首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution far-infrared observations of a large area of the star-forming complex RCW 106 obtained using the TIFR 1-m balloon-borne telescope are presented. Intensity maps have been obtained simultaneously in two bands centred around 150 and 210 μm. Intensity maps have also been obtained in the four IRAS bands using HIRES-processed IRAS data. From the 150- and 210-μm maps, reliable maps of dust temperature and optical depth have been generated. The star formation in this complex has occurred in five linear sub-clumps. Using the map at 210 μm, which has a spatial resolution superior to that of IRAS at 100 μm, 23 sources have been identified. The spectral energy distribution (SED) and luminosity of these sources have been determined using the associations with the IRAS maps. The luminosity distribution of these sources has been obtained. Assuming these embedded sources to be zero-age main-sequence stars and using the mass–luminosity relation for these, the power-law slope of the initial mass function is found to be −1.73±0.5 . This index for this very young complex is about the same as that for more evolved complexes and clusters. Radiation transfer calculations in spherically symmetric geometry have been undertaken to fit the SEDs of 13 sources with fluxes in both the TIFR and the IRAS bands. From this, the r −2 density distribution in the envelopes is ruled out. Finally, a correlation is seen between the luminosity of embedded sources and the computed dust masses of the envelopes.  相似文献   

2.
We present 450- and 800-μm images, made with the James Clerk Maxwell Telescope, of the NGC 2024 molecular ridge. The seven previously known compact cores, FIR1–7, have been detected, and FIR5 has been resolved into a compact object and an associated extended source to the east. The estimated masses of the dense cores vary between 1.6 and 5.1 M⊙ per 14-arcsec beam, assuming a dust temperature of 30 K and a dust opacity of κ800 μm = 0.002 m2 kg−1. A spectral index map made from the 450- and 800-μm images shows spatial variations, with the spectral index, α ( F ν ∝ να), being systematically lower towards the dense cores. We interpret this as evidence for a lower value of the frequency dependence of the dust opacity, β, towards the denser cores relative to the surrounding molecular material. This may indicate that grain growth is occurring in the cores, prior to planetesimal formation. By comparing the high-resolution 450-μm image with interferometer maps of the integrated CS(2–1) emission, the previously reported discrepancy between dust continuum emission and molecular line emission is found to be very localized. Depletion and temperature variations are discussed as possible explanations.  相似文献   

3.
Submillimetre mapping observations of the active edge-on spiral galaxy NGC 3079 are presented. These maps at 850 and 450 μm were made with the Submillimetre Common User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT).
The source structure at these wavelengths consists of a central unresolved source embedded in diffuse disc emission, similar to that displayed at 1.2 mm. The disc emission is fitted with two optically thin, isothermal dust models which give temperatures of 12 and 31 K, similar to those derived previously by Braine et al. The core component is well described by a single-temperature fit (∼32 K). The combined dust mass from these observations, using the same mass absorption coefficient as Devereux & Young (1990) is 3.5×108 M, of which ∼90 per cent resides in the cold component of the galactic disc. The effect of the cold dust component detected by SCUBA is thus to reduce the global gas-to-dust mass ratio from ∼1400 found in the above study to 85, very similar to the Galactic level. Calculations using the models of Draine & Lee and/or alternative molecular gas mass estimates yield gas-to-dust mass ratios in the range 60–190.
The data presented here, together with previously published 1.2-mm mapping observations and IRAS data, are inconsistent with detections made with the Infrared Space Observatory ( ISO ). In particular, the latter give an excess of flux at 200 and 180 μm relative to that predicted by our simple model fits (approximately a factor of 2–3).  相似文献   

4.
Wide-field mapping of Serpens in submillimetre continuum emission and CO J =2–1 line emission is here complemented by optical imaging in [S  ii ] λλ 6716, 6731 line emission. Analysis of the 450- and 850-μm continuum data shows at least 10 separate sources, along with fainter diffuse background emission and filaments extending to the south and east of the core. These filaments describe 'cavity-like' structures that may have been shaped by the numerous outflows in the region. The dust opacity index, β , derived for the identifiable compact sources is of the order of 1.0±0.2, with dust temperatures in excess of 20 K. This value of β is somewhat lower than for typical class I YSOs; we suggest that the Serpens sources may be 'warm', late class 0 or early class I objects.
With the combined CO and optical data we also examine, on large scales, the outflows driven by the embedded sources in Serpens. In addition to a number of new Herbig–Haro flows (here denoted HH 455–460), a number of high-velocity CO lobes are observed; these extend radially outwards from the cluster of submillimetre sources in the core. A close association between the optical and molecular flows is also identified. The data suggest that many of the submillimetre sources power outflows. Collectively, the outflows traced in CO support the widely recognized correlation between source bolometric luminosity and outflow power, and imply a dynamical age for the whole protostellar cluster of ∼3×104 yr. Notably, this is roughly equal to the proposed duration of the 'class 0' stage in protostellar evolution.  相似文献   

5.
We present SCUBA 850-μm, JCMT  CO( J =2→1)  , B -band imaging and VLA H  i observations of the NGC 7465/4/3 group of galaxies. The 850-μm emission associated with NGC 7465 extends to at least ∼2 R 25 and is well correlated with the H  i . We investigate a range of possible mechanisms by which dust beyond R 25 may be heated to give the observed extended submillimetre emission. By modelling the dust heating by stars in two extreme geometries, we fail to find any reasonable star formation scenario that is consistent with both the 850-μm and optical data. Furthermore, we do not detect any  CO( J =2→1)  emission coincident with the extended dust and atomic gas as would be expected if significant star formation were occurring. We show that shock-heating of dust via cloud–cloud collisions in the stripped interstellar medium of NGC 7465 could be sufficient to explain the extended 850-μm emission and lack of optical emission in the stripped gas, and suggest that cloud–cloud collisions may be an important dust heating mechanism in gas-rich systems.  相似文献   

6.
This is the second in a series of papers presenting results from the SCUBA Local Universe Galaxy Survey. In our first paper we provided 850-μm flux densities for 104 galaxies selected from the IRAS Bright Galaxy Sample and we found that the 60-, 100-μm ( IRAS ) and 850-μm (SCUBA) fluxes could be adequately fitted by emission from dust at a single temperature. In this paper we present 450-μm data for the galaxies. With the new data, the spectral energy distributions of the galaxies can no longer be fitted with an isothermal dust model – two temperature components are now required. Using our 450-μm data and fluxes from the literature, we find that the 450/850-μm flux ratio for the galaxies is remarkably constant, and this holds from objects in which the star formation rate is similar to our own Galaxy, to ultraluminous infrared galaxies (ULIRGs) such as Arp 220. The only possible explanation for this is if the dust emissivity index for all of the galaxies is ∼2 and the cold dust component has a similar temperature in all galaxies     . The 60-μm luminosities of the galaxies were found to depend on both the dust mass and the relative amount of energy in the warm component, with a tendency for the temperature effects to dominate at the highest L 60. The dust masses estimated using the new temperatures are higher by a factor of ∼2 than those determined previously using a single temperature. This brings the gas-to-dust ratios of the IRAS galaxies into agreement with those of the Milky Way and other spiral galaxies which have been intensively studied in the submm.  相似文献   

7.
We present a multiwavlength infrared (IR) study of the nearby, edge-on, spiral galaxy NGC 891. We have examined 20 independent, spatially resolved IR images of this galaxy, 14 of which are newly reduced and/or previously unpublished images. These images span a wavelength regime from  λ 1.2 μ  m in which the emission is dominated by cool stars, through the mid-IR, in which emission is dominated by polycyclic aromatic hydrocarbons (PAHs), to λ 850 μm, in which emission is dominated by cold dust in thermal equilibrium with the radiation field. The changing morphology of the galaxy with wavelength illustrates the changing dominant components. We detect extraplanar dust emission in this galaxy, consistent with previously published results, but now show that PAH emission is also in the halo, to a vertical distance of   z ≥ 2.5 kpc  . We compare the vertical extents of various components and find that the PAHs (from λ 7.7 and 8 μm data) and warm dust (λ 24 μm) extend to smaller z heights than the cool dust (λ 450 μm). For six locations in the galaxy for which the signal-to-noise ratio was sufficient, we present spectral energy distributions (SEDs) of the IR emission, including two in the halo – the first time a halo SED in an external galaxy has been presented. We have modelled these SEDs and find that the PAH fraction, f PAH, is similar to Galactic values (within a factor of 2), with the lowest value at the galaxy's centre, consistent with independent results of other galaxies. In the halo environment, the fraction of dust exposed to a colder radiation field, f cold, is of the order of unity, consistent with an environment in which there is no star formation. The source of excitation is likely from photons escaping from the disc.  相似文献   

8.
The results of 3–4-μm spectroscopy towards the nuclei of NGC 3094, 7172, and 7479 are reported. In ground-based 8–13-μm spectra, all the sources have strong absorption-like features at ∼10 μm, but they do not have detectable polycyclic aromatic hydrocarbon (PAH) emission features. The 3.4-μm carbonaceous dust absorption features are detected towards all nuclei. NGC 3094 shows a detectable 3.3-μm PAH emission feature, while NGC 7172 and 7479 do not. Nuclear emission whose spectrum shows dust absorption features but no PAH emission features, is thought to be dominated by highly obscured active galactic nuclei (AGNs) activity. For NGC 7172, 7479, and three other such nuclei in the literature, we investigate the optical depth ratios between the 3.4-μm carbonaceous dust and 9.7-μm silicate dust absorption     The     ratios towards three highly obscured AGNs with face-on host galaxies are systematically larger than the ratios in the Galactic diffuse interstellar medium or the ratios for two highly obscured AGNs with edge-on host galaxies. We suggest that the larger ratios can be explained if the obscuring dust is so close to the central AGNs that a temperature gradient occurs in it. If this idea is correct, our results may provide spectroscopic evidence for the presence of the putative 'dusty tori' in the close vicinity of AGNs.  相似文献   

9.
We report spatially resolved variations in the 3.4-μm hydrocarbon absorption feature and the 3.3-μm polycyclic aromatic hydrocarbon (PAH) emission band in the Circinus galaxy over the central few arcsec. The absorption is measured towards warm emitting dust associated with Coronal line regions to the east and west of the nucleus. There is an absorption optical depth  τ3.4 μm∼ 0.1  in the core which decreases to the west and increases to the east. This is consistent with increased extinction out to ∼40 pc east of the core, supported by the Coronal emission line intensities which are significantly lower to the east than the west. PAH emission is measured to be symmetrically distributed out to ±4 arcsec, outside the differential extinction region. The asymmetry in the 3.4-μm absorption band reflects that seen in the 9.7-μm silicate absorption band reported by Roche et al., and the ratio of the two absorption depths remains approximately constant across the central regions, with  τ3.4 μm9.7 μm∼ 0.06 ± 0.01  . This indicates well-mixed hydrocarbon and silicate dust populations, with no evidence for significant changes near the nucleus.  相似文献   

10.
We have surveyed a ∼0.9 square degree area of the W3 giant molecular cloud (GMC) and star-forming region in the 850-μm continuum, using the Submillimetre Common-User Bolometer Array on the James Clerk Maxwell Telescope. A complete sample of 316 dense clumps were detected with a mass range from around 13 to  2500 M  . Part of the W3 GMC is subject to an interaction with the H  ii region and fast stellar winds generated by the nearby W4 OB association. We find that the fraction of total gas mass in dense, 850-μm traced structures is significantly altered by this interaction, being around 5–13 per cent in the undisturbed cloud but ∼25–37 per cent in the feedback-affected region. The mass distribution in the detected clump sample depends somewhat on assumptions of dust temperature and is not a simple, single power law but contains significant structure at intermediate masses. This structure is likely to be due to crowding of sources near or below the spatial resolution of the observations. There is little evidence of any difference between the index of the high-mass end of the clump mass function in the compressed region and in the unaffected cloud. The consequences of these results are discussed in terms of current models of triggered star formation.  相似文献   

11.
We have carried out a spectroscopic survey of 750 sources that are strong 25-μm emitters from the IRAS Faint Source data base. Many of these sources are previously unknown active galactic nuclei including new IRAS quasars, three of which we describe here: F21382−2659, Z06367−6845 and Z05558−5008. They are all radio and X-ray quiet, and compared to the known IRAS quasars they have similar 25-μm luminosities, L (25 μm), but lower values of L (25 μm)/ L ( B ). Their F (25 μm)/ F (60 μm) IRAS colours lie in the range 0.33 to 1.08, indicating the presence of relatively warm dust, presumably in a dusty torus surrounding the central source, and with temperatures similar to those of the known IRAS quasars. The quasar with the warmest dust, F21382−2659, exhibits broad (full width at half-maximum ∼4000 km s−1) asymmetric Balmer lines with H γ having an opposite asymmetry to the other broad lines; also H β (only) is double-peaked. Fe  ii is very weak in F21382−2659 but strong in the other two quasars, and the anticorrelation between Fe  ii and [O  iii ] holds as anticipated. Two of the quasars are unpolarized: although F21382−2659 is optically polarized (2.1 per cent at 4950 Å), we argue that this provides little insight into the orientation of its dust torus relative to the line of sight.  相似文献   

12.
We have obtained wide-field thermal infrared (IR) images of the Carina nebula, using the SPIREX/Abu telescope at the South Pole. Emission from polycyclic aromatic hydrocarbons (PAHs) at 3.29 μm, a tracer of photodissociation regions (PDRs), reveals many interesting well-defined clumps and diffuse regions throughout the complex. Near-IR images  (1–2 μm)  , along with images from the Midcourse Space Experiment ( MSX ) satellite  (8–21 μm)  have been incorporated to study the interactions between the young stars and the surrounding molecular cloud in more detail. Two new PAH emission clumps have been identified in the Keyhole nebula, and have been mapped in  12CO(2–1)  and  (1–0)  using the Swedish–ESO Submillimetre Telescope (SEST). Analysis of their physical properties reveals that they are dense molecular clumps, externally heated with PDRs on their surfaces and supported by external pressure in a similar manner to the other clumps in the region. A previously identified externally heated globule containing IRAS 10430−5931 in the southern molecular cloud shows strong 3.29-, 8- and 21-μm emission, the spectral energy distribution (SED) revealing the location of an ultracompact (UC) H  ii region. The northern part of the nebula is complicated, with PAH emission intermixed with mid-IR dust continuum emission. Several point sources are located here, and through a two-component blackbody fit to their SEDs we have identified three possible UC H  ii regions as well as a young star surrounded by a circumstellar disc. This implies that star formation in this region is ongoing and not halted by the intense radiation from the surrounding young massive stars.  相似文献   

13.
We present arcsec-resolution images at 8.2, 10.0 and 11.3 μm of the unusual young object WL 16 in Ophiuchus, which has an extended envelope of fluorescing hydrocarbon molecules. To the limit of achieved sensitivity, the faint 10.0-μm continuum has a surface-brightness distribution that is not distinguishable from those at 8.2 and 11.3 μm, where the luminosity is known to be dominated by the polycyclic aromatic hydrocarbon (PAH) emission features. We conclude that the 10-μm continuum either arises from non-equilibrium heating of small dust grains that are well mixed with the hydrocarbons or is quasi-continuous emission from the PAH particles themselves, rather than thermal equilibrium emission from macroscopic dust grains, and that there is no significant silicate absorption variation across the source. The extended hydrocarbon emission may trace a flattened, equatorial distribution of circumstellar material or arise in bipolar lobes. The former case is slightly favoured, based on currently available data, and would imply that WL 16 is a relatively evolved Herbig Ae star, the equatorial plane of which has been almost cleared of normal dust, leaving only fluorescing hydrocarbons and larger coagulated particles as a possibly transient fossil of the original circumstellar disc.  相似文献   

14.
We present observations of the spiral galaxy NGC 7331 using the Submillimetre Common User Bolometer Array (SCUBA) on the James Clark Maxwell Telescope. We have detected a dust ring of 45 arcsec radius (3.3 kpc) at wavelengths of 450 and 850 μm. The dust ring is in good correspondence with other observations of the ring in the mid-infrared (MIR), CO and radio continuum, suggesting that the observed dust is associated with molecular gas and star formation. A B  −  K colour map shows an analogous ring structure with an asymmetry about the major axis, consistent with the extinction being produced by a dust ring. The derived temperature of the dust lies between 16 and 31 K and the gas-to-dust ratio lies between 150 and 570, depending on the assumed dust emission efficiency index (β = 1.5 or 2).  相似文献   

15.
We present new data taken at 850 μm with SCUBA at the James Clerk Maxwell Telescope for a sample of 19 luminous infrared galaxies. Fourteen galaxies were detected. We have used these data, together with fluxes at 25, 60 and 100 μm from IRAS , to model the dust emission. We find that the emission from most galaxies can be described by an optically thin, single temperature dust model with an exponent of the dust extinction coefficient ( k λ ∝ λ − β ) of β ≃1.4–2. A lower β ≃1 is required to model the dust emission from two of the galaxies, Arp 220 and NGC 4418. We discuss various possibilities for this difference and conclude that the most likely is a high dust opacity. In addition, we compare the molecular gas mass derived from the dust emission, M 850 μm, with the molecular gas mass derived from the CO emission, M CO, and find that M CO is on average a factor 2–3 higher than M 850 μm.  相似文献   

16.
We present upper limits on the 850-μm and 450-μm fluxes of the warm hyperluminous (bolometric luminosity     galaxies IRAS P09104+4109     and IRAS F15307+3252     , derived from measurements using the SCUBA bolometer array on the James Clerk Maxwell Telescope. Hot luminous infrared sources like these are thought to differ from more normal cold ultraluminous infrared     galaxies in that they derive most of their bolometric luminosities from dusty active galactic nuclei (AGNs) as opposed to starbursts. Such hot, dusty AGNs at high redshift are thought to be responsible for much of the mass accretion of the Universe that is in turn responsible for the formation of the supermassive black holes seen in the centres of local galaxies. The galaxy IRAS P09104+4109 is also unusual in that it is a cD galaxy in the centre of a substantial cooling-flow cluster, not an isolated interacting galaxy like most ultraluminous infrared galaxies. Previously it was known to have large amounts of hot     dust from IRAS observations. We now show that the contribution of cold dust to the bolometric luminosity is less than 3 per cent. Most ultraluminous infrared galaxies possess large amounts of cold dust, and it is now known that some cooling-flow cluster cD galaxies do as well. Yet this object, which is an extreme example of both, does not have enough cold gas to contribute significantly to the bolometric luminosity. We outline physical reasons why this could have happened. We then provide a discussion of strategies for finding hot dusty AGNs, given the limitations on submillimetre surveys implied by this work.  相似文献   

17.
We present     spectropolarimetry, and 12- and 2-μm imaging polarimetry of the southern massive star-forming region G333.6−0.2. Spectro-polarimetry measurements show that the polarization observed towards the nebula contains a mixture of both absorptive and emissive polarizations. Model fitting to the spectra indicates that the temperature of the mid-infrared emitting dust grains is generally ∼200 K and the optical depth of the absorbing dust at 9.7 μm is ∼1.5. Fits are also made to the polarimetry spectra, which show a reasonably constant peak absorptive polarization (∼3.4 per cent at 43°) across the face of the H  ii region. This absorptive polarization position angle is consistent with that found by the 2-μm imaging polarimetry     and is most likely due to the Galactic magnetic field local to G333.6−0.2. When the absorptive polarization is subtracted from the 12-μm polarization image, the emissive polarization pattern that is intrinsic to the star-forming region is revealed. A probable magnetic field configuration implied by the intrinsic polarization suggests star formation initially influenced by the Galactic magnetic field which is eventually perturbed by the star formation process.  相似文献   

18.
Deep SCUBA observations of NGC 1275 at 450 and 850 μm along with the application of deconvolution algorithms have permitted us to separate the strong core emission in this galaxy from the fainter extended emission around it. The core has a steep spectral index and is likely caused primarily by the active galactic nucleus. The faint emission has a positive spectral index and is clearly caused by extended dust in a patchy distribution out to a radius of ∼20 kpc from the nucleus. These observations have now revealed that a large quantity of dust, ∼     (two orders of magnitude larger than that inferred from previous optical absorption measurements), exists in this galaxy. We estimate the temperature of this dust to be ∼20 K (using an emissivity index of     and the gas/dust ratio to be 360. These values are typical of spiral galaxies. The dust emission correlates spatially with the hot X-ray emitting gas, which may be a result of collisional heating of broadly distributed dust by electrons. As the destruction time-scale is short, the dust cannot be replenished by stellar mass loss and must be externally supplied, via either the infalling galaxy or the cooling flow itself.  相似文献   

19.
We present SCUBA observations of the protomultiple system NGC 1333/IRAS 4 at 450 and 850 μm. The 850-μm map shows significant extended emission which is most probably a remnant of the initial cloud core. At 450 μm, the component 4A is seen to have an elongated shape suggestive of a disc. Also we confirm that, in addition to the 4A and 4B system, there exists another component 4C, which appears to lie out of the plane of the system and of the extended emission. Deconvolution of the beam reveals a binary companion to IRAS 4B. Simple considerations of binary dynamics suggest that this triple 4A–4BI–4BII system is unstable and will probably not survive in its current form. Thus IRAS 4 provides evidence that systems can evolve from higher to lower multiplicity as they move towards the main sequence. We construct a map of spectral index from the two wavelengths, and comment on the implications of this for dust evolution and temperature differences across the map. There is evidence that in the region of component 4A the dust has evolved, probably by coagulating into larger or more complex grains. Furthermore, there is evidence from the spectral index maps that dust from this object is being entrained in its associated outflow.  相似文献   

20.
We present ISOPHOT observations of eight interstellar regions in the 60–200 μm wavelength range. The regions belong to mostly quiescent high-latitude clouds and have optical extinction peaks from   AV ∼1–6 mag  . From the 150- and 200-μm emission, we derived colour temperatures for the classical big grain component which show a clear trend of decreasing temperature with increasing 200-μm emission. The 200-μm emission per unit   AV   , however, does not drop at lower temperatures. This fact can be interpreted in terms of an increased far-infrared (FIR) emissivity of the big grains. We developed a two-component model including warm dust with the temperature of the diffuse interstellar medium (ISM) of   T = 17.5 K  , and cold dust with   T = 13.5 K  and FIR emissivity increased by a factor of >4. A mixture of the two components can reproduce the observed colour variations and the ratios   I 200/ AV   and  τ200/ AV   . The relative abundance of small grains with respect to the big grains shows significant variations from region to region at low column densities. However, in lines of sight of higher column density, our data indicate the disappearance of small grains, perhaps a signature of adsorption/coagulation of dust. The larger size and porous structure could also explain the increased FIR emissivity. Our results from eight independent regions suggest that these grains might be ubiquitous in the galactic ISM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号