首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The volume of Earth's oceans may be determined by a dynamic mechanism involving exchange of water between the crust and the mantle. Fast-spreading mid-ocean ridges are currently submerged to a depth at which the pressure is close to the critical pressure for seawater. This ensures optimal convective heat transport and, hence, maximal penetration of hydrothermal circulation along the ridge axes. The oceanic crust is hydrated to a depth of a kilometer or more and can therefore carry a substantial flux of water to the upper mantle when it is subducted. The current ingassing rate of water by this process is probably at least sufficient to balance the outgassing rate. If the oceans were shallower, as they may have been in the distant past, convective heat transport would be reduced and the depth of hydrothermal penetration and crustal hydration would decrease. Outgassing would exceed ingassing and ocean volume would increase. The system is self-stabilizing as long as the depth of the oceans does not exceed its present value. This mechanism could explain why continental freeboard has remained approximately constant since the Archean despite probable increases in continental area.  相似文献   

2.
ABSTRACT

This paper assesses how various sources of uncertainty propagate through the uncertainty cascade from emission scenarios through climate models and hydrological models to impacts, with a particular focus on groundwater aspects from a number of coordinated studies in Denmark. Our results are similar to those from surface water studies showing that climate model uncertainty dominates the results for projections of climate change impacts on streamflow and groundwater heads. However, we found uncertainties related to geological conceptualization and hydrological model discretization to be dominant for projections of well field capture zones, while the climate model uncertainty here is of minor importance. How to reduce the uncertainties on climate change impact projections related to groundwater is discussed, with an emphasis on the potential for reducing climate model biases through the use of fully coupled climate–hydrology models.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   

3.
4.
Freshwater inflow is central to the definition of estuaries and if we lose control of the quantity of freshwater flow or discharge (including seasonal timing) to estuaries, then freshwater water quality has the potential to become a moot issue in estuarine ecosystems (Definition of estuaries: estuaries (aestus = tide) are physico-chemically, geomorphically, and biotically diverse ecosystems. Although numerous definitions of estuaries exist, we prefer the following: an estuary is a partially enclosed coastal water body in which freshwater runoff, often seasonally and episodically pulsed, dilutes salty ocean water and the biotic structure is influenced by dynamic tidal action and associated salinity gradients and reef building organisms and wetlands influence development and evolution of ecological structure and function (see for expanded definition)).  相似文献   

5.
Water resources are influenced by various factors such as weather, topography, geology, and environment. Therefore, there are many difficulties in evaluating and analyzing water resources for the future under climate change. In this paper, we consider climate, land cover and water demand as the most critical factors affecting change in future water resources. We subsequently introduce the procedures and methods employed to quantitatively evaluate the influence of each factor on the change in future water resources. In order to consider the change in land cover, we apply the Multi-Regression approach from the cellular automata-Markov Chain technique using two independent variables, temperature and rainfall. In order to estimate the variation of the future runoff due to climate change, the data of the SRES A2 climate change scenario were entered in the SLURP model to simulate a total of 70 years, 2021–2090, of future runoff in the Han River basin in Korea. However, since a significant amount of uncertainties are involved in predicting the future runoff due to climate change, 50 sets of daily precipitation data from the climate change scenario were generated and used for the SLURP model to forecast 50 sets of future daily runoff. This process was used to minimize the uncertainty that may occur when the prediction process is performed. For future water balance analysis, the future water demand was divided into low demand, medium demand and high demand categories. The three water demand scenarios and the 50 daily runoff scenarios were combined to form 150 sets of input data. The monthly water balance within the Han River basin was then calculated using this data and the Korean version of Water Evaluation and Planning System model. As a result, the future volume of water scarcity of the Han River basin was predicted to increase in the long term. It is mostly due to the monthly shift in the runoff characteristic, rather than the change in runoff volume resulting from climate change.  相似文献   

6.
The most important objective within the European Water Framework Directive (WFD) is to achieve a ‘good ecological status’ (GES) for all waters, by 2015. Some methodologies have been developed for assessing GES within natural water bodies, in which the ecological status is a perceived or measured deviation from a reference condition. However, the WFD also consider ‘Heavily modified water bodies’ (HMWB) (a water body resulted from physical alterations by human activity, which substantially change its hydrogeomorphological character, e.g. a harbour). In implementing the WFD, environmental managers are required to assess the status of HMWBs in terms of achieving ‘Good Ecological Potential’ (GEP). This contribution defines and studies GEP from an ecological point of view, taking into account some ecological restoration principles. Finally, this contribution gives some guidance on how establish GEP, using as example a harbour within the North East Atlantic.  相似文献   

7.
Helen Walker summarizes the RAS discussion meeting, 14 January 2000, on the material around main-sequence and post-main-sequence stars.  相似文献   

8.
Many subsurface waters are considered groundwater but are influenced in shallow depths by hyporheic, parafluvial and/or soil interception water to such a degree that groundwater fauna (stygofauna) communities may be significantly altered. Recharge, even if spatially and temporally distinct, delivers input of dissolved oxygen, organic matter (OM), and nutrients that caters sustainably for ubiquists such as stygophiles and hyporheic fauna, but renders the life of uncompetitive stygobites difficult or impossible. The impact of recharge at shallow groundwater thus needs to be taken into account when determining groundwater fauna reference communities and when evaluating monitoring studies.One of the main characteristics of groundwater is low OM concentration. In contrast, high OM concentrations are typical of hyporheic or parafluvial waters, which are enriched by OM from the river, the riparian soils and from interflow, and which contribute significantly to river OM balance. Consequently, for ecological studies on subsurface waters, both the origin of the water and OM, and the intensity of surface water interactions should be considered. Here, we discuss how groundwater spatial and temporal heterogeneity translates into faunal distribution patterns. In terms of the origin of water and OM, and from an ecological point of view, we need to distinguish between (i) shallow groundwater characterized by infiltrating precipitation and soil recharge, (ii) shallow groundwater interacting with surface water bodies such as continuously flowing and ephemeral streams and rivers, and (iii) “old” groundwater which has no recent connections to the surface and is thus largely secluded from input of nutrients and carbon. Water in the first two groups is characterized by high amounts of OM of varying quality, while water in the third group is characterized by low amounts of low quality OM. Consequently, stygophiles dominate in groups 1 and 2, with hyporheic fauna taking up a considerable proportion in group 2, while stygobites only dominate in group 3. Thus, for studies aiming to assess impacts on groundwater, only sampling sites of the third group should be used for reference sites as these are the most likely sites to have little surface impact and a stygofauna representative of the deeper aquifer.  相似文献   

9.
Wetlands cover at least 6 % of the Earth’s surface. They play a key role in hydrological and biogeochemical cycles, harbour a large part of the world’s biodiversity, and provide multiple services to humankind. However, pressure in the form of land reclamation, intense resource exploitation, changes in hydrology, and pollution threaten wetlands on all continents. Depending on the region, 30–90 % of the world’s wetlands have already been destroyed or strongly modified in many countries with no sign of abatement. Climate change scenarios predict additional stresses on wetlands, mainly because of changes in hydrology, temperature increases, and a rise in sea level. Yet, intact wetlands play a key role as buffers in the hydrological cycle and as sinks for organic carbon, counteracting the effects of the increase in atmospheric CO2. Eight chapters comprising this volume of Aquatic Sciences analyze the current ecological situation and the use of the wetlands in major regions of the world in the context of global climate change. This final chapter provides a synthesis of the findings and recommendations for the sustainable use and protection of these important ecosystems.  相似文献   

10.
11.
The ‘Chicken Creek’ artificial catchment area, Welzow-South, E Germany, created to study processes and structures of initial ecosystem development, discharges into a small experimental lake (A=3805 m2, V=3992 m3, zmax=2.4 m). This lake was man-made in 2005 and filled by natural surface runoff until January 2006. In summer 2006 and 2008, the actual development of sediments and the evolution of the phosphorus (P) cycle were studied. 19.7% of the original lake volume was filled by sediment within the first 3 years. A fine-grained sediment representing silt (6.3-63 μm) accumulated at high accretion rates at the deepest point (200 mm a−1, 0-24 mm week−1) due to massive erosion in the catchment. The sediment is low in organic matter (2.5-5.2%) and total P (TP, 0.31-0.97 mg g−1). Low amounts of P associated with degradable organic matter and surplus of metal hydroxides (Fe:P∼40, Al:P∼20) favor an efficient P binding and low dissolved P concentrations in pore water (1-107 μg l−1). Hence, the mineral sediment quality and the low rates of P release (0.06 mg m−2 d−1) revealed that a lake at an initial stage of development has essentially no sedimentary P cycle compared to eutrophic shallow lakes. However, the increasing emersed and submersed macrophyte growth will control further lake succession by intensifying the internal nutrient cycling. The macrophytes drive the evolution of a sedimentary P cycle by mobilizing and translocating P, by accumulating carbon and thus by stimulating microbial and redox processes.  相似文献   

12.
《水文科学杂志》2013,58(4):690-703
Abstract

One of the key uncertainties surrounding the impacts of climate change in Africa is the effect on the sustainability of rural water supplies. Many of these water supplies abstract from shallow groundwater (<50 m) and are the sole source of safe drinking water for rural populations. Analysis of existing rainfall and recharge studies suggests that climate change is unlikely to lead to widespread catastrophic failure of improved rural groundwater supplies. These require only 10 mm of recharge annually per year to support a hand pump, which should still be achievable for much of the continent, although up to 90 million people may be affected in marginal groundwater recharge areas (200–500 mm annual rainfall). Lessons learnt from groundwater source behaviour during recent droughts, substantiated by groundwater modelling, indicate that increased demand on dispersed water points, as shallow unimproved sources progressively fail, poses a much greater risk of individual source failure than regional resource depletion. Low yielding sources in poor aquifers are most at risk. Predicted increased rainfall intensity may also increase the risk of contamination of very shallow groundwater. Looking to the future, an increase in major groundwater-based irrigation systems, as food prices rise and surface water becomes more unreliable, may threaten long-term sustainability as competition for groundwater increases. To help prepare for increased climate variability, it is essential to understand the balance between water availability, access to water, and use/demand. In practice, this means increasing access to secure domestic water, understanding and mapping renewable and non-renewable groundwater resources, promoting small-scale irrigation and widening the scope of early warning systems and mapping to include access to water.  相似文献   

13.
Introduction The medium of the earth is made up of gas, liquid, and solid. The solid is the main material to form the structure of the earth, so it is very significant to study the solid matter of the earth. Rock, as a solid medium of the earth is a common object studied by geophysicists. The measurement of the comprehensive physical properties of rocks (ZHAO, et al, 1996; GUO, et al, 1989) considered that the minimal cell of rock is the atoms of chemical element, and all sorts of the rock …  相似文献   

14.
River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels while others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (>200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan deltas, whose steep gradient (11°–25°) approaches the sediment's angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°–10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   

15.
Quantifying and understanding catchment sediment fluxes is crucial both from a scientific and environmental management perspective. To deepen the understanding of landuse impacts and climate change on sediment load, we explore factors controlling the suspended sediment load formation in the Northern Caucasus during the Anthropocene. We examine how sediment flux of various river basins with different land-use/landcover and glacier cover changes during the 1925–2018 period. Our analysis is based on observed mean annual suspended sediment discharges (SSD, kg s−1) and annual fluxes (SSL, t year−1) from 33 gauging stations of The Federal Service for Hydrometeorology and Environmental Monitoring (Russia). SSL series have been analysed to detect statistically significant changes during the 1925–2018 period. The occurrence of abrupt change points in SSD was investigated using cumulative sum (CUSUM) charts. We found that SSL has decreased by −1.17% per year on average at most gauges. However, the decline was not linear. Several transition years are expected in the region increasing trends from the 1950s and decreasing trends from 1988 to 1994. Correlation analyses showed that variation in SSL trend values is mainly explained by gauging station altitude, differences in landuse (i.e. the fraction of cropland), and catchment area. Nonetheless, more accurate quantifications of SSL trend values and more refined characterizations of the catchments regarding (historical) landuse, soil types/lithology, weather conditions, and topography may reveal other tendencies.  相似文献   

16.
Changes in the hydrological regimes of Arctic rivers could affect the thermohaline circulation of the Arctic Ocean. In this study, we analysed spatiotemporal variations in temperature and precipitation in the Ob River Basin regions during 1936–2017 based on data from the Global Precipitation Climatology Center. Changes in discharge and response to climate change were examined based on monthly observed data during the same period. It is indicated the Ob River Basin experienced significant overall rapid warming and wetting (increased precipitation) in the study period, with average rates of 0.20°C (10 year−1) and 5.3 mm (10 year−1), respectively. The annual spatial variations of temperature and precipitation showed different scales in different regions. The discharge in spring and winter significantly increased at a rate of 384.1 and 173.1 m3/s (10 year−1), respectively. Hydrograph separation indicated infiltration and supported that deep flow paths increased the contribution of groundwater to base flow. Meanwhile, the variation of the ratio of Qmax/Qmin suggested that the basin storage and the mechanism of discharge generation have significantly changed. The hydrological processes were influenced by changes of permafrost in a certain in the Ob River Basin. An increase in the recession coefficient (RC) implies that the permafrost degradation in the basin due to climate warming affected hydrological processes in winter. Permafrost degradation affected the Qmax/Qmin more significantly in the warm season than RC due to the enhanced infiltration that converted more surface water into groundwater in the cold season. The impact of precipitation on discharge, including surface flow and base flow, was more significant than temperature at the annual and seasonal scales in the Ob River Basin. The base flow was more obviously influenced by temperature than surface flow. The results of this study are significant for analyses of the basin water budget and freshwater input to the Arctic Ocean.  相似文献   

17.
Subarctic ecohydrological processes are changing rapidly, but detailed and integrated ecohydrological investigations are not as widespread as necessary. We introduce an integrated research catchment site (Pallas) for atmosphere, ecosystems, and ecohydrology studies in subarctic conditions in Finland that can be used for a new set of comparative catchment investigations. The Pallas site provides unique observational data and high-intensity field measurement datasets over long periods. The infrastructure for atmosphere- to landscape-scale research in ecosystem processes in a subarctic landscape has recently been complemented with detailed ecohydrological measurements. We identify three dominant processes in subarctic ecohydrology: (a) strong seasonality drives ecohydrological regimes, (b) limited dynamic storage causes rapid stream response to water inputs (snowmelt and intensive storms), and (c) hydrological state of the system regulates catchment-scale dissolved carbon dynamics and greenhouse (GHG) fluxes. Surface water and groundwater interactions play an important role in regulating catchment-scale carbon balances and ecosystem respiration within subarctic peatlands, particularly their spatial variability in the landscape. Based on our observations from Pallas, we highlight key research gaps in subarctic ecohydrology and propose several ways forward. We also demonstrate that the Pallas catchment meets the need for sustaining and pushing the boundaries of critical long-term integrated ecohydrological research in high-latitude environments.  相似文献   

18.
RS-monitoring index systems of ecological environment changes at a large scale, based on empirical data and trends in environmental change in Central Asia, are developed using NOAA and MODIS data. Moreover, with the help of mathematical statistics and GIS spatial analysis, the degrees, hazards and distribution extent of various possible ecological problems are discussed, environmental changes in Central Asia in 1990 and 2005 are separately evaluated, and dynamic changes in the environment in Central Asia over a 15-year period are analyzed. The results reveal that during the 15-year period from 1990 to 2005, areas of degenerated vegetation in Kazakhstan, Uzbekistan, Turkmenistan, Kirghizstan and Tadzhikistan were enlarged by 0.069×105 km2, 0.081×105 km2, 0.296×105 km2, 0.022×105 km2 and 0.112×105 km2, respectively. The ecological environment in Central Asia was in the state of significant degeneration and even deterioration. This study proves that NOAA and MODIS data can be used to successfully monitor the environment and provide useful results.  相似文献   

19.
In the near future, a higher occurrence of wildfires is expected due to climate change, carrying social, environmental, and economic implications. Such impacts are often associated with an increase of post-fire hydrological and erosive responses, which are difficult to predict. Soil erosion models have been proven to be a valuable tool in the decision-making process, from emergency response to long-term planning, however, they were not designed for post-fire conditions, so need to be adapted to include fire-induced changes. In recent years, there have been an increasing number of studies testing different models and adaptations for the prediction of post-fire soil erosion. However, many of these adaptations are being applied without field validation or model performance assessment. Therefore, this study aims to describe the scientific advances in the last 20 years in post-fire soil erosion modelling research and evaluate model adaptations to burned areas that aim to include: (i) fire-induced changes in soil and ground cover; (ii) fire-induced changes in infiltration; (iii) burn severity; and (iv) mitigation measures in their predictions. This study also discusses the strengths and weaknesses of these approaches, suggests potential improvements, and identifies directions for future research. Results show that studies are not homogeneously distributed worldwide, according to the model type used or by region most affected by wildfire. During calibration, 73% of cases involved model adaptation to burned conditions, and only 21% attempted to accommodate new processes. Burn severity was addressed in 75% of cases, whilst mitigation measures were simulated in 27%. Additionally, only a minor percentage of model predictions were validated with independent field data (17%) or assessed for uncertainties (13%). Therefore, further efforts are required in the adaptation of erosion models to burned conditions, to be widely used for post-fire management decisions. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
A river at equilibrium is described by a statistically-stationary mean bed elevation profile that arises in response to steady supplies of relief, water and sediment. Outside of the profile shape, how is the equilibrium state of a river most reliably identified and rigorously defined? Motivated by a proposed link between equilibrium and physical processes, we use scaling theory to develop the dimensionless channel response number ξ=KUb/Up. ξ is a metric for the local disequilibrium state of gravel-bed mountain streams, which reflects a balance between the rate of topographic adjustment Ub, and the rate of bed sediment texture adjustment Up. The coefficient K can take one of two forms depending on choice of length scale for topographic adjustment. We hypothesize that equilibrium occurs where and when ξ≈O(1), and consequently, disequilibrium is the more general state captured by conditions of ξ≉O(1). The rates Ub and Up are controlled by the mechanics of sediment deposition and entrainment at the local scale of the channel width. The extent to which either process regulates disequilibrium depends on the bed strength, which is set by the time-varying grain size distribution and packing. We use flume experiments to understand ξ and find that in the limit ξ>>1, the time-varying response of an experimental channel depends sensitively on the spatially-averaged bed shear stress ratio τ/τref. When τ/τref≈1.5, Ub was the dominant control on disequilibrium. However, when τ/τref≈2.0, Up contributed more significantly to disequilibrium. These results suggest that after an upstream supply perturbation, the equilibrium timescale is governed by Up, which we show is consistent with expectations from linear damping theory. Our experimental test of ξ is promising, but inconclusive with respect to our hypothesis. This uncertainty can be readily addressed with numerical or additional physical experiments. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号