首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Environmental Fluid Dynamic Code, an estuarine and coastal ocean circulation model, is used to simulate the distribution of the salinity plume in the vicinity of the mouth of the Cape Fear River Estuary, North Carolina. The individual and coupled effects of the astronomical tides, river discharge, and atmospheric winds on the spatial and temporal distributions of coastal water levels and the salinity plume were investigated. These modeled effects were compared with water level observations made by the National Oceanic and Atmospheric Administration and salinity surveys conducted by the Coastal Ocean Research and Monitoring Program. Model results and observations of salinity distributions and coastal water level showed good agreement. The simulations indicate that strong winds tend to reduce the surface plume size and distort the bulge shape near the estuary mouth due to enhanced wind-induced surface mixing. Under normal discharge conditions, tides, and light winds, the southward outwelling plume veers west. Relatively moderate winds can mechanically reverse the flow direction of the plume. Under conditions of weak to moderate winds the water column does not mix vertically to the bottom, while in strong wind cases the plume becomes vertically well mixed. Under conditions of high river discharge the plume increases in size and reaches the bottom. Vertical mixing induced by strong spring tides can also enable the plume to reach the bottom.  相似文献   

2.
Basin‐floor topography influences the flow path of hyperpycnal plumes and delta morphology during progradation of the Red River delta in Lake Texoma, USA. The Red River discharge is typically a hyperpycnal plume due to elevated total dissolved solids. Because the river plume is a bottom‐hugging hyperpycnal flow, lake bathymetry and topography strongly influence deposition and subsequent delta morphology. In addition to elevated total dissolved solid concentrations compared with Lake Texoma water, the density contrast of the Red River outflow is increased by high suspended‐sediment concentrations during high‐discharge events. Steep lateral slopes in the Lake Texoma basin deflect hyperpycnal river plumes and, subsequently, change the delta progradation direction before the delta reaches the opposite bank of the lake. Analysis of multi‐temporal aerial and satellite images indicates that the hyperpycnal delta follows the steepest lake‐bottom gradients, corresponding to the pre‐impoundment river thalweg (i.e. bypassing shallow parts of the lake). An analytical model for the hyperpycnal‐plume trajectory indicates plume deflection during low‐discharge or high‐discharge events, towards the deepest part of the basin. The magnitude of plume deflection is a function of river discharge and basin‐margin gradients. Plume deflection can vary between 10° and 80° from the channel axis towards the old river thalweg. The high deflection appears in the case of maximum basin side gradients of 12·8° and in conditions of low river discharge. During low‐discharge periods, the Red River delta builds a lobate shape with multiple terminal distributary channels whereas, during high‐discharge periods the Red River delta builds an elongate shape with a single large distributary channel. The elongate morphology of the delta is formed through the development of a single distributary channel and abandonment of the other distributaries. Therefore, the lobate shaped delta is expected to be preserved in the rock record.  相似文献   

3.
Picoplankton abundance and distribution in the Mississippi River plume and its adjacent waters were studied during two cruises in April (high discharge) and October (low discharge) 2000 using flow cytometry. Concentrations of photosynthetic picoplankton,Synechococcus and picoeukaryotes were low in the turbid plume water but high in the coastal waters—i.e., the green waters resulting from mixing of river and oceanic waters. In this region, three types ofSynechococcus, characterized by their phycoerythrin chromophore composition, were found:Synechococcus cells with a low phycourobilin to phycoerythrobilin ratio (PUB:PEB) occurred throughout the region and dominated the totalSymechococcus abundance during both seasons; high PUB:PEB cells, which are the dominant strains in the open or blue ocean, occurred only at the outer shelf stations; and PEB-onlySynechococcus were abundant in most of the surveyed area during april, but were not observed during October.Prochlorococcus cyanobacteria only occurred at the oceanic stations, but extended farther inshore in October compared to April. This was a consequence of the reduced discharge and plume size during October. Picophytoplankton were a less important component of total phytoplankton biomass in the turbid river water and more important in the oligotrophic Gulf water. Seasonally, the contribution of picophytoplankton to total phytoplankton biomass in the surveyed area was higher during low discharge in October than during high discharge in April, even though the spring 2000 river discharge was unusually low and might not present a typical high discharge scenario. The abundance of heterotrophic bacteria was weakly correlated to chlorophylla (chla) concentration, but better correlated to picophytoplankton biomass. A higher proportion of High DNA bacteria occurred in the river-impacted regions during both seasons, with the ratio of High DNA bacteria to Low DNA bacteria significantly higher in April.  相似文献   

4.
Long Island Sound (LIS), a large urban estuary in the northeastern USA, receives freshwater from many rivers along its northern shore. The size of these rivers varies widely in terms of basin area and discharge. The Regional Ocean Modeling System (ROMS) was applied with conservative passive tracers to identify the distribution, mixing, freshwater residence times, and storm response for all of LIS’s river systems during the summer of 2013. A watershed model was applied to overcome the lack of adequate river discharge observations for coastal watersheds. The Connecticut River was the largest contributor to riverine freshwater throughout the estuary despite its entry point near the mouth. The Connecticut River strengthened bulk stratification in the eastern LIS the most but acted to weaken stratification near the mouths of other rivers and in far western LIS by freshening waters at depth. The Housatonic and Hudson Rivers had the strongest influence on stratification in central and western LIS, respectively. Smaller coastal rivers were the most influential in strengthening stratification near the southwestern Connecticut shoreline. The influence of small coastal rivers was amplified after a major storm due to shorter storm response times relative to the larger rivers. Overall, river water was close to a well-mixed state throughout LIS, but more stratified near river mouths. Freshwater residence time estimates, meanwhile, indicated monthly to multi-seasonal time scales (43 to 180 days) and grew longer with greater distance from the LIS mouth.  相似文献   

5.
Hypoxic conditions in the coastal waters off Texas (USA) were observed since the late 1970s, but little is known about the causes of stratification that contribute to hypoxia formation. Typically, this hypoxia is attributed to downcoast (southwestward) advection of waters from the Mississippi–Atchafalaya River system. Here, we present evidence for a hypoxic event on the inner shelf of Texas coincident with the presence of freshwater linked to high flow of the Brazos River in Texas. These conclusions are based on hydrographic observations and isotopic measurements of waters on the inner shelf near the Brazos River mouth. These data characterize the development, breakdown, and dispersal of a hypoxic event lasting from June through September 2007 off the Texas coast. Oxygen isotope compositions of shelf water indicate that (1) discharge from the Brazos River was the principal source of freshwater and water column stratification during the 2007 event, and (2) during low Brazos River discharge in 2008, freshwater on the Texas shelf was derived mainly from the Mississippi–Atchafalaya River System. Based on these findings, we conclude that the Mississippi–Atchafalaya River System is not the sole cause of hypoxia in the northern Gulf of Mexico; however, more data are needed to determine the relative influence of the Texas versus Mississippi rivers during normal and low flow conditions of Texas rivers.  相似文献   

6.
While the physical forcing mechanisms that govern the outflows of major rivers throughout the world are well documented in the literature, comparably less research has been done to examine the mechanisms that govern the contributions of small rivers and streams to coastal ocean systems. These rivers and streams provide a direct means for the transport of anthropogenic and terrigenous materials from watersheds to coastal oceans. This study describes the temporal and spatial variability of freshwater plumes from Kaneohe Stream, Hawaii, USA, after storm events in the Kaneohe Bay watershed. Freshwater plumes were examined using a combination of fixed moorings, synoptic shipboard surveys, and lagrangian surface drifters. Data sets were collected over the course of 19 months from August 2005 to March 2007 with particular attention paid to storms during the boreal winters. Stream discharge and duration were found to exert a primary control on plume persistence in the southern Kaneohe Bay system. Time series data show a strong coherence between wind forcing and surface currents, which, in combination with data derived from shipboard and aerial surveys, indicate that the spatial variability of freshwater plumes is primarily determined by atmospheric forcing.  相似文献   

7.
《Applied Geochemistry》2005,20(11):2138-2153
Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel–Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (∼13 MCM/a) will significantly reduce the river water’s flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650–2600 and 3000–3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river’s discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river’s ecosystem.  相似文献   

8.
The Suwannee River (USA) is an amber stained, nutrient rich, blackwater river which flows into relatively clear oceanic waters resulting in the formation of a coastal region with unique physical, chemical, and biological gradients. The intent of this study was to describe the spatial and temporal variability of phytoplankton as it relates to these gradients. Ten stations along a transect ranging from 5 km up river to 31 km offshore, were sampled during four different flow regimes. All four sampling periods included in our study of the Suwannee River and plume region exhibited a similar pattern of phytoplankton abundance; low phytoplankton biomass in the Suwannee River and offshore stations with an area of elevated biomass seaward of the Suwannee River outflow. The results of our analysis of light and nutrient limitation in the region support the hypothesis that this spatial pattern of phytoplankton abundance is strongly influenced by color dependent light limitation in the river and outflow area, combined with nutrient limitation offshore. Our results suggest that both light and nutrient availability control abundance and composition of phyto plankton in this coastal area.  相似文献   

9.
Theory and observations of river plumes are reviewed. The importance of the Kelvin number in characterizing anticipated plume behavior is stressed. In the absence of strong external forcing, a northern hemisphere plume will turn anticyclonically and attach to the coast, where it then merges into a coastal current. Observations and theory of such coastal currents are also reviewed, with emphasis on flows over shallow continental shelves. Major unresolved questions involve the processes controlling mixing of coastal current waters with ambient shelf waters and the dynamics of the plume in the region where it attaches to the coast.  相似文献   

10.
The long-term response of circulation processes to external forcing has been quantified for the Columbia River estuary using in situ data from an existing coastal observatory. Circulation patterns were determined from four Acoustic Doppler Profilers (ADP) and several conductivity–temperature sensors placed in the two main channels. Because of the very strong river discharge, baroclinic processes play a crucial role in the circulation dynamics, and the interaction of the tidal and subtidal baroclinic pressure gradients plays a major role in structuring the velocity field. The input of river flow and the resulting low-frequency flow dynamics in the two channels are quite distinct. Current and salinity data were analyzed on two time scales—subtidal (or residual) and tidal (both diurnal and semidiurnal components). The residual currents in both channels usually showed a classical two-layer baroclinic circulation system with inflow at the bottom and outflow near the surface. However, this two-layer system is transient and breaks down under strong discharge and tidal conditions because of enhanced vertical mixing. Influence of shelf winds on estuarine processes was also observed via the interactions with upwelling and downwelling processes and coastal plume transport. The transient nature of residual inflow affects the long-term transport characteristics of the estuary. Effects of vertical mixing could also be seen at the tidal time scale. Tidal velocities were separated into their diurnal and semidiurnal components using continuous wavelet transforms to account for the nonstationary nature of velocity amplitudes. The vertical structure of velocity amplitudes were considerably altered by baroclinic gradients. This was particularly true for the diurnal components, where tidal asymmetry led to stronger tidal velocities near the bottom.  相似文献   

11.
运用水化学方法,通过对祖厉河这一黄河上游重要支流的多次实地考察和采样,结合区域水文地质条件,对祖厉河流域水体盐分的空间变化特征进行分析,并揭示流域水体的演化过程。结果表明,流域水体TDS普遍较高,总体以咸水为主。水中阳离子以Na~+为主,阴离子则以Cl-、SO_4~(2-)为主。水化学类型方面,源区地下水以Mg-Ca-Na-HCO_3型水为主,河水则以Na-Mg-Cl-SO_4型水为主。流域内水体盐分主要来源于阳离子交替吸附作用、上游地下水淋滤地层盐分后以泉的形式向河流排泄以及河流径流过程中侵蚀两岸高盐分土壤或含盐地层。径流过程中,当地干旱的气候环境使水体进一步蒸发浓缩,这是流域内水体TDS进一步增高的外在水化学演化过程。总之,由于多种来源的盐分,特别是源区高TDS地下水排泄、流域内强烈的土壤侵蚀以及干旱的气候条件等多重作用过程,是祖厉河TDS显著增高失去水资源功能的主要机制。  相似文献   

12.
The major Indian rivers bring significant amount of freshwater along with inorganic nutrients and sediment load in to the northern Bay of Bengal (BOB) during the southwest monsoon (SWM); the southern bay does not experience equal freshening. This contrasting pattern may considerably impact the physicochemical features and phytoplankton community composition in this bay and was investigated during a coastal cruise during the SWM covering eight river plumes from both northern and southern bay; phytoplankton pigments and physicochemical parameters were analysed from different depths (0, 10, 25, and 50 m). Significant freshening, stratification and warmer waters were noticed in the northern bay relative to its southern part. Phytoplankton pigment analysis and diagnostic pigment-based size class analysis revealed the dominance of microphytoplankton (mainly diatoms) in the northern bay and were mostly confined to the surface waters. Their abundance was positively correlated with dissolved silicate (DSi) concentrations and inversely with salinity. Nanophytoplankton and picophytoplankton (prymnesiophytes, chrysophytes and cyanophytes) were mostly noticed in the subsurface waters and dominated the southern bay. This finding suggests that the dominance of microphytoplankton in the northern bay may significantly contribute to higher particle flux which has been reported earlier. Therefore, any modification in future river discharge, which is in turn related to the intensity of Indian summer monsoon, will alter the phytoplankton community structure in the coastal BOB and may be further cascaded to the other vital ecosystem components like fisheries resources, organic carbon export flux and benthic production.  相似文献   

13.
Atlantic herring (Clupea harengus) larvae have been collected for resource monitoring purposes in the Sheepscot River in mid-coastal Maine during October–February, for the past 20 years. During this period, the larval population in the river has typically peaked in October-early November and has been composed of larvae derived from August–September spawning in eastern Maine and New Brunswick waters and from September-early October spawning along the central Maine coast. Larvae from eastern coastal spawning areas are transported to the river by the prevailing westerly coastal current. The appearance of small (≤15 mm SL) larvae in the river during December and January 1985–1989 suggested an additional time and area of origin. Aging procedures based on enumeration of daily otolith increments showed the majority of these small larvae were spawned from mid October to mid November when spawning usually occurs in western Maine coastal waters and in the vicinity of Jeffreys Ledge. Comparison of back-calculated hatching dates for small larvae collected in the river with wind direction and velocity data from mid October through November suggested that larvae were transported eastward against a weakened Gulf of Maine coastal current to the Sheepscot River by complex wind-driven surface currents that occur off the western Maine coast in the fall. *** DIRECT SUPPORT *** A01BY059 00003  相似文献   

14.
Comparison of controlling mechanisms of flocculation processes in estuaries   总被引:1,自引:1,他引:0  
During estuarine mixing, dissolved metals come into the particulate phase due to the flocculation processes. Such processes are biologically vital. In the present study, controlling mechanisms of elemental flocculation during estuarine mixing in northern and southern estuaries of Iran in relation to the various physical and chemical parameters of waters have been compared. Except for zinc and lead, for other studied elements in Minab River, water flocculate at higher rates in comparison with the rivers flowing into the Caspian Sea. Redox potential might have negative effect on flocculation process in Minab Estuary. Contrary to rivers flowing into the Caspian Sea, in Minab River elemental flocculation is governed by dissolved organic carbon and it shows a non-liner and conservative behavior during estuarine mixing which implies that dissolved organic carbon originates from terrigenous source. The results also shows that maximum removal of elements occurs in lower salinities (1.5 to 5.8 ‰) for the rivers in North of Iran and 3.3 to 11.4 ‰ for Minab River in South of Iran. Flocculation of studied metal in different rivers results in reduction of overall metal pollution load by various percentages. The initial metal contents on river water and mean discharge of river might lead to higher flocculation rates.  相似文献   

15.
Sediment dynamics in the lowermost Mississippi River   总被引:1,自引:0,他引:1  
There is much to be gained from investigating sediment dynamics in the lower Mississippi system, the largest river in terms of discharge and sediment load in North America. Such work can improve conceptual knowledge concerning downstream changes at the lower end of large river systems and can be applied to manage sediment diversions for wetland restoration in south Louisiana. Suspended sediment dynamics in the lowermost Mississippi River system in Louisiana are characterized using three approaches: (1) temporal changes in discharge-suspended sediment relationships showing interannual variations and the effects of floods over short timescales; (2) empirical relationships between discharge and suspended sediment variables at various locations; and (3) downstream changes in discharge-suspended sediment relationships. Interpretation of this data set is enhanced with other secondary data regarding processes, morphology, and bed materials.

Upstream, near Old River, LA, empirical relationships show nonlinearity, particularly in fine sediments, with decreased concentrations at highest discharges. During high discharge years, suspended sediment concentration peaks precede discharge crests by 40–85 days. The lead generally decreases with decreasing discharge maxima so that in low discharge years sediment peaks and discharge crests closely coincide in time. Downstream, near Belle Chasse, LA, fine bottom materials are resuspended and the timing of sediment peaks and discharge crests is coincident, regardless of flow magnitude. Conceptually, results suggest caution when generalizing about the relative timing of the sediment wave and flood wave and their downstream progression. These phenomena are influenced by local bed material and hydraulic conditions, and depend on the causative factors of sediment peaks. From an applied perspective, diversions should be managed differently depending upon where they are constructed along the river and upon the magnitude of the annual maximum flow. During high discharge years, when concerns for navigation and water supply are minimal, flow should be diverted on the rising limb upstream, near Old River, and during the discharge crest downstream near New Orleans.  相似文献   


16.
The Burdekin River is an example of a class of tropical streams which experience two to four orders of magnitude variation in discharge, in response to seasonal but erratic monsoonal rainfall. Floods of the Burdekin rise abruptly, reaching peak discharges of up to 40,000 m3 s-1 in less than 24 h; maintain peak flow for up to a few days, and recede exponentially. The geomorphology and deposits of these rivers reflect the extreme discharge fluctuations, and have not previously been described. A stretch of the upper Burdekin River comprising four bends and one straight reach was examined near the town of Charters Towers. The river bed is largely exposed for most of any year, with a small, misfit perennial channel carrying low stage flow. Major geomorphic elements of bends include point bars with ridge-and-swale topography, three distinct types of chute channels, avalanche slipfaces up to 5 m or more high around the downstream edges of bars, and on the outer part of one point bar an elevated, vegetated ridge. Straight reaches are flat or gently inclined, sand- and gravel-covered surfaces. Much of the river bed is covered by well sorted, in places gravelly, coarse to very coarse-grained sand with local accumulations of pebble to boulder gravel. Lower parts of the river bed are periodically draped by mud which is desiccated on exposure. Dunes and plane beds are the most commonly occurring bedforms, with local development of gravelly antidunes. Most bank tops and upper, vegetated bars are covered by silt and fine-grained sand. The river bed also hosts a low-diversity but locally high-abundance, flood-tolerant flora dominated by the paperbark tree Melaleuca argentea, which plays an important role in controlling the distribution of sediment. The gross geomorphology of the river bed and most of the sedimentary features are interpreted as having formed during major (bankfull or near bankfull) flows, which have a recurrence of about 18 years (based on 65 years hydrographic data). The initial rapid drop in discharge following flood peaks appears to preserve flood peak features on upper bars more or less intact, whereas lower areas are subjected to variable degrees of modification during falling stage and by more frequent, non-bankfull discharge events.  相似文献   

17.
Bankfull discharge is a comprehensive factor reflecting the channel-forming capability of water flow and the flood and sediment transport capacity of a river channel. It is based on the interaction of the flow, sediment, and river channel, of which flow and sediment conditions play crucial roles. Using data recorded since the 1950s, this paper analyses statistically, the characteristics and variations of bankfull discharge at two stations on the Inner Mongolian reaches of the upper Yellow River. Results indicate that flood season variations in bankfull discharge are nonlinear and are governed by flood peak discharge, mean discharge, and the mean incoming sediment coefficients. Variation in bankfull discharge is related not only to the flow and sediment conditions of the current year but also to those of previous years. The 10-year moving average of flow and sediment conditions can be representative of present and previous years. By considering flood season peak discharge and incoming sediment coefficients as independent impact factors, a formula is derived to determine bankfull discharge. The results can be used to predict the bankfull discharge of the Yellow River channel in Inner Mongolia under specific flow and sediment conditions and provide reference for the purpose of further study related to restoring and maintaining the basic functions of the river channel regarding flood discharge and sediments.  相似文献   

18.
In a confined alluvial aquifer located between two rivers, discrete zones of anomalously high concentrations of redox species such as iron, are thought to be a result of groundwater flow dynamics rather than a chemical evolution along continuous flow paths. This new hypothesis was confirmed at a study site located between Nan and Yom rivers in Phitsanulok, Thailand, by analyzing concentrations of redox species in comparison with dynamic groundwater flow patterns. River incision into the confined alluvial aquifer and seasonally varying river stages result in truncated flow paths. The groundwater flow dynamics between two rivers has four phases that are cyclic, including: aquifer discharge into both rivers, direct flow from one river toward another, aquifer recharge from both rivers, and reverse of river-to-river flow. The resulting groundwater flow direction has a zigzag pattern and its general trend is almost parallel to the river flow. High iron anomaly appears as discrete zones in the transition areas of the confined alluvial aquifer because the lateral recharge from rivers penetrates into the aquifer only by tens of meters. The high iron anomaly, which is nearly constant in space and time, is a result of groundwater/surface-water interactions and related groundwater flow dynamics.  相似文献   

19.
Using hydrogeochemical analysis of two large boreal rivers (pristine Kalix and hydropower regulated Lule) discharging into the Gulf of Bothnia, the major impacts of regulation on water discharge, element transport and their seasonal redistribution have been assessed. The pre-regulation hydrogeochemical features were assumed to be similar for the two rivers. For the Lule River, the average maximum runoff was almost halved, while the average minimum was tripled as a result of the regulation. The fraction of winter transport of total organic carbon (TOC), Fe, Si, suspended Mn and P in the Lule River was, according to a conservative estimate, two to three times higher than in the pristine river. Longer residence time in the Lule River delayed arrival of the suspended Mn peak and dissolved Si decline to the river mouth. During summer, the suspended C/N ratio in the regulated river was 10–20 compared to <10 for the pristine, suggesting presence of predominantly old organic material. This was supported by a virtually constant suspended P/Fe ratio throughout the year in the Lule River, indicating low abundance of phytoplankton. TOC varied irregularly in the Lule River suggesting temporal disconnection between the river and the upper riparian zone. The disappearance of the spring flow maximum, a shift of element transport from spring to winter and supply of mainly old organic material during the vegetation growth season may have a pronounced impact on the ecosystem of the Gulf of Bothnia and the river itself.  相似文献   

20.
The Pomeranian Bay is a coastal region fed by the Oder River, one of the seven largest Baltic rivers, whose waters flow through a large and complex estuarine system before entering the bay. Nutrients (NO3 , NO2 , NH4 +, Ntot, PO4 3−, Ptot, DSi), chlorophylla concentrations, oxygen content, salinity, and temperature were measured in the Pomeranian Bay in nine seasonally distributed cruises during 1993–1997. Strong spatial and temporal patterns were observed and they were governed by: the seasonally variable riverine water-nutrient discharges, the seasonally variable uptake of nutrients and their cycling in the river estuary and the Bay, the character of water exchange between the Pomeranian Bay and the Szczecin Lagoon, and the water flow patterns in the Bay that are dominated by wind-driven circulation. Easterly winds resulted in water and nutrient transport along the German coastline, while westerly winds confined the nutrient rich riverine waters to the Polish coast and transported them eastward beyond the study area. Two water masses, coastal and open, characterized by different chemical and physical parameters and chla content were found in the Bay independently of the season. The role of the Oder estuary in nutrient transformation, as well as the role of temperature in transformation processes is stressed in the paper. The DIN:DIP:DSi ratio indicated that phosphorus most probably played a limiting role in phytoplankton production in the Bay in spring, while nitrogen did the same in summer. During the spring bloom, predominated by diatoms, the DSi:DIN ratio dropped to 0.1 in the coastal waters and to 0.6 in the open bay waters, pointing to silicon limitation of diatom growth, similar to what is being observed in other Baltic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号