首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We consider accreting systems in which the central object interacts, via the agency of its magnetic field, with the disc that surrounds it. The disc is turbulent and, so, has a finite effective conductivity. The field sweeps across the face of the disc, thereby forming a current that is directed radially within the disc. In turn, this disc current creates a toroidal field, where the interaction between the disc current and the toroidal field produces a Lorentz force that compresses the disc. We investigate this compression, which creates a magnetic scaleheight of the disc that can be much smaller than the conventional scaleheight. We derive an analytic expression for the magnetic scaleheight and apply it to fully ionized discs.  相似文献   

4.
The structure of accretion discs around magnetic T Tauri stars is calculated numerically using a particle hydrodynamical code, in which magnetic interaction is included in the framework of King's diamagnetic blob accretion model. Setting up the calculation so as to simulate the density structure of a quasi-steady disc in the equatorial plane of a T Tauri star, we find that the central star's magnetic field typically produces a central hole in the disc and spreads out the surface density distribution. We argue that this result suggets a promising mechanism for explaining the unusual flatness (IR excess) of T Tauri accretion disc spectra.  相似文献   

5.
6.
7.
I show in this paper that two types of magnetic torques can appear in the interaction between an accretion disc and a magnetic accretor. There is the well-known torque resulting from the difference in angular velocity between the accretion disc and the star, but in addition there is a torque coming from the interaction between the stellar magnetic field and the disc's own magnetic field. The latter form of magnetic torque decreases in strength more slowly with increasing radius, and will therefore dominate at large radii. The direction of the disc field is not determined by the difference in angular velocity between the star and the disc as in the Ghosh &38; Lamb model, but rather is a free parameter. The magnetic torque may therefore either spin up or spin down the star, and the torque changes sign if the magnetic field in the disc reverses. I suggest that this mechanism can explain the torque reversals that have been observed in some disc-fed X-ray pulsars.  相似文献   

8.
9.
The origin and stability of a thin sheet of plasma in the magnetosphere of an accreting neutron star are investigated. First, the radial extension of such a magnetospheric disc is explored. Then a mechanism for magnetospheric accretion is proposed, reconsidering the bending wave explored by Agapitou, Papaloizou & Terquem, that was found to be stable in ideal magnetohydrodynamics. We show that this warping becomes unstable and can reach high amplitudes, in a variant of Pringle's radiation-driven model for the warping of active galactic nucleus accretion discs. Finally, we discuss how this mechanism might give a clue to explain the observed X-ray kilohertz quasi-periodic oscillation of neutron star binaries.  相似文献   

10.
The loss of angular momentum owing to unstable r-modes in hot young neutron stars has been proposed as a mechanism for achieving the spin rates inferred for young pulsars. One factor that could have a significant effect on the action of the r-mode instability is fallback of supernova remnant material. The associated accretion torque could potentially counteract any gravitational-wave-induced spin-down, and accretion heating could affect the viscous damping rates and hence the instability. We discuss the effects of various external agents on the r-mode instability scenario within a simple model of supernova fallback on to a hot young magnetized neutron star. We find that the outcome depends strongly on the strength of the magnetic field of the star. Our model is capable of generating spin rates for young neutron stars that accord well with initial spin rates inferred from pulsar observations. The combined action of r-mode instability and fallback appears to cause the spin rates of neutron stars born with very different spin rates to converge, on a time-scale of approximately 1 year. The results suggest that stars with magnetic fields ≤1013 G could emit a detectable gravitational wave signal for perhaps several years after the supernova event. Stars with higher fields (magnetars) are unlikely to emit a detectable gravitational wave signal via the r-mode instability. The model also suggests that the r-mode instability could be extremely effective in preventing young neutron stars from going dynamically unstable to the bar-mode.  相似文献   

11.
We present results of 3D simulations of magnetohydrodynamics (MHD) instabilities at the accretion disc–magnetosphere boundary. The instability is Rayleigh–Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It manifests itself in the form of tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane. The shape and number of the tongues changes with time on the inner disc dynamical time-scale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, Θ≲ 30°, between the star's rotation and magnetic axes, and is associated with higher accretion rates. The hotspots and light curves during accretion through instability are generally much more chaotic than during stable accretion. The unstable state of accretion has possible implications for quasi-periodic oscillations and intermittent pulsations from accreting systems, as well as planet migration.  相似文献   

12.
We have investigated the influence of the r-mode instability on hypercritically accreting neutron stars in close binary systems during their common envelope phases, based on the scenario proposed by Brown et al. On the one hand, neutron stars are heated by the accreted matter at the stellar surface, but on the other hand they are also cooled down by the neutrino radiation. At the same time, the accreted matter transports its angular momentum and mass to the star. We have studied the evolution of the stellar mass, temperature and rotational frequency.
The gravitational-wave-driven instability of the r-mode oscillation strongly suppresses spinning up of the star, the final rotational frequency of which is well below the mass-shedding limit, in fact typically as low as 10 per cent of that of the mass-shedding state. On a very short time-scale the rotational frequency tends to approach a certain constant value and saturates there, as long as the amount of accreted mass does not exceed a certain limit to collapse to a black hole. This implies that a similar mechanism of gravitational radiation to that in the so-called 'Wagoner star' may work in this process. The star is spun up by accretion until the angular momentum loss by gravitational radiation balances the accretion torque. The time-integrated dimensionless strain of the radiated gravitational wave may be large enough to be detectable by gravitational wave detectors such as LIGO II.  相似文献   

13.
14.
The recent BATSE observations of the spin-up and spin-down of accreting pulsars have shown that the standard formulation for the accretion torque as proposed by Ghosh &38; Lamb may need to be revised. The observations indicate alternate spin-up and spin-down phases driven by torques of similar magnitude and typically larger than the mean torque. The variations of the torque in systems such as Cen X-3 are difficult to explain in terms of changes of the mass accretion rate. The implication is that the torque does not depend on the accretion rate as in the GL model. In this paper we argue that the observed changes in the spin rate can result from stochastic transitions between two magnetospheric states. In particular, we show that intermediate magnetospheric systems are not admissible, because of a disc-induced magnetospheric instability which exists in a star–disc magnetic interaction system. This explains why torque reversal occurs in disc accreting pulsars with similar magnitudes.  相似文献   

15.
We use three-dimensional magnetohydrodynamic simulations to study the structure of the boundary layer between an accretion disc and a non-rotating, unmagnetized star. Under the assumption that cooling is efficient, we obtain a narrow but highly variable transition region in which the radial velocity is only a small fraction of the sound speed. A large fraction of the energy dissipation occurs in high-density gas adjacent to the hydrostatic stellar envelope, and may therefore be reprocessed and largely hidden from view of the observer. As suggested by Pringle , the magnetic field energy in the boundary layer is strongly amplified by shear, and exceeds that in the disc by an order of magnitude. These fields may play a role in generating the magnetic activity, X-ray emission and outflows in disc systems where the accretion rate is high enough to overwhelm the stellar magnetosphere.  相似文献   

16.
17.
An analytic model is presented for the inner structure of an accretion disc in the presence of a strong stellar magnetic field. The model is valid inside the radius at which the electron scattering opacity starts to exceed the Kramers opacity. It illustrates how the increasing stellar poloidal field leads to an elevated disc temperature, ultimately causing a breakdown in the vertical equilibrium owing to rapidly increasing radiation pressure which cannot be balanced by the vertical stellar gravity. Viscous instability also occurs. The solution gives an accurate representation of numerical results, and enables useful expressions to be derived for the radius at which the disc is marginally thin and the radius at which viscous instability occurs. The disruption mechanism appears to have general validity for accretion discs around strongly magnetic stars.  相似文献   

18.
19.
The theory of polar magnetic burial in accreting neutron stars predicts that a mountain of accreted material accumulates at the magnetic poles of the star, and that, as the mountain spreads equatorward, it is confined by, and compresses, the equatorial magnetic field. Here, we extend previous, axisymmetric, Grad–Shafranov calculations of the hydromagnetic structure of a magnetic mountain up to accreted masses as high as   M a= 6 × 10−4 M  , by importing the output from previous calculations (which were limited by numerical problems and the formation of closed bubbles to   M a < 10−4 M  ) into the time-dependent, ideal-magnetohydrodynamic code zeus-3d and loading additional mass on to the star dynamically. The rise of buoyant magnetic bubbles through the accreted layer is observed in these experiments. We also investigate the stability of the resulting hydromagnetic equilibria by perturbing them in zeus-3d . Surprisingly, it is observed that the equilibria are marginally stable for all   M a≤ 6 × 10−4 M  ; the mountain oscillates persistently when perturbed, in a combination of Alfvén and acoustic modes, without appreciable damping or growth, and is therefore not disrupted (apart from a transient Parker instability initially, which expels <1 per cent of the mass and magnetic flux).  相似文献   

20.
This work treats the matter deceleration in a magnetohydrodynamic radiative shock wave at the surface of a star. The problem is relevant to classical T Tauri stars where infalling matter is channelled along the star's magnetic field and stopped in the dense layers of photosphere. A significant new aspect of this work is that the magnetic field has an arbitrary angle with respect to the normal to the star's surface. We consider the limit where the magnetic field at the surface of the star is not very strong in the sense that the inflow is super-Alfvénic. In this limit, the initial deceleration and heating of plasma (at the entrance to the cooling zone) occurs in a fast magnetohydrodynamic shock wave. To calculate the intensity of radiative losses we use 'real' and 'power-law' radiative functions. We determine the stability/instability of the radiative shock wave as a function of parameters of the incoming flow: velocity, strength of the magnetic field, and its inclination to the surface of the star. In a number of simulation runs with the 'real' radiative function, we find a simple criterion for stability of the radiative shock wave. For a wide range of parameters, the periods of oscillation of the shock wave are of the order of  0.02–0.2 s  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号