首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
It is suspected that the lunar exosphere has a dusty component dispersed above the surface by various physical mechanisms. Most of the evidence for this phenomenon comes from observations of “lunar horizon glow” (LHG), which is thought to be produced by the scattering of sunlight by this exospheric dust. The characterization of exospheric dust populations at the Moon is key to furthering our understanding of fundamental surface processes, as well as a necessary requirement for the planning of future robotic and human exploration.We present a model to simulate the scattering of sunlight by complex lunar dust grains (i.e. grains that are non-spherical and can be inhomogeneous in composition) to be used in the interpretation of remote sensing data from current and future lunar missions. We numerically model lunar dust grains with several different morphologies and compositions and compute their individual scattering signatures using the Discrete Dipole Approximation (DDA). These scattering properties are then used in a radiative transfer code to simulate the light scattering due to a dust size distribution, as would likely be observed in the lunar exosphere at high altitudes 10's of km. We demonstrate the usefulness and relevance of our model by examining mode: irregular grains, aggregate of spherical monomers and spherical grains with nano-phase iron inclusions. We subsequently simulate the scattering by two grain size distributions (0.1 and radius), and show the results normalized per-grain. A similar methodology can also be applied to the analysis of the LHG observations, which are believed to be produced by scattering from larger dust grains within about a meter of the surface.As expected, significant differences in scattering properties are shown between the analyses employing the widely used Mie theory and our more realistic grain geometries. These differences include large variations in intensity as well as a positive polarization of scattered sunlight caused by non-spherical grains. Positive polarization occurs even when the grain size is small compared to the wavelength of incident sunlight, thus confirming that the interpretation of LHG based on Mie theory could lead to large errors in estimating the distribution and abundances of exospheric dust.  相似文献   

2.
In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about 1 μm. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the −2.6 to −3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.  相似文献   

3.
The adsorption of molecular water onto lunar analog materials was investigated under ultra-high vacuum with the goal to better understand the thermal stability and evolution of water on the lunar surface. Temperature-programmed desorption (TPD) experiments show that lunar-analog basaltic-composition glass is hydrophobic, with water-water interactions dominating over surface chemisorption. This suggests that lunar agglutinates will tend not to adsorb water at temperatures above where water clusters and multilayer ice forms. The basalt JSC-1A lunar mare analog, which is a complex mixture of minerals and glass, adsorbs water above 180 K with an adsorption profile that extends to 400 K, showing evidence for a continuum of water adsorption sites. Bancroft albite adsorbs more water, more strongly, than JSC-1A, with a well-defined desorption peak near 225 K. This suggests that mineral surfaces will adsorb more water than mare or mature (glassy, agglutinate rich) surfaces and may explain the association of water with fresh feldspathic craters at high latitudes. The activation energies for the thermal desorption of water from these materials were determined, and along with values from the literature, used to model the grain-to-grain migration of water within the lunar regolith. These models suggest that a combination of recombinative desorption of hydroxyl along with molecular desorption of water and its subsequent migration within and out of the regolith may explain observed diurnal variations in the distribution of water and hydroxyl on the illuminated Moon.  相似文献   

4.
Conspicuous excess brightness, exceeding that expected from coronal and zodiacal light (CZL), was observed above the lunar horizon in the Apollo 15 coronal photographic sequence acquired immediately after orbital sunset (surface sunrise). This excess brightness systematically faded as the Command Module moved farther into shadow, eventually becoming indistinguishable from the CZL background. These observations have previously been attributed to scattering by ultrafine dust grains (radius ∼0.1 microns) in the lunar exosphere, and used to obtain coarse estimates of dust concentration at several altitudes and an order-of-magnitude estimate of ∼10−9 g cm−2 for the column mass of dust near the terminator, collectively referred to as model “0”.We have reanalyzed the Apollo 15 orbital sunset sequence by incorporating the known sightline geometries in a Mie-scattering simulation code, and then inverting the measured intensities to retrieve exospheric dust concentration as a function of altitude and distance from the terminator. Results are presented in terms of monodisperse (single grain size) dust distributions. For a grain radius of 0.10 microns, our retrieved dust concentration near the terminator (∼0.010 cm−3) is in agreement with model “0” at z=10 km, as is the dust column mass (∼3–6×10−10 g cm−2), but the present results indicate generally larger dust scale heights, and much lower concentrations near 1 km (<0.08 cm−3 vs. a few times 0.1 cm−3 for model “0"). The concentration of dust at high altitudes (z>50 km) is virtually unconstrained by the measurements. The dust exosphere extends into shadow a distance somewhere between 100 and 200 km from the terminator, depending on the uncertain contribution of CZL to the total brightness. These refined estimates of the distribution and concentration of exospheric dust above the lunar sunrise terminator should place new and more rigorous constraints on exospheric dust transport models, as well as provide valuable support for upcoming missions such as the Lunar Atmosphere and Dust Environment Explorer (LADEE).  相似文献   

5.
Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. A power-law fit to ring diameters (Dring) and rim-crest diameters (Dr) of peak-ring basins on the Moon [Dring = 0.14 ± 0.10(Dr)1.21±0.13] reveals a trend that is very similar to a power-law fit to peak-ring basin diameters on Mercury [Dring = 0.25 ± 0.14(Drim)1.13±0.10] [Baker, D.M.H. et al. [2011]. Planet. Space Sci., in press]. Plots of ring/rim-crest ratios versus rim-crest diameters for peak-ring basins and protobasins on the Moon also reveal a continuous, nonlinear trend that is similar to trends observed for Mercury and Venus and suggest that protobasins and peak-ring basins are parts of a continuum of basin morphologies. The surface density of peak-ring basins on the Moon (4.5 × 10−7 per km2) is a factor of two less than Mercury (9.9 × 10−7 per km2), which may be a function of their widely different mean impact velocities (19.4 km/s and 42.5 km/s, respectively) and differences in peak-ring basin onset diameters. New calculations of the onset diameter for peak-ring basins on the Moon and the terrestrial planets re-affirm previous analyses that the Moon has the largest onset diameter for peak-ring basins in the inner Solar System. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.  相似文献   

6.
Direct detection of water in its vapour phase in the tenuous lunar environment through in situ measurements carried out by the Chandra’s Altitudinal Composition Explorer (CHACE) payload, onboard the Moon Impact Probe (MIP) of Chandrayaan I mission vindicates the presence of water on the surface of the moon in form of ice at higher lunar latitudes inferred from IR absorption spectroscopy, (especially that of OH), by the Moon Mineralogy Mapper (M3) of Chandrayaan I. The quadrupole mass spectrometer based payload, CHACE, sampled the lunar neutral atmosphere every 4 s with a broad latitudinal (∼40°N to 90°S, with a resolution of ∼0.1°) and altitudinal (from 98 km up to impact on the lunar surface with a resolution of ∼0.25 km) coverage in the sunlit side of the moon for the first time. These two (CHACE and M3) complementary experiments are shown to collectively provide unambiguous signatures for the distribution of water in solid and gaseous phases in Earth’s moon.  相似文献   

7.
Galactic cosmic rays are a potential energy source to stimulate organic synthesis from simple ices. The recent detection of organic molecules at the polar regions of the Moon by LCROSS (Colaprete, A. et al. [2010]. Science 330, 463–468, http://dx.doi.org/10.1126/science.1186986), and possibly at the poles of Mercury (Paige, D.A. et al. [2013]. Science 339, 300–303, http://dx.doi.org/10.1126/science.1231106), introduces the question of whether the organics were delivered by impact or formed in situ. Laboratory experiments show that high energy particles can cause organic production from simple ices. We use a Monte Carlo particle scattering code (MCNPX) to model and report the flux of GCR protons at the surface of the Moon and report radiation dose rates and absorbed doses at the Moon’s surface and with depth as a result of GCR protons and secondary particles, and apply scaling factors to account for contributions to dose from heavier ions. We compare our results with dose rate measurements by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) experiment on Lunar Reconnaissance Orbiter (Schwadron, N.A. et al. [2012]. J. Geophys. Res. 117, E00H13, http://dx.doi.org/10.1029/2011JE003978) and find them in good agreement, indicating that MCNPX can be confidently applied to studies of radiation dose at and within the surface of the Moon. We use our dose rate calculations to conclude that organic synthesis is plausible well within the age of the lunar polar cold traps, and that organics detected at the poles of the Moon may have been produced in situ. Our dose rate calculations also indicate that galactic cosmic rays can induce organic synthesis within the estimated age of the dark deposits at the pole of Mercury that may contain organics.  相似文献   

8.
We present the characteristics of the dust comae of two comets, 126P/IRAS, a member of the Halley family (a near-isotropic comet), and 2P/Encke, an ecliptic comet. We have primarily used mid- and far-infrared data obtained by the ISOPHOT instrument aboard the Infrared Space Observatory (ISO) in 1996 and 1997, and mid-infrared data obtained by the SPIRIT III instrument aboard the Midcourse Space Experiment (MSX) in 1996. We find that the dust grains emitted by the two comets have markedly different thermal and physical properties. P/IRAS's dust grain size distribution appears to be similar to that of fellow family member 1P/Halley, with grains smaller than 5 microns dominating by surface area, whereas P/Encke emits a much higher fraction of big (20 μm and higher) grains, with the grain mass distribution being similar to that which is inferred for the interplanetary dust population. P/Encke's dearth of micron-scale grains accounts for its visible-wavelength classification as a “gassy” comet. These conclusions are based on analyses of both imaging and spectrophotometry of the two comets; this combination provides a powerful way to constrain cometary dust properties. Specifically, P/IRAS was observed preperihelion while 1.71 AU from the Sun, and seen to have a 15-arcmin long mid-infrared dust tail pointing in the antisolar direction. No sunward spike was seen despite the vantage point being nearly in the comet's orbital plane. The tail's total mass at the time was about 8×109 kg. The spectral energy distribution (SED) is best fit by a modified greybody with temperature T=265±15 K and emissivity ε proportional to a steep power law in wavelength λ: ελα, where α=0.50±0.20(2σ). This temperature is elevated with respect to the expected equilibrium temperature for this heliocentric distance. The dust mass loss rate was between 150-600 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 3.3, and the albedo of the dust was 0.15±0.03. Carbonaceous material is depleted in the comet's dust by a factor of 2-3, paralleling the C2 depletion in P/IRAS's gas coma. P/Encke, on the other hand, observed while 1.17 AU from the Sun, had an SED that is best fit by a Planck function with T=270±15 K and no emissivity falloff. The dust mass loss rate was 70-280 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 2.3, and the albedo of the dust was about 0.06±0.02. These conclusions are consistent with the strongly curved dust tail and bright dust trail seen by Reach et al. (2000; Icarus 148, 80) in their ISO 12-μm imaging of P/Encke. The observed differences in the P/IRAS and P/Encke dust are most likely due to the less evolved and insolated state of the P/IRAS nuclear surface. If the dust emission behavior of P/Encke is typical of other ecliptic comets, then comets are the major supplier of the interplanetary dust cloud.  相似文献   

9.
Images returned by the MESSENGER spacecraft from the Mercury flybys have been examined to search for anomalous high-albedo markings similar to lunar swirls. Several features suggested to be swirls on the basis of Mariner 10 imaging (in the craters Handel and Lermontov) are seen in higher-resolution MESSENGER images to lack the characteristic morphology of lunar swirls. Although antipodes of large impact basins on the Moon are correlated with swirls, the antipodes of the large impact basins on Mercury appear to lack unusual albedo markings. The antipodes of Mercury’s Rembrandt, Beethoven, and Tolstoj basins do not have surface textures similar to the “hilly and lineated” terrain found at the Caloris antipode, possibly because these three impacts were too small to produce obvious surface disturbances at their antipodes. Mercury does have a class of unusual high-reflectance features, the bright crater-floor deposits (BCFDs). However, the BCFDs are spectral outliers, not simply optically immature material, which implies the presence of material with an unusual composition or physical state. The BCFDs are thus not analogs to the lunar swirls. We suggest that the lack of lunar-type swirls on Mercury supports models for the formation of lunar swirls that invoke interaction between the solar wind and crustal magnetic anomalies (i.e., the solar-wind standoff model and the electrostatic dust-transport model) rather than those models of swirl formation that relate to cometary impact phenomena. If the solar-wind standoff hypothesis for lunar swirls is correct, it implies that the primary agent responsible for the optical effects of space weathering on the Moon is solar-wind ion bombardment rather than micrometeoroid impact.  相似文献   

10.
Data collected by Phoenix Lander’s Thermal and Evolved Gas Analyzer (Phoenix-TEGA) indicate carbonate thermal decomposition at both low and high temperatures. The high-temperature thermal decomposition is consistent with calcite, dolomite, or ankerite, (3–6 wt.%) or any combination of these phase or, presumably, solid solutions of these phases having intermediate composition. The low-temperature thermal decomposition is consistent with the presence of magnesite or siderite, their solid solutions, or any combination of magnesite and siderite, and possibly other carbon-bearing phases (e.g., organics). The carbonate concentration for the low temperature release, assuming magnesite–siderite, is ~1.0 wt.%. This revised interpretation of the Phoenix-TEGA data resulted from new laboratory measurements of carbonate decomposition at a Phoenix-like 12 mbar atmospheric pressure. Phoenix carbonate was inherited in ejecta from the Vastitas Borealis and Scandia regions, inherited from material deposited by aeolian processes, and/or formed in situ at the Phoenix Landing site (pedogenesis). Inherited carbonate implies multiple formation pathways may be represented by carbonates at the Phoenix Landing site. Soil carbonates and associated moderate alkalinity indicate that the soil pH is favorable for microbial activity at the Phoenix Landing site and presumably throughout the martian northern plains.  相似文献   

11.
More than half of the C-type asteroids, the dominant type of asteroid in the outer half of the main-belt, show evidence of hydration in their reflectance spectra. In order to understand the collisional evolution of asteroids and the production of interplanetary dust and to model the infrared signature of small particles in the Solar System it is important to characterize the dust production from primary impact disruption events, and compare the disruption of hydrous and anhydrous targets. We performed a hypervelocity impact disruption experiment on an ∼30 g target of the Murchison CM2 hydrated carbonaceous chondrite meteorite, and compared the results with our previous disruption experiments on anhydrous meteorites including Allende, a CV3 carbonaceous chondrite, and nine ordinary chondrites. Murchison is significantly more friable than the ordinary chondrites or Allende. Nonetheless, on a plot of mass of the largest fragment versus specific impact energy, the Murchison disruption plots within the field of the anhydrous meteorites points, suggesting that Murchison is at least as resistant to impact disruption as the anhydrous meteorites, which require about twice the energy for disruption as terrestrial anhydrous basalt targets. We determined the mass-frequency distribution of the debris from the Murchison disruption over a nine order-of-magnitude mass range, from ∼10−9 g to the mass of the largest fragment produced in the disruption. The cumulative mass-frequency distribution from the Murchison disruption is fit by three power-law segments. For masses >10−2 g the slope is only slightly steeper than that of the corresponding segment from the disruption of most anhydrous meteorites. Over the range from ∼10−6 to 10−2 g the slope is significantly steeper than that for the anhydrous meteorites. For masses <10−6 g the slopes of both the Murchison and the anhydrous meteorites are almost flat. Thus the Murchison disruption significantly over-produced small fragments (10−6-10−3 g) compared to anhydrous meteorite targets. If the Murchison results are representative of hydrous asteroids, the hydrous asteroids may dominate over anhydrous asteroids in the production of interplanetary dust >100 μm in size, the size of micrometeorites recovered from the polar ices, while both types of asteroids might produce comparable amounts of ∼10 μm interplanetary dust. This would explain the puzzle that polar micrometeorites (>100 μm in size) are similar to hydrous meteorites, while the majority of the ∼10 μm interplanetary dust particles are anhydrous.  相似文献   

12.
先进天基太阳天文台(ASO-S)是计划于2021年底或2022年上半年发射的中国首颗综合性太阳探测卫星,莱曼阿尔法太阳望远镜(LST)作为ASO-S的有效载荷之一,具体包括莱曼阿尔法全日面成像仪(SDI)、日冕仪(SCI)以及白光望远镜(WST) 3台科学仪器和2台导行镜(GT),其主要目标是在多个波段对太阳上的两类剧烈爆发现象(太阳耀斑和日冕物质抛射)进行连续不间断的高分辨率观测.为了实现这一观测目标, LST所有仪器的观测模式中均包含了一种针对爆发事件而设置的爆发模式.该模式下, SCI将以更高的频率进行图像采集, SDI和WST则以更高的频率对爆发所在区域进行图像采集.测试结果表明,观测图像经过中值滤波、像元合并处理后,可以通过监测图像各像元亮度的相对变化提取爆发事件的时间和位置信息.这些信息将为LST观测模式间的相互切换提供重要电子学输入.  相似文献   

13.
Hydrographic changes in the NW Arabian Sea are mainly controlled by the monsoon system. This results in a strong seasonal and vertical gradient in surface water properties, such as temperature, nutrients, carbonate chemistry and the isotopic composition of dissolved inorganic carbon (δ13CDIC). Living specimens of the planktic foraminifer species Globigerina bulloides and Globigerinoides ruber, were collected using depth stratified plankton tows during the SW monsoon upwelling period in August 1992 and the NE monsoon non-upwelling period in March 1993. We compare their distribution and the stable isotope composition to the seawater properties of the two contrasting monsoon seasons. The oxygen isotope composition of the shells (δ18Oshell) and vertical shell concentration profiles indicate that the depth habitat for both species is shallower during upwelling (SW monsoon period) than during non-upwelling (NE monsoon period). The calcification temperatures suggest that most of the calcite is precipitated at a depth level just below the deep chlorophyll maximum (DCM), however above the main thermocline. Consequently, the average calcification temperature of G. ruber and G. bulloides is lower than the sea surface temperature by 1.7±0.8 and 1.3±0.9 °C, respectively. The carbon isotope composition of the shells (δ13Cshell) of both species differs from the in situ δ13CDIC found at the calcification depths of the specimens. The observed offset between the δ13Cshell and the ambient δ13CDIC results from (1) metabolic/ontogenetic effects, (2) the carbonate chemistry of the seawater and, for symbiotic G. ruber, (3) the possible effect of symbionts or symbiont activity. Ontogenetic effects produce size trends in Δδ13Cshell–DIC and Δδ18Oshell–w: large shells of G. bulloides (250–355μm) are 0.33‰ (δ13C) and 0.23‰ (δ18O) higher compared to smaller ones (150–250 μm). For G. ruber, this is 0.39‰ (δ13C) and 0.17‰ (δ18O). Our field study shows that the δ13Cshell decreases as a result of lower δ13CDIC values in upwelled waters, while the effects of the carbonate system and/or temperature act in an opposite direction and increase the δ13Cshell as a result lower [CO32−] (or pH) values and/or lower temperature. The Δδ13Cshell–DIC [CO32−] slopes from our field data are close to those reported literature from laboratory culture experiments. Since seawater carbonate chemistry affects the δ13Cshell in an opposite sense, and often with a larger magnitude, than the change related to productivity (i.e. δ13CDIC), higher δ13Cshell values may be expected during periods of upwelling.  相似文献   

14.
We present 1D numerical simulations of the very late thermal pulse (VLTP) scenario for a wide range of remnant masses. We show that by taking into account the different possible remnant masses, the observed evolution of V4334 Sgr (a.k.a. Sakurai's object) can be reproduced within the standard 1D mixing length theory (MLT) stellar evolutionary models without the inclusion of any ad hoc reduced mixing efficiency. Our simulations hint at a consistent picture with present observations of V4334 Sgr. From energetics, and within the standard MLT approach, we show that low-mass remnants  ( M ≲ 0.6 M)  are expected to behave markedly differently from higher mass remnants  ( M ≳ 0.6 M)  in the sense that the latter remnants are not expected to expand significantly as a result of the violent H-burning that takes place during the VLTP. We also assess the discrepancy in the born-again times obtained by different authors by comparing the energy that can be liberated by H-burning during the VLTP event.  相似文献   

15.
16.
SHASTA(Shaarp and smooth Transport Algorithm)是求解二维磁流体动力学问题的单一网格程序.在将其用于磁重联问题的数值模拟时,它被修改成为采用自适应网格方法的程序.修改后的程序可以针对扩散区进行细化计算.在SHASTA程序的自适应计算实现过程中,采用了插入式的自适应修改策略,原二维磁流体力学偏微分方程的求解算法被作为独立单元使用.另外,修改中使用分层的数据结构,将每个细化层次的物理量用二维可变数组描述,并标记磁场和压强分布的陡变区为细化区域,再通过插值的方法得到细化层网格点上的物理量分布和边界条件,最后细化区域的细化计算结果被赋予给其上一层网格,并对其内容进行更新.采用细化计算进行的磁重联的模拟实验表明,相比单一网格计算,细节分辨率得到提高,相应的计算时间的增加则与模拟中的参数选择有关;而自适应程序部分带来的计算精度和稳定性的影响则依赖于边界设置,单步长的推进策略和插值算法.  相似文献   

17.
Emergency surgery will be needed to prevent death if humans are used to explore beyond low earth's orbit. Laparoscopic surgery (LS) is envisioned as a less invasive option for space, but will induce further stresses and complicate logistical requirements. Thus, further study into the technology and physiology of LS in weightlessness is required. We recently utilized the National Research Council of Canada's Flight Research Laboratory's Falcon 20 aircraft as a terrestrial analogue space environment (TASE) for space surgery research. The Falcon 20 had never been used for this purpose nor had the involved teams collaborated previously. There were many process challenges including the lack of antecedent surgical studies on this aircraft, a requirement for multiple disciplines who were unfamiliar and geographically distant from each other, flight performance limitations with the Falcon 20, complex animal care requirements, requirements for prototypical in-flight life-support surgical suites, financial limitations, and a need to use non-flight hardened technologies. Stepwise suggested solutions to these challenges are outlined as guidelines for future investigators intending similar research. Overall, the Falcon 20 TASE, backed by the flight resources, especially the design and fabrication capabilities of the NRC-FRL, provide investigators with a versatile and responsive opportunity to pursue research into advanced medical techniques that will be needed to save lives during space exploration.  相似文献   

18.
Results from a survey of the northern Galactic plane (at declination ≳ 30°) at 151 MHz made with the Cambridge Low Frequency Synthesis Telescope are presented. This survey is designated the 7C(G) — i.e. the Galactic portion of the ongoing 7C surveys. This covers the regions 80° <  l  104° and 126° <  l  < 180°, for | b | ≤ 55°., and has some coverage to | b | ≈ 9°, with a resolution of ≈ 70 × 70 cossec (δ) arcsec2 (RA × Dec.). The observations, data reduction and calibration of this survey are described, and a catalogue of 6262 compact sources, with a completeness limit of ≈ 0.25 Jy over most of the survey region, is presented. The catalogue has an rms positional accuracy of better than 10 arcsec, and the flux densities are tied to the scale of Roger, Bridle & Costain with an accuracy of better than 10 per cent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号