首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
A well preserved strain and reaction gradient records the progressive transformation of a megacrystic Kfs+Cpx+Opx+Bt1±Qtz syenitic pluton to a strongly sheared Kfs+Act+Bt2+Ab+Qtz tectonite within the exhumed Norumbega Fault System, Maine, USA. Detailed microstructural analysis indicates that fracturing and localized fluid infiltration initiated the deconstruction of the existing K-feldspar and two-pyroxene load-bearing framework, and that feedback among metamorphic reactions, fabric development and enhanced permeability during progressive shearing led to the development of an interconnected, biotite- and actinolite-rich foliation. The activation of dislocation creep in biotite and quartz, and dissolution–precipitation creep in actinolite and feldspar, with increasing strain ultimately resulted in a transition from dominantly frictional to dominantly viscous deformation processes. Petrological data show that various scales of geochemical disequilibrium exist across the strain and reaction gradient, and that reaction progress was limited by slow chemical diffusion during the early stages of deformation. Petrological modelling results indicate that the existing plutonic assemblage was metastable at mid-crustal conditions, and that fluid infiltration and deformation allowed the product assemblage to advance towards chemical equilibration. Comparison of the observed microstructures and deformation mechanisms with experimental and numerical modelling results suggest that the development of an interconnected biotite-dominated fabric probably caused a major (up to three fold) reduction in bulk rock strength and localization of strain into the foliated margin.  相似文献   

2.
前寒武纪—寒武纪转折期是地球历史演化的重要阶段之一,不仅纪录了后生动物的产生、灭绝以及加速分异的过程,同时也伴随着海洋地球化学明显的变化、长期全球性海洋缺氧等。为了更好地认识这一重要时期地球表层环境演变及动力机制,我们对湘西地区台地—盆地转换带不同沉积类型及空间变化进行了重点解剖,发现寒武纪最早期该地区在台—盆转换带上,碳酸盐岩与硅质岩地层呈现一种截然接触,显示硅岩的形成受张性同生断层控制; 该带内硅质岩成分、结构独特,主要有富管、孔丘状硅质岩、漏斗状/楔状硅质岩和脉状硅质岩体,为深部富硅热液流体沿(同生)断裂向上运移到海底喷流后沉淀(硅烟囱)而形成的一套硅质沉积。此带向盆地方向,主要发育层状硅质岩,反映热液活动衰减而海水影响增强。考虑到扬子北缘及南缘台—盆转换带的硅质岩广泛分布,因此,热液活动很有可能沿着台地边缘发育,规模巨大。在这种情况下,大量热液来源的富金属和非金属元素的还原性流体和温室气体进入海洋或大气,加速气候变暖以及海洋缺氧和富营养化。热液活动后期,由于地壳热力衰减、盆地沉降导致大规模海平面上升,深部富营养盐随上升洋流被输送至浅部,促使生物产率得到极大地提高,进而形成牛蹄塘组富有机质黑色岩系沉积。  相似文献   

3.
Lower to Middle Turonian deposits within the Bohemian Cretaceous Basin (Central Europe) consist of coarse‐grained deltaic sandstones passing distally into fine‐grained offshore sediments. Dune‐scale cross‐beds superimposed on delta‐front clinoforms indicate a vigorous basinal palaeocirculation capable of transporting coarse‐grained sand across the entire depth range of the clinoforms (ca 35 m). Bi‐directional, alongshore‐oriented, trough cross‐set axes, silt drapes and reactivation surfaces indicate tidal activity. However, the Bohemian Cretaceous Basin at this time was over a thousand kilometres from the shelf break and separated from the open ocean by a series of small islands. The presence of tidally‐influenced deposits in a setting where co‐oscillating tides are likely to have been damped down by seabed friction and blocked by emergent land masses is problematic. The Imperial College Ocean Model, a fully hydrodynamic, unstructured mesh finite element model, is used to test the hypothesis that tidal circulation in this isolated region was capable of generating the observed grain‐size distributions, bedform types and palaeocurrent orientations. The model is first validated for the prediction of bed shear stress magnitudes and sediment transport pathways against the present‐day North European shelf seas that surround the British Isles. The model predicts a microtidal to mesotidal regime for the Bohemian Cretaceous Basin across a range of sensitivity tests with elevated tidal ranges in local embayments. Funnelling associated with straits increases tidal current velocities, generating bed shear stresses that were capable of forming the sedimentary structures observed in the field. The model also predicts instantaneous bi‐directional currents with orientations comparable with those measured in the field. Overall, the Imperial College Ocean Model predicts a vigorous tide‐driven palaeocirculation within the Bohemian Cretaceous Basin that would indisputably have influenced sediment dispersal and facies distributions. Palaeocurrent vectors and sediment transport pathways however vary markedly in the different sensitivity tests. Accurate modelling of these parameters, in this instance, requires greater palaeogeographic certainty than can be extracted from the available rock record.  相似文献   

4.
盆山转换与沉积地质记录——以楚雄前陆盆地分析为例   总被引:3,自引:1,他引:3  
楚雄盆地位于扬子陆块的西南边缘,为一中生代周缘型前陆盆地。根据沉积相特征、层序地层结构和古地理演化的详细研究,结合古哀牢山造山带的构造演化,笔者认为楚雄盆地经历了从古生代被动大陆边缘沉积到中生代前陆盆地沉积的演化。前陆盆地演化的阶段性明显:晚三叠世卡尼期(云南驿组沉积期)和诺利早、中期(罗家大山组沉积期)为前陆复理石沉积;诺利晚期(花果山组沉积期)—古新世(赵家店组沉积期)为前陆磨拉石沉积。磨拉石沉积可分为海相含煤磨拉石和陆相红色磨拉石两种类型。其中陆相磨拉石沉积时间跨度长,分布面积广,沉积厚度大,沉积演化可细分为盆地成形、强烈沉降、回返充填和萎缩消亡四个阶段。随着逆冲造山楔的不断向上生长和向克拉通方向加载,楚雄前陆盆地经历了一个早期向上突然加深、变细和晚期向上变浅、变粗的沉积充填过程;盆地由早期复理石沉积演变为晚期磨拉石沉积;盆地基底形态由早期的窄而深演化为晚期的宽而浅;分布于造山楔前缘的盆地沉降与沉积中心也不断地向北东克拉通方向迁移。古流向、岩石学和岩石地球化学数据都显示楚雄前陆盆地沉积物的主要物源区为古哀牢山造山带,其次为东部隆起带,因此,盆地沉积物的供给具有明显的双物源特征。  相似文献   

5.
河套干旱地区夏季边界层结构特征观测分析   总被引:2,自引:0,他引:2  
崔洋  常倬林  桑建人  左河疆 《冰川冻土》2015,37(5):1257-1267
利用2013年夏季7月爱尔达K/LLX802J型机动式边界层风廓线雷达获取的三维风场资料和银川站高空气象探测资料,对河套干旱地区夏季边界层日变化特征进行了分析.结果表明:爱尔达K/LLX802J型机动式风廓线雷达能较好的反映并分辨出夏季河套干旱地区边界层内大气湍流和风场的演变过程.夏季7月河套干旱地区边界层高度白天平均为2127.2 m,夜间平均为1760.7 m,白天边界层高度比夜间平均高366.5 m.河套干旱区夏季地表非绝热加热对边界层的影响主要集中在800 m以下,800~2000 m高度边界层则主要受昼夜交替和大尺度天气系统的影响.夏季7月河套干旱地区边界层风速在300 m以下随高度增加而增大,离地500 m以下边界层易在北京时间07:00-11:00和18:00-21:00时段发生风速切变;300 m以下边界层白天盛行西南偏南风、夜间盛行南风,300~2000 m高度边界层白天和夜间均盛行东南风;离地300 m以下边界层易在夜间21:00-23:00时出现风向切变.夏季7月白天河套干旱地区边界层大气垂直速度在300 m高度以下随高度增加而增大,由0.3 m·s-1增大到0.6 m·s-1,夜间边界层大气垂直速度在200 m高度以下随高度增大而增大;300 m高度以上边界层大气垂直速度无论昼夜随高度变化均较小.  相似文献   

6.
This paper presents biostratigraphical and stable isotope data obtained from core CM92–43, which was recovered from the central Adriatic as part of a comprehensive investigation of the palaeoenvironmental history of the basin. The data span the period of the Last Glacial–Holocene (LG–H) transition (ca. 18000 to 8000 GRIP ice-core yr BP). Regional biozones are defined on the basis of characteristic assemblages of planktic Foraminifera, and these are compared with other foraminiferal biostratigraphical schemes from the southern Adriatic and the Tyrrhenian Sea. Variations in relative abundance of selected planktic Foraminifera and in selected pollen types are shown alongside variations in δ18O and δ13C obtained from Globigerina bulloides and relative abundance of Globigerinoides ex. gr. ruber. The data are compared with the GRIP ice-core record and the event stratigraphy scheme based on this record, and it is concluded that the climate forcing mechanisms that controlled climate variations in the North Atlantic region during the LG–H transition also extended their influence into the Mediterranean region over the same period. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
8.
ABSTRACT Paragonite-bearing amphibolites occur interbedded with a garbenschist-micaschist sequence in the Austroalpine Schneeberg Complex, southern Tyrol. The mineral assemblage mainly comprises paragonite + Mg-hornblende/tschermakite + quartz + plagioclase + biotite + ankerite + Ti-phase + garnet ± muscovite. Equilibrium P–T conditions for this assemblage are 550–600°C and 8–10 kbar estimated from garnet–amphibole–plagioclase–ilmenite–rutile and Si contents of phengitic muscovites. In the vicinity of amphibole, paragonite is replaced by symplectitic chlorite + plagioclase + margarite +± biotite assemblages. Muscovite in the vicinity of amphibole reacts to form plagioclase + biotite + margarite symplectites. The reaction of white mica + hornblende is the result of decompression during uplift of the Schneeberg Complex. The breakdown of paragonite + hornblende is a water-consuming reaction and therefore it is controlled by the availability of fluid on the retrogressive P–T path. Paragonite + hornblende is a high-temperature equivalent of the common blueschist-assemblage paragonite + glaucophane in Ca-bearing systems and represents restricted P–T conditions just below omphacite stability in a mafic bulk system. While paragonite + glaucophane breakdown to chlorite + albite marks the blueschist/greenschist transition, the paragonite + hornblende breakdown observed in Schneeberg Complex rocks is indicative of a transition from epidote-amphibolite facies to greenschist facies conditions at a flatter P–T gradient of the metamorphic path compared to subduction-zone environments. Ar/Ar dating of paragonite yields an age of 84.5 ± 1 Ma, corroborating an Eoalpine high-pressure metamorphic event within the Austroalpine unit west of the Tauern Window. Eclogites that occur in the Ötztal Crystalline Basement south of the Schneeberg Complex are thought to be associated with this Eoalpine metamorphic event.  相似文献   

9.
The temperature (T) evolution of the barium carbonate (BaCO3) structure was studied using Rietveld structure refinements based on synchrotron X-ray diffraction and a powdered synthetic sample. BaCO3 transforms from an orthorhombic, Pmcn, α phase to a trigonal, R3m, β phase at 811°C. The orthorhombic BaCO3 structure is isotypic with aragonite, CaCO3. In trigonal R3m BaCO3, the CO3 group occupies one orientation and shows no rotational disorder. The average <Ba–O> distances increase while the <C–O> distances decrease linearly with T in the orthorhombic phase. After the 811°C phase transition, the <Ba–O> distances increase while C–O distances decrease. There is also a significant volume change of 2.8% at the phase transition.  相似文献   

10.
The study region forms the western part of the Madurai block (southern block) and shares several lithological characteristics of the Proterozoic exhumed South Indian Granulite Terrain (SGT). The crustal structure of the area has been derived from gravity data, constrained partly by aeromagnetic data. The Bouguer anomaly map of the region prepared based on detailed gravity observations shows a number of features (i) the Periyar lineament separates two distinctly different gravity fields, one, a high gravity gradient tending to be positive towards the coast in south west and significant gravity lows ranging from − 85 to as low as − 150 mGal in the NE covering a large part of the Periyar plateau (ii) within the broad gravity low, three localised circular anomalies of considerable amplitude occur in the region of Munnar granite. A magnetic low region in the central part coincides with the area of retrogressed charnockites and the major lineaments suggestive of a genetic link and considerable downward extent. The crustal models indicate that the upper layer containing exhumed lower crustal rocks (2.76 gm/cc) is almost homogeneous, most part of the gravity field resulting from variations in intracrustal layers of decharnockitised hornblendic gneisses and granite bodies. Below it, a denser layer (2.85 gm/cc) of unknown composition exists with Moho depth ranging from 36 to 41 km. The structure below the region is compared with that of two other segments of the SGT from which it differs markedly. The Wynad plateau forming the western part of the Northern Block of the SGT is characterised by a heterogeneity due to the presence of contrasting crustal blocks on either side of the Bavali shear zone, possibly a westward extension of the Moyar shear zone and presence of high density material in the mid-to-lower crustal portions. The crust below the Kuppam–Palani transect has a distinctive four-layer structure with a mid-crustal low density layer. The differences in crustal structure are consistent with the different tectonic settings of the three regions discussed in the paper. It is suggested that the crustal structure below the Kuppam–Palani transect corridor is not representative of the SGT as a whole, an aspect of great relevance to intra-continental comparisons and trans-continental reconstructions of continent configurations of the Gondwanaland.  相似文献   

11.
Stephan Klemme   《Lithos》2004,77(1-4):639-646
The position of the transition from spinel peridotite to garnet peridotite in a simplified chemical composition has been determined experimentally at high pressures and high temperatures. The univariant reaction MgCr2O4+2Mg2Si2O6=Mg3Cr2Si3O12+Mg2SiO4, has a negative slope in PT space between 1200 °C and 1600 °C. The experimental results, combined with assessed thermodynamic data for MgCr2O4, MgSiO3 and Mg2SiO4 give the entropy and enthalpy of formation of knorringite garnet (Mg3Cr2Si3O12). Thermodynamic calculations in simplified chemical compositions indicate that Cr shifts the garnet-in reaction to much higher pressures than previously anticipated. Moreover, in Cr-bearing systems a pressure–temperature field exists where garnet and spinel coexist. The width of this divariant field strongly depends on the Cr/(Cr+Al) of the system.  相似文献   

12.
Microstructures and quartz c-axis fabrics were analyzed in five quartzite samples collected across the eastern aureole of the Eureka Valley–Joshua Flat–Beer Creek composite pluton. Temperatures of deformation are estimated to be 740±50 °C based on a modified c-axis opening angle thermometer of Kruhl (J. Metamorph. Geol. 16 (1998) 142). In quartzite layers located closest (140 m) to the pluton-wall rock contact, flattened detrital grains are plastically deformed and partially recrystallized. The dominant recrystallization process is subgrain rotation (dislocation creep regime 2 of Hirth and Tullis (J. Struct. Geol. 14 (1992) 145)), although grain boundary migration (dislocation creep regime 3) is also evident. Complete recrystallization occurs in quartzite layers located at a distance of 240 m from the contact, and coincides with recrystallization taking place dominantly through grain boundary migration (regime 3). Within the quartzites, strain is calculated to be lowest in the layers closest to the pluton margin based on the aspect ratios of flattened detrital grains.The c-axis fabrics indicate that a slip operated within the quartzites closest to the pluton-wall rock contact and that with distance from the contact the operative slip systems gradually switch to prism [c] slip. The spatial inversion in microstructures and slip systems (apparent “high temperature” deformation and recrystallization further from the pluton-contact and apparent “low temperature” deformation and recrystallization closer to the pluton-contact) coincides with a change in minor phase mineral content of quartzite samples and also in composition of the surrounding rock units. Marble and calc-silicate assemblages dominate close to the pluton-wall rock contact, whereas mixed quartzite and pelite assemblages are dominant further from the contact.We suggest that a thick marble unit located between the pluton and the quartzite layers acted as a barrier to fluids emanating from the pluton. Decarbonation reactions in marble layers interbedded with the inner aureole quartzites and calc-silicate assemblages in the inner aureole quartzites may have produced high XCO2 (water absent) fluids during deformation. The presence of high XCO2 fluid is inferred from the prograde assemblage of quartz+calcite (and not wollastonite)+diopside±K-feldspar in the inner aureole quartzites. We suggest that it was these “dry” conditions that suppressed prism [c] slip and regime 3 recrystallization in the inner aureole and resulted in a slip and regime 2 recrystallization, which would normally be associated with lower deformation temperatures. In contrast, the prograde assemblage in the pelite-dominated outer part of the aureole is biotite+K-feldspar. These “wet” pelitic assemblages indicate fluids dominated by water in the outer part of the aureole and promoted prism [c] slip and regime 3 recrystallization. Because other variables could also have caused the spatial inversion of c-axis fabrics and recrystallization mechanisms, we briefly review those variables known to cause a transition in slip systems and dislocation creep regimes in quartz. Our conclusions are based on a small number of samples, and therefore, the unusual development of crystal fabrics and microstructures in the aureole to the EJB pluton suggests that further study is needed on the effect of fluid composition on crystal slip system activity and recrystallization mechanisms in naturally deformed rocks.  相似文献   

13.
宋晓媚  周忠学  王明 《冰川冻土》2015,37(3):835-844
快速城市化过程中都市农业景观变化及其生态安全研究是城市化区域生态安全和可持续发展研究的重要课题.构建都市农业景观生态安全评价指标与方法,探讨城市化对都市农业景观生态安全的影响具有重要的科学意义.以西安市为例,应用GIS和RS技术方法,结合"压力-状态-响应"(PSR)模型建立了都市农业景观生态安全综合评价指标体系,通过提取1999、2006和2013年的农业景观类型信息,定量分析了都市农业景观变化特征、动态评价了都市农业景观生态安全过程.结果表明:1999-2013年西安市农业景观结构变化剧烈,景观斑块数量增加、平均斑块面积减小,聚集度变差,景观趋于复杂化、破碎化,耕地、林地面积显著减少,园地面积增加.城市化的快速发展导致都市农业生态安全压力指数由0.43上升为0.59,生态安全状态指数由0.73降至0.28,生态安全响应指数则由0.26上升为0.77,生态系统服务价值下降;城市化过程带来的景观压力指数上升以及景观状态指数下降,使得都市农业景观生态安全综合指数由0.56先下降为0.4,后上升到0.48.城市化过程中的都市农业景观生态安全评价可以为都市农业可持续发展、土地可持续利用管理和科学决策提供依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号