首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
First results of a modelling study of atmospheric gravity waves (AGWs) are presented. A fully-coupled global thermosphere-ionosphere-plasmasphere model is used to examine the relative importance of Lorentz forcing and Joule heating in the generation of AGWs. It is found that Joule heating is the dominant component above 110km. The effects of the direction of the Lorentz forcing component on the subsequent propagation of the AGW are also addressed. It is found that enhancement of zonal E × B forcing results in AGWs at F-region altitudes of similar magnitudes travelling from the region of forcing in both poleward and equatorward directions, whilst enhancement of equatorward meridional E × B forcing results in AGWs travelling both poleward and equatorward, but with the magnitude of the poleward wave severely attenuated compared with the equatorward wave.  相似文献   

2.
During an explosive volcanic eruption, tephra fall out from the umbrella region of the eruption cloud to the ground surface. We investigated the effect of the intensity of turbulence in the umbrella cloud on dispersion and sedimentation of tephra by performing a series of laboratory experiments and three dimensional (3-D) numerical simulations. In the laboratory experiments, spherical glass-bead particles are mixed in stirred water with various intensities of turbulence, and the spatial distribution and the temporal evolution of the particle concentration are measured. The experimental results show that, when the root-mean-square of velocity fluctuation in the fluid (Wrms) is much greater than the particle terminal velocity (vt), the particles are homogeneously distributed in the fluid, and settle at their terminal velocities at the base of the fluid where turbulence diminishes. On the other hand, when Wrms is as small as or smaller than vt, the particle concentration increases toward the base of the fluid during settling, which substantially increases the rate of particle settling. The results of the 3-D simulations of eruption cloud indicate that Wrms is up to 40 m/s in most of the umbrella cloud even during a large scale plinian eruption with a magma discharge rate of 109 kg/s. These results suggest that relatively coarse pyroclasts (more than a few mm in diameter) tend to concentrate around the base of the umbrella cloud, whereas fine pyroclasts (less than 1/8 mm in diameter) may be distributed homogeneously throughout the umbrella cloud during tephra dispersion. The effect of the gradient of particle concentration in the umbrella cloud explains the granulometric data of the Pinatubo 1991 plinian deposits.  相似文献   

3.
The irregularity velocity patterns observed by the SABRE coherent radar at substorm expansion phase onset, which is identified by magnetometer observations of Pi2 pulsations, are occasionally highly structured. In all the examples of structured velocity patterns examined, the SABRE viewing area is located at longitudes within the inferred substorm current wedge. Three types of structured velocity regime are apparent depending on the level of magnetic activity and the position of the radar viewing area relative to the substorm enhanced currents and the Pi2 pulsation generation region. Firstly, vortex-like velocity patterns are observed and these may be caused by the field-aligned currents associated with the substorm current wedge. Secondly, regions of equatorward velocity are also observed at times of substorm expansion phase onset moving longitudinally across the SABRE viewing area. The longitudinal movement is usually westward although an example of eastward motion has been observed. The phase velocity of these regions of equatorward flow is typically 1–3 km s?1. The observed equatorward velocities occur at the poleward edge or poleward of the background convection velocities observed by SABRE. These equatorward velocities may be related to the westward travelling surge and to the expansion (eastwards as well as westwards) of the brightening arc region at substorm onset. Thirdly, the flow rotates equatorward within the field of view but does not then appear to move longitudinally. These equatorward velocities may relate to the earthward surge of plasma from the magnetotail at substorm onset.  相似文献   

4.
Linear α2Ω-dynamo waves are investigated in a thin turbulent, differentially rotating convective stellar shell. A simplified one-dimensional model is considered and an asymptotic solution constructed based on the small aspect ratio of the shell. In a previous paper Griffiths et al. (Griffiths, G.L., Bassom, A.P., Soward, A.M. and Kuzanyan, K.M., Nonlinear α2Ω-dynamo waves in stellar shells, Geophys. Astrophys. Fluid Dynam., 2001, 94, 85–133) considered the modulation of dynamo waves, linked to a latitudinal-dependent local α-effect and radial gradient of the zonal shear flow. These effects are measured at latitude θ by the magnetic Reynolds numbers R α f(θ) and R Ω g(θ). The modulated Parker wave, which propagates towards the equator, is localised at some mid-latitude θp under a Gaussian envelope. In this article, we include the influence of a latitudinal-dependent zonal flow possessing angular velocity Ω*(θ) and consider the possibility of non-axisymmetric dynamo waves with azimuthal wave number m. We find that the critical dynamo number D c?=?R α R Ω is minimised by axisymmetric modes in the αΩ-limit (Rα→0). On the other hand, when Rα?≠?0 there may exist a band of wave numbers 0?m?m ? for which the non-axisymmetric modes have a smaller D c than in the axisymmetric case. Here m ? is regarded as a continuous function of R α with the property m?→0 as R α→0 and the band is only non-empty when m??>1, which happens for sufficiently large R α. The preference for non-axisymmetric modes is possible because the wind-up of the non-axisymmetric structures can be compensated by phase mixing inherent to the α2Ω-dynamo. For parameter values resembling solar conditions, the Parker wave of maximum dynamo activity at latitude θp not only propagates equatorwards but also westwards relative to the local angular velocity Ω* p ). Since the critical dynamo number D c?=?R α R Ω is O (1) for small R α, the condition m ??>?1 for non-axisymmetric mode preference imposes an upper limit on the size of |dΩ*/dθ|.  相似文献   

5.
Theoretical and simulation approaches to E-region irregularities (gradient drift and Farley-Buneman instabilities) are reviewed, and an account is given of some relevant observations. A new hybrid linear dispersion relation is also derived and presented. The most important problem that cannot be explained by more straightforward theories is the saturation of the phase velocity to the ion acoustic speed (Cs saturation). This phenomenon is well-known from equatorial electrojet radar observations. Recent particle simulations have yielded an interesting new explanation for the (Cs saturation, which has been named flow angle stabilization: the phase velocity is not actually (Cs saturated, but the flow angle distribution of the spatial power spectrum is highly asymmetric. The asymmetry is such that the most intense waves propagate at the k⋅E < 0 edge of the linearly unstable sector, and thus the phase velocity of the most intense waves is close to (Cs. Depending on the level of larger scale turbulence, the radar observes varying degrees of (Cs saturation. If the larger scale turbulence level is high (equatorial electrojet case), the local flow angle fluctuates, and there are always subregions within the scattering volume with local flow angles favorable for the detection of the most intense waves. Under these conditions, the spectra show (Cs saturation. If the larger scale turbulence level is lower, there will not always be enough mixing of the flow angle for even the most intense waves to be observed. In these cases, the mean Doppler shift will be proportional to the electric fied, i.e. it will obey the linear theory.  相似文献   

6.
To increase the safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel has become a valuable tool. One recent successful forward looking approach is based on the excitation and registration of tunnel surface‐waves. For further development and for finding optimal acquisition geometries it is important to study the propagation characteristics of tunnel surface‐waves. 3D seismic finite difference modelling and analytic solutions of the wave equation in cylindrical coordinates reveal that at higher frequencies, i.e., if the tunnel‐diameter is significantly larger than the wavelength of surface‐waves, these surface‐waves can be regarded as Rayleigh‐waves confined to the tunnel wall and following helical paths along the tunnel axis. For lower frequencies, i.e., when the tunnel surface‐wavelength approaches the tunnel‐diameter, the propagation characteristics of these surface‐waves are similar to S‐waves. We define the surface‐wave wavelength‐to‐tunnel diameter ratio w to be a gauge for separating Rayleigh‐ from S‐wave excitation. For w > 1.2 tunnel surface‐waves behave like S‐waves, i.e. their velocity approaches the S‐wave velocity and the particle motion is linear and perpendicular to the ray direction. For w < 0.6 they behave like Rayleigh‐waves, i.e., their velocity approaches the Rayleigh‐wave velocity and they exhibit elliptical particle motion. For 0.6 < w < 1.2 a mixture of both types is observed. Field data from the Gotthard Base Tunnel (Switzerland) show both types of tunnel surface‐waves and S‐waves propagating along the tunnel.  相似文献   

7.
A method of wave mode determination, which was announced in Balikhin and Gedalin, is applied to AMPTE UKS and AMPTE IRM magnetic field measurements downstream of supercritical quasiperpendicular shock. The method is based on the fact that the relation between phase difference of the waves measured by two satellites, Doppler shift equation, the direction of the wave propagation are enough to obtain the dispersion equation of the observed waves. It is shown that the low frequency turbulence mainly consists of waves observed below 1 Hz with a linear dependence between the absolute value of wave vector |k| and the plasma frame wave frequency. The phase velocity of these waves is close to the phase velocity of intermediate waves Vint = Vacos().  相似文献   

8.
The velocity of a wind‐blown sand cloud is important for studying its kinetic energy, related erosion, and control measures. PDA (particle dynamics analyser) measurement technology is used in a wind tunnel to study the probability distribution of particle velocity, variations with height of the mean velocity and particle turbulence in a sand cloud blowing over a sandy surface. The results suggest that the probability distribution of the particle velocity in a blowing sand cloud is stochastic. The probability distribution of the downwind velocity complies with a Gaussian function, while that of the vertical velocity is greatly complicated by grain impact with the bed and particle–particle collisions in the air. The probability distribution of the vertical velocity of ?ne particles (0·1–0·3 mm sands) can be expressed as a Lorentzian function while that of coarse particles (0·3–0·6 mm sands) cannot be expressed by a simple distribution function. The mean downwind velocity is generally one or two orders greater than the mean vertical velocity, but the particle turbulence in the vertical direction is at least two orders greater than that in the downwind direction. In general, the mean downwind velocity increases with height and free‐stream wind velocity, but decreases with grain size. The variation with height of the mean downwind velocity can be expressed by a power function. The particle turbulence of a blowing sand cloud in the downwind direction decreases with height. The variations with height of the mean velocity and particle turbulence in the vertical direction are very complex. It can be concluded that the velocity of a sand cloud blowing over a sandy surface is mainly in?uenced by wind velocity, grain impact with the bed and particle–particle collisions in the air. Wind velocity is the primary factor in?uencing the downwind velocity of a blowing sand cloud, while the grain impact with the bed and particle–particle collisions in the air are the primary factors responsible for the vertical velocity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
This paper reports the results of two seismic experiments aimed at determining the wave field of explosion quakes at Stromboli Island (Mediterranean Sea, Southern Italy). The typical Strombolian activity mostly consists of explosive phenomena causing pyroclastic, materials to be emitted together with jets of volcanic gases from one or more craters. Stromboli is an active volcano characterized by persistent seismic activity consisting of explosion quakes that are seismic events associated with the explosive volcanic phenomena. Explosion quakes are short lived seismic events occurring intermittently whose amplitude tends to decrease with distance from the vent. A distinctive feature of explosion quakes is the presence on seismograms of two, often clearly distinct, seismic phases. The first, low-frequency seismic phase (<2 Hz) is in fact usually followed by a high-frequency seismic phase (>3–4 Hz) after one second or more. The first seismic phase of explosion quakes has been shown to be characterized by a nearly radial linear polarization and by an apparent propagation velocity estimated at 600–800 m/s. The second phase is characterized by a more chaotic motion and a lower apparent propagation velocity of 150–450 m/s. The wavefield associated with the first low-frequency seismic phase appears to be generated by a resonating P-wave seismic source accompanying gas explosion and emission of pyroclastic materials. The wavefield associated with the second high-frequency seismic phase of explosion quakes appears to be mainly composed of scattered and converted waves due to the critical topography of the volcano.  相似文献   

10.
Summary Laboratory measurements of rupture and particle velocity are in surprisingly good agreement with seismic values, providing further evidence that stick-slip friction is a suitable mechanism for shallow earthquakes. A simple theory is developed to explain the linear relationship observed between average particle velocity and stress drop for stick-slip events. Both stick-slip ruptures and cracks in brittle material commonly propagate at velocities roughly comparable to theS wave velocity of the material. Rupture normally begins relatively slowly and accelerates to a steady velocity in a few centimeters. Observations suggest that stick-slip ruptures can propagate atS wave speeds or occasionally greater and that cracks in pre-stressed glass can also propagate faster than theS waves. Fracture and thus rupture velocity of intact rock specimens is greatly influenced by the inhomogeneous structure of rock. Fracture may be modeled by coalescence of many cracks rather than growth of a single crack.Lamont-Doherty Geological Observatory Contribution No. 2627.  相似文献   

11.
The relationships among the thickness and grain-size of tephra-fall deposits and the volumetric flow rate of their source umbrella clouds are analytically obtained. The logarithm of the ratio of the probability distribution function based on grain size (ln R f) in fall deposits at two localities from the vent (r 1 and r 2, respectively) has a linear relationship with the particle-settling velocity, v, as: where Q is the volumetric flow rate of the umbrella cloud and A is a constant for a given pair of localities. The volumetric flow rate of the umbrella cloud can be estimated from granulometric data using this formula. Generally, the thickness–distance relationship of tephra-fall deposits depends on the initial grain-size distribution and the volumetric flow rate of the umbrella cloud. The empirical relationship of the exponential thinning behaviour can be extrapolated towards infinite distance only for a specific initial grain size which is similar to a log-normal distribution with σ φ=2.5, otherwise it holds only in a limited range of distances. In applying these results to the 1991 eruption of Mt. Pinatubo, it is shown that the volumetric flow rate of the umbrella cloud during the climactic phase of 15 June was approximately 5×1010 m3/s, which is fairly consistent with the expansion rate of the umbrella cloud observed in the satellite images. Received March 20, 1993/Accepted September 11, 1993  相似文献   

12.
A long series of polar patches was observed by ionosondes and an all-sky imager during a disturbed period (Kp = 7- and IMF Bz <0). The ionosondes measured electron densities of up to 9 × 1011 m−3 in the patch center, an increase above the density minimum between patches by a factor of ≈4.5. Bands of F-region irregularities generated at the equatorward edge of the patches were tracked by HF radars. The backscatter bands were swept northward and eastward across the polar cap in a fan-like formation as the afternoon convection cell expanded due to the IMF By > 0. Near the north magnetic pole, an all-sky imager observed the 630-nm emission patches of a distinctly band-like shape drifting northeastward to eastward. The 630-nm emission patches were associated with the density patches and backscatter bands. The patches originated in, or near, the cusp footprint where they were formed by convection bursts (flow channel events, FCEs) structuring the solar EUV-produced photoionization and the particle-produced auroral/cusp ionization by segmenting it into elongated patches. Just equatorward of the cusp footprint Pc5 field line resonances (FLRs) were observed by magnetometers, riometers and VHF/HF radars. The AC electric field associated with the FLRs resulted in a poleward-progressing zonal flow pattern and backscatter bands. The VHF radar Doppler spectra indicated the presence of steep electron density gradients which, through the gradient drift instability, can lead to the generation of the ionospheric irregularities found in patches. The FLRs and FCEs were associated with poleward-progressing DPY currents (Hall currents modulated by the IMF By) and riometer absorption enhancements. The temporal and spatial characteristics of the VHF backscatter and associated riometer absorptions closely resembled those of poleward moving auroral forms (PMAFs). In the solar wind, IMP 8 observed large amplitude Alfvén waves that were correlated with Pc5 pulsations observed by the ground magnetometers, riometers and radars. It is concluded that the FLRs and FCEs that produced patches were driven by solar wind Alfvén waves coupling to the dayside magnetosphere. During a period of southward IMF the dawn-dusk electric field associated with the Alfvén waves modulated the subsolar magnetic reconnection into pulses that resulted in convection flow bursts mapping to the ionospheric footprint of the cusp.  相似文献   

13.
Water is a dominant component of volcanic clouds and has fundamental control on very fine particle deposition. Particle size characteristics of distal tephra-fall (100s km from source volcano) have a higher proportion of very fine particles compared to predictions based on single particle settling rates. In this study, sedimentological analyses of fallout from for the 18 August and 16–17 September 1992 eruptions of Crater Peak, Alaska, are combined with satellite observations, and cloud trajectory and microphysics modeling to investigate meteorological influences on particle sedimentation. Total grain size distributions of tephra fallout were reconstructed for both Crater Peak eruptions and indicate a predominance of fine particles < 125 μm. Polymodal analysis of the deposits has identified a particle subpopulation with mode ~ 15–18 μm involved in particle aggregation. Accounting for the magmatic water source only, calculated ice water content of the 3.7 hour old September 1992 Spurr cloud was ~ 4.5 × 10− 2 g m− 3 (based on an estimated cloud thickness of ~ 1000 m from trajectory modeling). Hydrometeor formation on particles in the volcanic cloud and subsequent sublimation may induce a cloud base instability that leads to rapid bulk (en masse) sedimentation of very fine particles through a mammatus-like mechanism.  相似文献   

14.
收集了安徽、江西、浙江、江苏、湖北和河南6个省的区域地震台网138个宽频地震台站以及中国地质大学(北京)在长江中下游成矿带布设的19个流动宽频地震台站的三分量背景噪声数据,利用背景噪声面波层析成像方法,获得了长江中下游成矿带及其邻区地壳三维剪切波速度结构和径向各向异性特征.首先获得了5~38s周期的瑞利波和勒夫波相速度,结果显示短周期(16s)的瑞利波和勒夫波相速度与研究区内的主要地质构造单元具有良好的相关性,但在中长周期(20~30s)瑞利波相速度显示大别造山带东部为明显低速特征,而勒夫波相速度并未表现出异常特征.研究区域地壳三维有效剪切波速度和径向各向异性结果显示:苏北盆地和江汉盆地上地壳都表现为低速和正径向各向异性特征,华北克拉通东南部也表现为正径向各向异性,这可能与盆地浅部沉积层的水平层理结构相关.大别造山带中地壳显示为弱的正径向各向异性,同时其东部下地壳显示为低剪切波速度和强的正径向各向特征,可能是由于其在造山后发生了中下地壳的流变变形,引起各向异性矿物近水平排列所导致的.长江中下游成矿带内的鄂东南和安庆—贵池矿集区中地壳弱的负径向各向异性可能是由于深部岩浆向上渗透时所产生的有限应力导致结晶各向异性矿物的垂直排列所引起的.整个长江中下游成矿带下地壳都表现出正径向各向异性特征,可能是由于在伸展拉张的构造作用力下,下地壳矿物的晶格优势水平排列所引起的.  相似文献   

15.
Peak amplitudes of surface strains during strong earthquake ground motion can be approximated by ε = Aνmax1, where νmax is the corresponding peak particle velocity, β1 is the velocity of shear waves in the surface layer, and A is a site specific scaling function. In a 50 m thick layer with shear wave velocity β1 300 m/s, A 0·4 for the radial strain εrr, A 0·2 for the tangential strain εrθ, and A 1·0 for the vertical strain, εz. These results are site specific and representative of strike slip faulting and of soil in Westmoreland, in Imperial Valley, California. Similar equations can be derived for other sites with known shear wave velocity profile versus depth.  相似文献   

16.
The characteristics of dayside auroras during the large (16–24 nT) positive values of the IMF B z component, observed on January 14, 1988, during the interaction between the Earth’s magnetosphere and the body of the interplanetary magnetic cloud, have been studied based on the optical observations on Heiss Island. A wide band of diffuse red luminosity with an intensity of 1–2 kilorayleigh (kR) was observed during 6 h in the interval 1030–1630 MLT at latitudes higher than 75° CGL. Rayed auroral arcs, the brightness of which in the 557.7 nm emission sharply increased to 3–7 kR in the postnoon sector immediately after the polarity reversal of the IMF B y component from positive to negative, were continuously registered within the band. Bright auroral arcs were observed at the equatorward edge of red luminosity. It has been found out that the red auroral intensity increases and the band equatorward boundary shifts to lower latitudes with increasing solar wind dynamic pressure. However, a direct proportional dependence of the variations in the auroral features on the dynamic pressure variations has not been found. It has been concluded that the source of bright discrete auroras is located in the region of the low-latitude boundary layer (LLBL) on closed geomagnetic field lines. The estimated LLBL thickness is ∼3 R e . It has been concluded that the intensity of the dayside red band depends on the solar wind plasma density, whereas the position of the position equatorward boundary depends on the dynamic pressure value and its variations.  相似文献   

17.
The drift velocity of an auroral arc is compared with the component of F-region plasma velocity in the same direction for ten cases where the arc is seen to move steadily equatorward for several minutes without any major change in appearance or orientation. In most cases the two velocities are close, but on two occasions the drift velocity of the arc is much higher than the plasma velocity. From the cases studied it appears that during the growth and recovery phase of the substorm cycle the arc moves with a velocity close to the convection velocity, but during the expansion phase this is not the case.  相似文献   

18.
The response of a barotropic coastal ocean on a step-shaped continental shelf to a traveling sinusoidal wind stress forcing is predicted theoretically using a frictional force proportional to the alongshore current velocity. This theory is compared to a small set of observations from the northeast coast of Australia where a sudden widening of the continental shelf provides a geographical origin. The comparison is accomplished by means of frequency response functions relating alongshore wind stress with alongshore velocity. Amplitudes of the response functions are predicted to increase with alongshore distance equatorward and also to decrease with frequency at any location. These predictions are verified by the measurements. Predicted phase lags are generally less than about 30°, with observations agreeing with theory to within about 20°C. In general, the measurements provide reasonable evidence to support the theory of wind-forced continental shelf waves from a geographical origin.  相似文献   

19.
The problem of boundary conditions for monochromatic Alfvén waves, excited in the magnetosphere by external currents in the ionospheric E-layer, is solved analytically. Waves with large azimuthal wave numbers m≫1 are considered. In our calculations, we used a model for the horizontally homogeneous ionosphere with an arbitrary inclination of geomagnetic field lines and a realistic height disribution of Alfvén velocity and conductivity tensor components. A relationship between such Alfvén waves on the upper ionospheric boundary with electromagnetic oscillations on the ground was detected, and the spatial structure of these oscillations determined.  相似文献   

20.
Numerical investigations on one-dimensional nonlinear acoustic wave with third and fourth order nonlinearities are presented using high-order finite-difference (HFD) operators with a simple flux-limiter (SFL) algorithm. As shown by our numerical tests, the HFDSFL method is able to produce more stable, accurate and conservative solutions to the nonlinear acoustic waves than those computed by finite-difference combined with the flux-corrected-transport algorithm. Unlike the linear acoustic waves, the nonlinear acoustic waves have variable phase velocity and waveform both in time-space (t-x) domain and frequency-wavenumber (f-k) domain; of our special interest is the behaviour during the propagation of nonlinear acoustic waves: the waveforms are strongly linked to the type of medium nonlinearities, generation of harmonics, frequency and wavenumber peak shifts. In seismic sense, these characteristics of nonlinear wave will introduce new issues during such seismic processing as Normal Moveout and f-k filter. Moreover, as shown by our numerical experiment for a four-layer model, the nonlinearities of media will introduce extra velocity errors in seismic velocity inversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号