首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
During the last three decades, remotely sensed data (both satellite images and aerial photographs) have been increasingly used in groundwater exploration and management exercises. An integrated approach has been adopted in the present study to delineate groundwater recharge potential zones using RS and GIS techniques. IRS-1C satellite imageries and Survey of India toposheets are used to prepare various thematic layers viz. geology, soil, land-use, slope, lineament and drainage. These layers were then transformed in to raster data using feature to raster converter tool in ArcGIS 9.3 software. The raster maps of these factors are allocated a fixed score and weight computed from Influencing Factor (IF) technique. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. Subjective weights are assigned to the respective thematic layers and overlaid in GIS platform for the identification of potential groundwater recharge zones within the study area. Then these potential zones were categories as ‘high’, ‘moderate’, ‘low’, ‘poor’. The resulted map shows that 19 % of the area has highest recharge potential, mainly confined to buried pediplain, agriculture land-use and river terraces (considerable amount of precipitated water percolates into subsurface), 28 % of the area has moderate groundwater recharge potentiality and rest of the area has low to poor recharge potentiality. The residual hills and linear ridges with steep slopes are not suitable for artificial recharge sites. Finally, 13 % of total average annual precipitated water (840 mm) percolates downward and ultimately contributes to recharge the aquifers in the Kovilpatti Municipality area. The paper is an attempt to suggest for maintaining the proper balance between the groundwater quantity and its exploitation.  相似文献   

2.
Groundwater recharge is an important process for the management of both surface and subsurface water resources. The present study utilizes the application of analytical hierarchical process (AHP) on geospatial analysis for the exploration of potential zones for artificial groundwater recharge along Vaigai upper basin in the Theni district, Tamil Nadu, India. The morphology of earth surface features such as geology, geomorphology, soil types, land use and land cover, drainage, lineament, and aquifers influence the groundwater recharge in either direct or indirect way. These thematic layers are extracted from Landsat ETM+ image, topographical map, and other collateral data sources. In this study, the multilayers were weighed accordingly to the magnitude of groundwater recharge potential. The AHP technique is a pair-wise matrix analytical method was used to calculate the geometric mean and normalized weight of individual parameters. Further, the normalized weighted layers are mathematically overlaid for preparation of groundwater recharge potential zone map. The results revealed that 21.8 km2 of the total area are identified as high potential for groundwater recharge. The gentle slope areas in middle-east and central part have been moderately potential for groundwater recharge. Hilly terrains in south are considered as unsuitable zone for groundwater recharge processes.  相似文献   

3.
Jordan with its limited water resources is currently classified as one of the four water-poor countries worldwide. This study was initiated to explore groundwater potential areas in Tulul al Ashaqif area, Jordan, by integrating remote sensing, geographic information systems (GIS), and multicriteria evaluation techniques. Eight thematic layers were built in a GIS and assigned using multicriteria evaluation techniques suitable weights and ratings regarding their relative contribution in groundwater occurrence. These layers include lithology, geomorphology, lineaments density, drainage density, soil texture, rainfall, elevation, and slope. The final groundwater potentiality map generated by GIS consists of five groundwater potentiality classes: very high, high, moderate, low, and very low. The map showed that the study area is generally of moderate groundwater potentiality (76.35 %). The very high and high potential classes occupy 2.2 and 12.75 % of study area, respectively. The validity of results of this GIS-based model was carried out by superimposing existing hand dug wells on the final map. The single parameter sensitivity test was conducted to assess the influence of the assigned weights on the groundwater potential model, and new effective weights were derived. The resulted groundwater potentiality map showed that the area occupied by each of the groundwater potentiality classes has changed. However, the study area remains generally of moderate groundwater potentiality (70.93 % of the study area). The area occupied by the very high and high potential classes comprises 4.53 and 18.56 % of the study area, respectively.  相似文献   

4.
A case study was conducted to find the groundwater potential zones in an area between the Serang and Bogowonto rivers, Kulon Progo Regency, Java, Indonesia. The objectives of this study were to delineate the groundwater potential zone based on a number of groundwater parameters that can be surveyed in the field and to incorporate the geomorphological conditions into these data. The geomorphology interpretation was conducted using the landform approach. This approach begins by preparing supporting data such as an Indonesian Topographic Map containing contour and land use data; a regional geology map containing lithology type and geology structures; and soil, climate, and hydrological data. The determination of the geomorphology unit was conducted manually by the visual interpretation of Digital Landsat ETM+ with some image interpretation keys. Four groundwater parameters were surveyed in the field: (a) depth to the water table, (b) water table fluctuation, (c) fluid electrical conductivity to represent groundwater quality, and (d) aquifer thickness. The groundwater potential zones were obtained by overlaying all the groundwater field parameters in terms of weighted overlay methods using the spatial analysis tool in ArcGIS 9.2. During the weighted overlay analysis, rankings were produced for each individual parameter of each groundwater field parameter, and weights were assigned based on the amount of influence they had (i.e., depth to the water table—30 %, water table fluctuation—20 %, aquifer thickness—30 %, and fluid conductivity—20 %). We then found the good, moderate, and poor zones in terms of groundwater potential, which had areas of 5.83, 4.53, and 2.36 km2, respectively. Areas with good groundwater potential are located largely within sand dunes, beach ridges, beaches, and fluviomarine plain landforms, which are characterized by a shallow water table, low fluctuation, thick aquifer, and low EC value. Moderate groundwater zones are generally characterized by poor water quality (high EC value), which is found to some degree in the alluvial plain. The regions with poor groundwater potential are spread mainly across the landforms composed of igneous rock (thin aquifers), such as denudational hills, which act as run-off zones due to their steep slope.  相似文献   

5.
Groundwater vulnerability to contamination was determined within the Dead Sea groundwater basin, Jordan, using the DRASTIC model and evaluation of human activity impact (HAI). DRASTIC is an index model composed of several hydrogeological parameters and, in this study, the recharge parameter component was calculated as a function of rainfall, soil permeability, slope percentage, fault system, and the intersection locations between the fault system and the drainage system, based on the hydrogeologic characteristics of hard-rock terrain in an arid region. To evaluate the HAI index, a land use/cover map was produced using an ASTER VNIR image, acquired for September 2004, and combined with the resultant DRASTIC model. By comparing the DRASTIC and HAI indices, it is found that human activity is affecting the groundwater quality and increasing its pollution risk. The land use/cover map was verified using the average nitrate concentrations in groundwater associated with land in each class. A sensitivity analysis was carried out in order to study the model sensitivity. The analyses showed that the depth to water table and hydraulic conductivity parameters have no significant impact on the model, whereas the impact of vadose zone, aquifer media, and recharge parameters have a significant impact on the DRASTIC model.  相似文献   

6.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

7.
Jordan Valley is one of the important areas in Jordan that involves dense agricultural activities, which depend on groundwater resources. The groundwater is exploited from an unconfined shallow aquifer which is mainly composed of alluvial deposits. In the vicinity of the Kafrein and South Shunah, the shallow aquifer shows signs of contamination from a wide variety of non-point sources. In this study, a vulnerability map was created as a tool to determine areas where groundwater is most vulnerable to contamination. One of the most widely used groundwater vulnerability mapping methods is SINTACS, which is a point count system model for the assessment of groundwater pollution hazards. SINTACS model is an adaptation for Mediterranean conditions of the well-known DRASTIC model. The model takes into account several environmental factors: these include topography, hydrology, geology, hydrogeology, and pedology. Spatial knowledge of all these factors and their mutual relationships is needed in order to properly model aquifer vulnerability using this model. Geographic information system was used to express each of SINTACS parameters as a spatial thematic layer with a specific weight and score. The final SINTACS thematic layer (intrinsic vulnerability index) was produced by taking the summation of each score parameter multiplied by its specific weight. The resultant SINTACS vulnerability map of the study area indicates that the highest potential sites for contamination are along the area between Er Ramah and Kafrein area. To the north of the study area there is a small, circular area which shows fairly high potential. Elsewhere, very low to low SINTACS index values are observed, indicating areas of low vulnerability potential.  相似文献   

8.
Pollution and overexploitation of scarce groundwater resources is a serious problem in the Zarqa River catchment, Jordan. To estimate this resource’s potential, the amount and spatial distribution of groundwater recharge was calculated by applying the hydrological model J2000. The simulation period is composed of daily values gathered over a 30-year period (July 1977 to June 2007). The figure finally obtained for estimated groundwater recharge of the Zarqa River catchment is 105 × 106 m3 per year (21 mm a?1). This is 19 % higher than the value previously assumed to be correct by most Jordanian authorities. The average ratio of precipitation to groundwater recharge is 9.5 %. To directly validate modelled groundwater recharge, two independent methods were applied in spring catchments: (1) alteration of stable isotope signatures (δ18O, δ2H) between precipitation and groundwater and (2) the chloride mass balance method. Recharge rates determined by isotopic investigations are 25 % higher, and recharge rates determined by chloride mass balance are 9 % higher than the modelled results for the corresponding headwater catchments. This suggests a reasonably modelled safe yield estimation of groundwater resources.  相似文献   

9.
Improvement in modern water resource management has become increasingly reliant on better characterizing of the spatial variability of groundwater recharge mechanisms. Due to the flexibility and reliability of GIS-based index models, they have become an alternative for mapping and interpreting recharge systems. For this reason, an index model by integrating water balance parameters (surface runoff, actual evapotranspiration, and percolation) calculated by Thornthwaite and Mather’s method, with maps of soil texture, land cover, and terrain slope, was developed for a sustainable use of the groundwater resources. The Serra de Santa Helena Environmental Protection Area, next to the urbanized area of Sete Lagoas (MG), Brazil, was selected as the study area. Rapid economic growth has led to the subsequent expansion of the nearby urban area. Large variability in soil type, land use, and slope in this region resulted in spatially complex relationships between recharge areas. Due to these conditions, the study area was divided into four zones, according to the amount of recharge: high (>?100 mm/year), moderate (50–100 mm/year), low (25–50 mm/year), and incipient (>?25 mm/year). The technique proved to be a viable method to estimate the spatial variability of recharge, especially in areas with little to no in situ data. The success of the tool indicates it can be used for a variety of groundwater resource management applications.  相似文献   

10.
The existing different human activities and planned land uses put the groundwater resources in Jordan at considerable risk. There are evidences suggesting that the quality of groundwater supplies in north Jordan is under threat from a wide variety of point and non-point sources including agricultural, domestic, and industrial. Vulnerability maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydrogeological conditions and human impacts. DRASTIC method incorporates the major geological and hydrogeological factors that affect and control groundwater movement: depth to groundwater (D), net recharge (R), lithology of the aquifer (A), soil texture (S), topography (T), lithology of vadose zone (I), and hydraulic conductivity (C). The main goal of this study is to produce vulnerability maps of groundwater resources in the Yarmouk River basin by applying the DRASTIC method to determine areas where groundwater protection or monitoring is critical. ArcGIS 9.2 was used to create the groundwater vulnerability maps by overlaying the available hydrogeological data. The resulting vulnerability maps were then integrated with lineament and land use maps as additional parameters in the DRASTIC model to assess more accurately the potential risk of groundwater to pollution. The general DRASTIC index indicates that the potential for polluting groundwater is low in the whole basin, whereas the resulting pesticide DRASTIC vulnerability map indicates that about 31% of the basin is classified as having moderate vulnerability, which may be attributed to agricultural activities in the area. Although high nitrate concentrations were found in areas of moderate vulnerability, DRASTIC method did not depict accurately the nitrate distribution in the area.  相似文献   

11.
Groundwater is a dynamic and replenishable natural resource. The numerical modeling techniques serve as a tool to assess the effect of artificial recharge from the water conservation structures and its response with the aquifers under different recharge conditions. The objective of the present study is to identify the suitable sites for artificial recharge structures to augment groundwater resources and assess its performance through the integrated approach of Geographic Information System (GIS) and numerical groundwater modeling techniques using MODFLOW software for the watershed located in the Kodaganar river basin, Dindigul district, Tamil Nadu. Thematic layers such as geology, geomorphology, soil, runoff, land use and slope were integrated to prepare the groundwater prospect and recharge site map. These potential zones were categorized as good (23%), moderate (54%), and poor (23%) zones with respect to the assigned weightage of different thematic layers. The major artificial recharge structures like percolation ponds and check dams were recommended based on the drainage morphology in the watershed. Finally, a threelayer groundwater flow model was developed. The model was calibrated in two stages, which involved steady and transient state condition. The transient calibration was carried out for the time period from January 1989 to December 2008. The groundwater model was validated after model calibration. The prediction scenario was carried out after the transient calibration for the time period of year up to 2013. The results show that there is 15 to 38% increase in groundwater quantity due to artificial recharge. The present study is useful to assess the effect of artificial recharge from the proposed artificial structures by integrating GIS and groundwater model together to arrive at reasonable results.  相似文献   

12.
The reasons for the rapid degradation and salination of the shallow aquifer in the northern Jordan Valley were investigated. Shallow groundwater, surface water and thermal water were sampled from the study area for this purpose. The geochemical mass-balance technique was used to quantify the contribution of different sources, geochemical processes and rock types to the final water composition, applying the NETPATH software package. The isotopic compositions of the water were also investigated. The results suggest three potential recharge sources: the Yarmouk River, the Jordan River, and the Mukheibah thermal water. Evaporation significantly contributes to the current chemistry of the shallow water, as is indicated by the geochemical models and the isotopic results. Tritium analyses indicate that the water is clearly new (less than 50 years). The relatively high values of nitrate in some wells may be of anthropogenic origin.  相似文献   

13.
Groundwater potential map is important for environmental assessment and water resources management. In this work, a groundwater recharge potential map was established for the watershed of Oued Djelfa Hadjia in Algeria, based on new multiparameters hybrid model. The model has hydroclimatic parameters, geological settings, slope factor, and stream network density factor as inputs. The groundwater recharge estimated by the model range from 0.71 to 14 mm. The model allows delineation of potential area of recharge. The total water abstraction in Djelfa city is about of 14 hm3; however, the calculated groundwater recharge is about 3 mm/year (min 0.71 mm and max 14 mm), which correspond to an average recharge volume of 3.9 hm3 which mean that the aquifer is under over exploitation.  相似文献   

14.
Sustainable groundwater management requires knowledge of recharge. Recharge is also an important parameter in groundwater flow and transport models. Spatial variation in recharge due to distributed land-us.e, soil texture, topography, groundwater level, and hydrometeorological conditions should be accounted for in recharge estimation. However, conventional point-estimates of recharge are not easily extrapolated or regionalized. In this study, a spatially distributed water balance model WetSpass was used to simulate long-term average recharge using land-use, soil texture, topography, and hydrometeorological parameters in Dire Dawa, a semiarid region of Ethiopia. WetSpass is a physically based methodology for estimation of the long-term average spatial distribution of surface runoff, actual evapotranspiration, and groundwater recharge. The long-term temporal and spatial average annual rainfall of 626 mm was distributed as: surface runoff of 126 mm (20%), evapotranspiration of 468 mm (75%), and recharge of 28 mm (5%). This recharge corresponds to 817 l/s for the 920.12 km2 study area, which is less than the often-assumed 1,000 l/s recharge for the Dire Dawa groundwater catchment.  相似文献   

15.
Groundwater is the most important source of water in meeting irrigation, drinking, and other needs in India. The assessment of the potential zone for its recharge is critical for sustainable usage, quality management, and food security. This study reports alternative mapping of the groundwater recharge potential of a selected block by including large-scale soil data. Thematic layers of soil, geomorphology, slope, land use land cover, topographical wetness index, and drainage density of Darwha block (District Yavatmal, Maharashtra, India) were generated and integrated in a geographic information system environment. The topographic maps, thematic maps, field data, and satellite image were processed, classified, and weighted using analytical hierarchical process for their contribution to groundwater recharge. The layers were integrated by weighted linear combination method in the GIS environment to generate four groundwater potential zones viz., “poor,” “poor to moderate,” “moderate to high,” and “high.” Based on the generated groundwater potential map, about 9830 ha (12%) of the study area was categorized as high potential for recharge, 25,558 ha (31%) as poor to moderate, 33,398 ha (40%) as moderate to high, and 12,565 ha (15%) as poor potential zone. The zonation corresponds well with the field data on greater well density (0.22/ha) and irrigated crop area (27%) in the high potential zone as against 0.02 wells/ha and only 6% irrigated area in the poor zone. The map is recommended for use in regulating groundwater development decisions and judicious expenditure on drilling new wells by farmers and the state authorities.  相似文献   

16.
The main goal of this study is to investigate the application of the probabilistic-based frequency ratio (FR) model in groundwater potential mapping at Langat basin in Malaysia using geographical information system. So far, the approach of probabilistic frequency ratio model has not yet been used to delineate groundwater potential in Malaysia. Moreover, this study includes the analysis of the spatial relationships between groundwater yield and various hydrological conditioning factors such as elevation, slope, curvature, river, lineament, geology, soil, and land use for this region. Eight groundwater-related factors were collected and extracted from topographic data, geological data, satellite imagery, and published maps. About 68 groundwater data with high potential yield values of ≥11 m3/h were randomly selected using statistical software of SPSS. Then, the groundwater data were randomly split into a training dataset 70 % (48 borehole data) for training the model and the remaining 30 % (20 borehole data) was used for validation purpose. Finally, the frequency ratio coefficients of the hydrological factors were used to generate the groundwater potential map. The validation dataset which was not used during the FR modeling process was used to validate the groundwater potential map using the prediction rate method. The validation results showed that the area under the curve for frequency model is 84.78 %. As far as the performance of the FR approach is concerned, the results appeared to be quite satisfactory, i.e., the zones determined on the map being zones of relative groundwater potential. This information could be used by government agencies as well as private sectors as a guide for groundwater exploration and assessment in Malaysia.  相似文献   

17.
Various groundwater potential zones for the assessment of groundwater availability in the Bojnourd basin have been investigated using remote sensing, GIS, and a probabilistic approach. Five independent groundwater factors, including topography, ground slope, stream density, geology units, lineament density, and a groundwater productivity factor, i.e., springs’ discharge, were applied. Discharge rates of 226 springs over the area were collected, and the probabilistic model was designed by the discharge rates of springs as the dependent variable. For training the probabilistic model, a ratio of 70/30% of springs’ discharge was applied and discharge rates of 151 springs were selected to randomly train the model. The frequency ratio for each factor was calculated, and the groundwater potential zones were extracted by summation of frequency ratio maps. The groundwater potential map was also classified into four classes, viz., “very good” (with a frequency ratio of >6.75), “good” (5.5FR6.75), “moderate” (4.75FR5.5), and “poor” (FR4.75). Then, the model was verified based on a success-rate curve method which resulted in obtaining an accuracy ratio of 75.77%. Finally, sensitivity analysis was applied by a factor removal method in five steps. Results reveal that topography factor has the biggest effect on the groundwater potential map and removing this factor eventuates in the lowest accuracy of the final map (AUC = 63. 73%). The groundwater potential map is fairly affected by removing the lineament density factor with an accuracy of 68.80%. Removing the lineament density factor has the lowest effect on the final map with accuracy of 68.80%.  相似文献   

18.
Assessing factors that influence groundwater levels such as land use and pumping strategy, is essential to adequately manage groundwater resources. A transient numerical model for groundwater flow with infiltration was developed for the Tedori River alluvial fan (140 km2), Japan. The main water input into the groundwater body in this area is irrigation water, which is significantly influenced by land use, namely paddy and upland fields. The proposed model consists of two models, a one-dimensional (1-D) unsaturated-zone water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Numerical simulation of groundwater flow from October 1975 to November 2009 was performed to validate the model. Simulation revealed seasonal groundwater level fluctuations, affected by paddy irrigation management. However, computational accuracy was limited by the spatiotemporal data resolution of the groundwater use. Both annual groundwater levels and recharge during the irrigation periods from 1975 to 2009 showed long-term decreasing trends. With the decline in rice-planted paddy field area, groundwater recharge cumulatively decreased to 61 % of the peak in 1977. A paddy-upland crop-rotation system could decrease groundwater recharge to 73–98 % relative to no crop rotation.  相似文献   

19.
Water resources in New Zealand are not evenly distributed across the country which makes it difficult to adequately allocate the use of water resources in every basin. Groundwater is a fundamental water resource in New Zealand for agricultural, industrial and domestic use. Detailed knowledge regarding groundwater recharge potential is a pre-requisite for sustainable groundwater management, including the assessment of its vulnerability to contamination by pollutants. In this study, a comprehensive GIS approach was used to map the potential groundwater recharge zones across New Zealand. National data sets of lithology, slope, aspect, land use, soil drainage and drainage density were converted to raster data sets with a spatial resolution of 500 m × 500 m and superimposed to derive groundwater potential zones. The resultant maps demonstrate that the potential is low in urban and mountainous areas, such as the Southern Alps, whereas the highest potential can be found in regions with large lakes and in the lower elevation plains areas, where Quaternary sediments prevail. The resulting maps can be used to identify areas of high nutrient leaching in zones where high groundwater recharge potential exists.  相似文献   

20.
Groundwater is a valuable natural resource for drinking, domestic, livestock use, and irrigation, especially in arid and semi-arid regions like the Garmiyan belt in Kurdistan region. The Awaspi watershed is located 50 km east of Kirkuk city, south Kurdistan, Iraq; and covers an area of 2146 km2. The paper presents result of a study aimed at: (1) mapping and preparing thematic layers of factors that control groundwater recharge areas, and (2) determination of sites suitable for groundwater recharge. We used available data such as geological map, groundwater depth map, digital elevation model (DEM), Landsat 8 imagery, and tropical rainfall measuring mission (TRMM) data for this study. These data, supplemented by slope features, lithology, land use land cover, rainfall, groundwater depth, drainage density, landform, lineament density, elevation and topographic position index, were utilized to create thematic maps to identify suitable areas of groundwater recharge, using GIS and remote sensing techniques. Analytic hierarchy process (AHP) was applied to weight, rank, and reclassify these maps in the ArcGIS 10.3 environment, to determine the suitable sites for groundwater recharge within the Awaspi watershed. Fifty-five percent of the total area of the watershed was found to be suitable for groundwater recharge; whereas 45% of the area was determined to have poor suitability for groundwater recharge, but can be used for surface water harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号