the velocity signal by simultaneously taking into account all the lines present in the spectrum. The method allows to measure the Doppler shift induced at a given point by the zonal wind flow, with high precision. The short-wavelength channel (4200-5200 Å) probes one scale height higher than the long-wavelength one (5200-6200 Å), and we observe statistically significant evidence for stronger winds at higher altitudes. The results show a high dispersion. Globally, we detect prograde zonal winds, with lower limits of 62 and 50 m s−1 at the regions centered at 200 and 170 km altitude, but approximately a quarter of the measurements indicates null or retrograde winds.  相似文献   

16.
Possible interrelationships of different observations have been studied to clear up some obvious inconsistencies and develop a coherent picture of the kinematics of the Venus atmosphere. There is a wind shear in the vicinity of 60 km with vertical dimensions on the order of a scale height. The kinematical model has negligible surface winds, speeds increasing with altitude to approximately 45 km, a layer of high-speed retrograde zonal winds extending from approximately 45 to 60 km, a wind shear between 60 and 65 km, and slow atmospheric motions above this. Spacecraft data show that the region of high-speed winds is thicker on the day side of the planet than on the night side.  相似文献   

17.
The orbit of Cosmos 482 has been determined at 55 epochs during the period August 1975–October 1977. Inclined at 52° to the Equator, of eccentricity exceeding 0.3 and perigee height near 210 km, this high drag and high eccentricity orbit is the most eccentric as yet analysed by PROP. The combination of the orbital characteristics, restricted global coverage of observational data, and the many observations of angular measurement at extreme range proved to be troublesome. Cleared of other perturbations, the inclination is analysed to determine the atmospheric rotation rate, λ rev day?1, of the zonal winds at a height near 235 km. Results reveal a diurnal and seasonal dependence, including a summer value, averaged over local time, of λ = 0.9 and an evening value of λ = 1.4 in the winter months. The resultant wind velocities vary between 48 m s?1 East to West and 193 m s?1 West to East, with an average of 48 m s?1 West to East.  相似文献   

18.
Saturn atmospheric temperatures at the 150-mbar level retrieved from Voyager IRIS measurements indicate the presence of small-scale meridional gradients which are approximately symmetric with respect to the equator, but are superposed on a large-scale hemispheric thermal asymmetry. Under the assumption that the retrieved values at this atmospheric level represent kinetic temperatures on a constant pressure surface, it is suggested that the small-scale structure is produced by a meriodional circulation associated with the dissipative decay of the zonal winds with height, while the hemispheric asymmetry represents a thermal response to the seasonally varying insolation. The small-scale gradients are correlated with zonal winds derived from Voyager images at mid and high latitudes through the thermal wind relation; the calculated thermal wind shears suggest a decay with height of the jet system toward a state of uniform eatward flow. The existence of the approximately symmetric zonal winds and associated temperature gradients in the presence of a large-scale seasonal thermal response suggests that the jet system is driven at depths substantially below the levels where seasonally modulated insolation is important (p?0.5 bar).  相似文献   

19.
The influence of Saturn's gravitational tide on the atmosphere of Titan is investigated by means of a three-dimensional general circulation model. Titan's orbital eccentricity of 0.0292 gives rise to time-dependent radial and librational tide whose potential circles eastward on Titan. Unlike atmospheric tides on terrestrial planets, Saturn's tide on Titan has a large impact on the dynamic meteorology down to the surface. The surface pressure oscillates by up to 1.5 hPa through the orbit. Near the surface the tidal wind dominates the atmospheric flow and exhibits strong temporal and spatial variation. The superposition of the annually present, thermally forced latitudinal pressure gradient and tidally caused pressure variation produces a unique wind pattern near the surface characterized by equatorward flow and high-latitude whirls. At higher levels the tidal wind manifests itself as eastward traveling planetary-scale wave of wavenumber 2 superposed on the background wind. In general tidal winds are more significant in the troposphere, where other forcing mechanisms are weak. Meridional tidal winds become as fast as 5 m s−1 in the troposphere and change direction periodically through the orbit and along the parallel of latitude. Except in the lower troposphere, zonal winds always remain prograde because the tidal wind amplitude is usually smaller than the mean zonal wind. The tide also has a large impact on the mean zonal circulation in the stratosphere. A meridional drift of the descending Huygens Probe in the troposphere would be the easiest way to verify the tidal wind on Titan, but more complete observations of tropospheric wind and surface pressure by a future mission would be required to unveil the complete details of the tidal wind.  相似文献   

20.
We show that the peak velocity of Jupiter’s visible-cloud-level zonal winds near 24°N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between ±70° that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (∼130 m s−1) zonal velocities at 8°N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-μm hot spots) “fooled” the retrieval algorithms.We determined the zonal velocity in 2000 from Cassini images from NASA’s Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s−1 on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s−1, so velocity fluctuations of 10 m s−1 may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a “temporal mean” zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful.At 8°N, we use our global method to find peak zonal velocities of ∼110 m s−1 in 2000 and ∼130 m s−1 in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8°N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed ∼140 m s−1. Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8°N is not a true change in zonal velocity.At 7.3°N, the Galileo probe found zonal velocities of 170 m s−1 at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is ∼140 m s−1 rather than ∼105 m s−1, then the vertical zonal wind shear is much less than the currently accepted value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号