首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— We have used dual coaxial microchannel plate image-intensified monochrome charge-coupled device (CCD) detectors run at standard NTSC frame rates (30 frames per second, fps) to study the Leonid meteor shower on 1998 November 17 from an airborne platform at an altitude of ~13 km. These observations were part of NASA's 1998 Leonid multi-instrument aircraft campaign (MAC). The observing systems had fields of view (width) of 16.3° and 9.5°, and limiting stellar sensitivities of +8.3m and +8.9m. During 12 h of recording, 230 meteors were detected, of which 65 were Leonid meteors. Light curves are presented for 53 of these meteors. The magnitudes at peak brightness of the meteors investigated were generally in the range from +4.0m to +6.0m. The mass distribution indices for the two samples are 1.67 and 1.44, with the former being based on the wider field of view dataset. The light curves were skewed with the brightest point towards the beginning of the meteor trail. The F parameter for points one magnitude below maximum luminosity had a mean value of 0.47 for the wider field system and 0.37 for the more sensitive narrower field system. We provide leading and trailing edge light curve slopes for each meteor as another indication of light curve shape. There were few obvious flares on the light curves, indicating that in-flight fragmentation into a large number of grains is not common. There is variability in light curve shape from meteor to meteor. The light curves are inconsistent with single, compact body meteor theory, and we interpret the data as indicative of a two-component dustball model with metal or silicate grains bonded by a lower boiling point, possibly organic, substance. The variation in light curve shape may be indicative of differences in mass distribution of the constituent grains. We provide trail length vs. magnitude data. There is only a slight hint of a bend at +5m in the data, representing the difference between meteors that have broken into a cluster of grains prior to grain ablation, and those that continue to fragment during the grain ablation phase. Two specific meteors show interesting light curve features. One meteor is nebulous in appearance, with significant transverse width. The apparent light production region extends for 450 m from the center of the meteor path. Another meteor has several main fragments, and evidence of significant separated fragments. We offer several suggestions for improvements for the 1999 Leonid MAC light curve experiment.  相似文献   

2.
Abstract— In 1994 November, a shower of bright Leonid meteors signaled what is likely the first meteor outburst of Leonids associated with the upcoming return of comet P/Tempel-Tuttle to perihelion. Measurements of meteor activity and the meteor brightness distribution are presented. By comparing the present observation with those of past Leonid returns, a forecast is made of the time, the duration, the intensity, and the mean meteor brightness of Leonid outbursts that may occur if previously observed patterns are repeated in the forthcoming years.  相似文献   

3.
Abstract— We have used a 3.0 m diameter liquid mirror telescope (LMT) coupled to a microchannel plate image‐intensified charge‐coupled device (CCD) detector to study the 1999 Leonid meteor shower. This is the largest aperture optical instrument ever utilized for meteor detection. While the observing system is sensitive down to stars of +18 astronomical magnitude under optimum conditions, when corrections for meteor motion are applied the majority of the meteors collected fall in the absolute magnitude range from +5 to +10, corresponding to photometric masses from about 10?7 to 10?9 kg. This is largely due to the fact that the field of view of the LMT was only 0.28°, so that only a small portion of the luminous meteor trail was recorded. While the flux of these small (1.4 times 10?9 kg) Leonid meteors is low (on the order of one Leonid meteor per hour per square kilometer perpendicular to the Leonid), we do have clear evidence that the Leonid stream contains particles in the mass range studied here. The data showed a possibly significant peak in Leonid flux (9.3 ± 3.5) for the 1 h period from 11:00 to 12:00 u.t. 1999 November 17 (solar longitude 234.653 to 234.695, epoch 2000.0), although the main trend of these results is a broad low‐level Leonid activity. There is evidence that small meteoroids are more widely distributed in the Leonid stream, as would be expected from cometary ejection stream models. As would be expected from an extrapolation of mass distribution indices for brighter meteors, the vast majority of meteors at this size are sporadic. The LMT is a powerful detector of sporadic meteors, with an average non‐Leonid detection rate of more than 140 meteor events per hour.  相似文献   

4.
Every year the Earth crosses or passes near one of the dust trails left by Comet 55P/Tempel-Tuttle in its pass through the Solar System every 33.2 years. This produces a meteor shower Commonly called the Leonid. The 2001 Leonid meteor shower is one of the strongest in recent years. We present observations made by the 50 MHz all-sky meteor radar located at the Platteville Atmospheric Observatory in Colorado (40° N, 105° W). The spatial and temporal distributions of the meteor activity detected by the radar during the 2001 Leonid shower differs from the observed sporadic activity detected by VHF radars. Estimation of the radiant flux of the meteor shower of the shower by a well-known methodology is presented, and the intensity of the phenomena is discussed.  相似文献   

5.
Abstract— In this paper, we provide an overview of meteors with high beginning height. During the recent Leonid meteor storms, as well as within the regular double station video observations of other meteor showers, we recorded 164 meteors with a beginning height above 130 km. We found that beginning heights between 130 and 150 km are quite usual, especially for the Leonid meteor shower. Conversely, meteors with beginning heights above 160 km are very rare even among Leonids. From the meteor light curves, we are able to distinguish two different processes that govern radiation of the meteors at different altitudes. Light curves vary greatly above 130 km and exhibit sudden changes in meteor brightness. Sputtering from the meteoroid surface is the dominating process during this phase of the meteor luminous trajectory. Around 130 km, the process switches to ablation and the light curves become similar to the light curves of standard meteors. The sputtering model was successfully applied to explain the difference in the beginning heights of high‐altitude Leonid and Perseid meteors. We show also that this process in connection with high altitude fragmentation could explain the anomalously high beginning heights of several relatively faint meteors.  相似文献   

6.
We used light curve analysis to search for evidence of the dustball meteoroid model. Leonid, Taurid, Alpha Monocerotid and sporadic meteors from November 2003 were observed and analyzed using uniform methodology. Meteors from these four sources were examined for evidence of fragmentation by examining light curve shape and searching for light curve irregularities. Differences in meteoroid structure should be reflected by differences in meteor light curves. The resulting meteor light curve F-parameter values showed no statistically significant differences between the meteors from the various cometary showers or the sporadic meteors. The F-parameter values also suggest that the meteoroids from these sources do not follow a single body ablation model, which suggests that all four sources produce meteoroids with a dustball structure.  相似文献   

7.
During the Leonid meteor shower of November 1999 a very bright meteor train, subsequently called the Y2K meteor, was observed. Analysis of the trajectory of the meteor suggests that it was composed of two distinct materials. The bulk of the meteor was composed of a comet-like material, while a much smaller fraction was of a denser carbonaceous material. A simple model is used to analytically determine the mass of the meteor fragments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We have analysed the meteor records in the chronicles that describe the era of the Song dynasty ( ad 960–1279). The data are complementary to the record-vacant 10th century of the Koryo dynasty ( ad 918–1392). The annual activity of sporadic meteors analysed shows a generic sinusoidal behaviour as in modern observations. In addition, we have also found that there are two prominent meteor showers, one in August and the other in November, appearing on the fluctuating sporadic meteors. The date of occurrence of the August shower indicates it to be the Perseids. By comparing the date of occurrence of the November shower with those of the Leonid showers of the Koryo dynasty, recent visual observations and the world-wide historical meteor storms, we conclude that the November shower is the Leonids. The regression rate of the Leonids is obtained to be     days per century, which agrees with recent observations.  相似文献   

9.
Abstract— We used the ultraviolet to visible spectrometers onboard the midcourse space experiment to obtain the first ultraviolet spectral measurements of a bright meteor during the 1997 Leonid shower. The meteor was most likely a Leonid with a brightness of about‐2 magnitude at 100 km altitude. In the region between 251 and 310 nm, the two strongest emission lines are from neutral and ionized magnesium. Ionized Ca lines, indicative of a hot T ? 10 000 K plasma, are not detected. The Mg and Mg+ line intensity ratio alone does not yield the ionization temperature, which can be determined only by assuming the electron density. A typical air plasma temperature of T = 4400 K would imply a very high electron density: ne = 2.2 times 1018 m‐3, but at chondritic abundances of Fe/Mg and Si/Mg ? 1. For a more reasonable local‐thermodynamic‐equilibrium (LTE) air plasma electron density, the Mg and Mg+ line ratio implies a less than chondritic Fe/Mg = 0.06 abundance ratio and a cool non‐LTE T = 2830 K ionization temperature for the ablation vapor plasma. The present observations do not permit a choice between these alternatives. The new data provide also the first spectral confirmation of the presence of molecular OH and NO emission in meteor spectra.  相似文献   

10.
Abstract— Chondrules, silicate spheres typically 0.1 to 1 mm in diameter, are the most abundant constituents in the most common meteorites falling on Earth, the ordinary chondrites. In addition, many primitive meteorites have calcium‐aluminum‐rich inclusions (CAIs). The question of whether comets have chondrules or CAIs is relevant to understanding what the interior of a comet is like and what a cometary meteorite might be like. In addition, one prominent model for forming chondrules and CAIs, the X‐wind model, predicts their presence in comets, while most other models do not. At present, the best way to search for chondrules and CAIs in comets is through meteor showers derived from comets, in particular, the Leonid meteor shower. Evidence potentially could be found in the overall mass distribution of the shower, in chemical analyses of meteors, or in light curves. There is no evidence for a chondrule abundance in the Leonid meteors similar to that found in chondritic meteorites. There is intriguing evidence for chondrule‐ or CAI‐sized objects in a small fraction of the light curves, but further work is required to generate a definitive test.  相似文献   

11.
Tempel—Tuttle彗星与近年的狮子座流星雨   总被引:1,自引:0,他引:1  
吴光节 《天文学报》2001,42(2):125-133
对狮子座流雨的历史进行了回顾和讨论,并利用“彗星-地球轨道分离(CEOS)及地球滞后彗星时间(TE-C)”统计图进行分析,发现几乎所有的狮子座流星都位于一个倾斜的方框内,而这倾斜方框械右边界的斜率大约为15m/s,方框的宽度大约为4yr,它表明,33年一度的狮子座流星雨一般不会有超过4年的爆发期,更细致的分析表明,最强的流星暴位于一弯曲的细窄条带,在慧星一次回归期,亮流星的比例将年衰减,这些事实,可以用运动,碎裂,扩散和尘埃彗尾模型进行解释,由15m/s速度得到的流星体尺度大小也与事实相容,并且,这表明与地球相遇的流星体粒子是以有限的速度偏离彗星时间(TE-C)就越长,由此倾斜方框的存在,可以对未来狮子座流星雨进行了预报,表明在1998-2000年期间将有较强的狮子座流星雨,中心在1999年,至于2000年以后,要在100多年以后才会有较强的流星暴,而狮子座流星雨的辉煌期可以说已经过去。  相似文献   

12.
Abstract— Precise atmospheric trajectories including dynamic and photometric data on thirteen of the brightest Leonid fireballs have been determined from the double‐station photographic observations of Leonid meteors during the ground‐based expedition to China in 1998 November. the expedition was organized as a collaboration between the dutch and chinese academy of sciences and was supported by the leonid multi‐instrument aircraft campaign (mac) program (jenniskens and butow, 1999). All data presented here were taken at Xinglong Observatory and at a remote station, Lin Ting Kou near Beijing, on the night of 1998 November 16/17. At the Xinglong station, photographic cameras were accompanied by an all‐sky television camera equipped with an image intensifier and 15 mm fish‐eye objective in order to obtain precise timings for all observed meteors up to magnitude +2. Whereas beginning heights of photographed meteors are all lower than 130 km, those observed by the all‐sky television system are at ~160 km, and for three brightest events, even > 180 km. Such high beginnings for meteors have never before been observed. We also obtained a precise dynamic single‐body solution for the Leonid meteor 98003, including the ablation coefficient, which is an important material and structural quantity (0.16 s2 km?2). From this and from known photometry, we derived a density of this meteoroid of 0.7 g/cm3. Also, all PE coefficients indicate that these Leonid meteors belonged to the fireball group IIIB, which is typical for the most fragile and weak interplanetary bodies. From a photometric study of the meteor lightcurves, we found two typical shapes of light curves for these Leonid meteors.  相似文献   

13.
Abstract— Two‐station electro‐optical observations of the 1998 Leonid shower are presented. Precise heights and light curves were obtained for 79 Leonid meteors that ranged in brightness (at maximum luminosity) from +0.3 to +6.1 astronomical magnitude. The mean photometric mass of the data sample was 1.4 × 10?6 kg. The dependence of astronomical magnitude at peak luminosity on photometric mass and zenith angle was consistent with earlier studies of faint sporadic meteors. For example, a Leonid meteoroid with a photometric mass of ~1.0 × 10‐7 kg corresponds to a peak meteor luminosity of about +4.5 astronomical magnitudes. The mean beginning height of the Leonid meteors in this sample was 112.6 km and the mean ending height was 95.3 km. The highest beginning height observed was 144.3 km. There is relatively little dependence of either the first or last heights on mass, which is indicative of meteoroids that have clustered into constituent grains prior to the onset of intensive grain ablation. The height distribution, combined with numerical modelling of the ablation of the meteoroids, suggests that silicate‐like materials are not the principal component of Leonid meteoroids and hints at the presence of a more volatile component. Light curves of many Leonid meteors were examined for evidence of the physical structure of the associated meteoroids: similar to the 1997 Leonid meteors, the narrow, nearly symmetric curves imply that the meteoroids are not solid objects. The light curves are consistent with a dustball structure.  相似文献   

14.
Abstract— In 1996, a broad outburst structure of bright Leonid meteors similar to the 1995 and the 1994 displays (Jenniskens, 1996; Langbroek, 1996b) was observed. In addition, a second narrow outburst structure of fainter meteors, which will be reported and discussed in this paper, has with certainty been observed. This observation marks the first detection of such a narrow structure in the new series of Leonid outbursts. It has a similar exponential activity behaviour and similar emphasis on fainter meteors as shown by the 1866 and 1966 Leonid storm structures. Similar narrow peaks have been observed in 1965 and 1969 (Jenniskens, 1995, 1996). The broad 1996 structure of bright meteors peaked at November 17.31 ± 0.04 (λ 235°.28 ± 0.04 (2000.0)). The additional narrow structure peaked at November 17.20 ± 0.01 (λ 235°.172 ± 0.007). The occurrence of the narrow peak can best be explained as a first modest sign of presence of the meteoroid structure that should be responsible for the expected meteor storm activity of the Leonids in 1998–1999. The appearance 0.°085 before the node of 55P/Tempel-Tuttle suggests that the expected 1998–1999 Leonid storms might peak just before passage through the node of the comet.  相似文献   

15.
The Third Peak of the 1998 Leonid Meteor Shower   总被引:2,自引:0,他引:2  
1 INTRODUCTIONThe Leonid meteor shower is a well-known periodic meteor shower. Its history is tied upwith the development of the theory of meteor stream astronomy itself. It was the very st.rongshowers of 1799 and 1833 that played a sghficant pat in the recoghtion of the ealstence ofmeteoroid streams. These evellts started the obse~ions of Leoaid meteor shower and broughtabout the birth of meteoritiCS. It is known that the Leould parent comet, 55P/Tempel-TUttle,has an orbital period a…  相似文献   

16.
Enhancements of the Na emission and temperature from the lunar atmosphere were reported during the Leonid meteor showers of 1995, 1997 and 1998. Here we report a search for similar enhancement during the 1999 Quadrantids, which have the highest mass flux of any of the major streams. No enhancements were detected. We suggest that different chemical–physical properties of the Leonid and Quadrantid streams may be responsible for the difference.  相似文献   

17.
In order to enhance our understanding of the possible influence of meteor ablation on the enrichment in OH and O2 of the lower thermosphere we studied intense Leonid meteor activity by using the SATI (Spectral Airglow Temperature Imager) interferometer of the Instituto de Astrofísica de Andalucía. We measured the emission rate and rotational temperature of OH and O2 airglow emission layers during two observation periods of high meteoric activity: the 1998 Leonid outburst and the 2002 Leonid storm. The results show that there is not a clear relation of O2 and OH airglow emission and rotational temperature with meteoric activity.  相似文献   

18.
The successful application of modern observing techniques for Leonid storm observations show that meteor (shower) detections will have a bright future if the field will pursue difficult but important questions. How to forecast a satellite threatening meteor storm? What happens to the organic matter in meteors and can this be an important source of prebiotic molecules? What range of variations in composition and morphology exists among cometary grains and what does this tell us about the origin of the solar system? What long-period comets approach Earth orbit and can meteoroid streams provide early warning for giant impacts? What are the sources of interstellar and interplanetary grains? Just to mention a few. To answer these questions will need new technologies and facilities, some of which are being developed for other use. This may include NASA’s Stratospheric Observatory For Infrared and sub-millimeter Astronomy (SOFIA). In addition, big-science space missions can drive the field if meteor detections are an integral part. Special events, such as meteor outbursts and the “artificial meteor” from the reentry of sample return capsules from interplanetary space, can mobilize observing and theoretical efforts. These and other future opportunities are briefly discussed.  相似文献   

19.
D.K. Yeomans 《Icarus》1981,47(3):492-499
The distribution of dust surrounding periodic comet Tempel-Tuttle has been mapped by analyzing the associated Leonid meteor shower data over the 902–1969 interval. The majority of dust ejected from the parent comet evolves to a position lagging the comet and outside the comet's orbit. The outgassing and dust ejection required to explain the parent comet's deviation from pure gravitational motion would preferentially place dust in a position leading the comet and inside the comet's orbit. Hence it appears that radiation pressure and planetary perturbations, rather than ejection processes, control the dynamic evolution of the Leonid particles. Significant Leonid meteor showers are possible roughly 2500 days before or after the parent comet reaches perihelion but only if the comet passes closer than 0.025 AU inside or 0.010 AU outside the Earth's orbit. Although the conditions in 1998–1999 are optimum for a significant Leonid meteor shower, the event is not certain because the dust particle distribution near the comet is far from uniform. As a by-product of this study, the orbit of comet Tempel-Tuttle has been redetermined for the 1366–1966 observed interval.  相似文献   

20.
J.F Carbary  J.-H Yee 《Icarus》2003,161(2):223-234
During the Leonid meteor shower on 18 November 1999, the five spectrographic imagers onboard the Midcourse Space Experiment (MSX) satellite recorded the first complete meteor spectra from 110 to 860 nm. The observation occurred at 00:23:36.2 UT, at which time the satellite was pointed at a tangent altitude of 100 km over 37.2°N and 78.2°E. The spectrograph slits were oriented approximately parallel to the horizon at a tangent altitude of 100 km, and the meteor passed approximately perpendicular through the slits’ fields of view. All five spectrographic imagers observed the passage of a bright object (mv < −2.8 at 100 km) and each recorded several frames of data. In the visible, common meteor emissions were observed from iron, sodium, and oxygen. However, the ultraviolet spectrum displayed a wealth of more intense features, some of which actually caused saturation in the spectrographs. The most intense features appeared between 220 and 300 nm and are attributed to neutral and singly ionized iron and ionized magnesium. Some unknown emissions, possibly from an unidentified molecular species such as iron oxide, appear between 180 and 220 nm. In the far ultraviolet from 110 to 130 nm, oxygen and nitrogen features appear in the spectrum, with some features from ionized iron and magnesium. In particular, the FUV spectrum showed an intense emission from hydrogen Lyman alpha and a much weaker emission from what appeared to be neutral carbon. The atmospheric emissions can be associated with the heating within the meteor shock, while the metallic emissions originate from the fireball of the meteor proper. The ultraviolet emissions were much stronger than those in the visible and near-infrared parts of the spectrum. The energy of emissions in the ultraviolet (110 < λ < 337 nm) exceeded the energy of the visible (337 < λ < 650 nm) by a factor of at least 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号