首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deep-sea corals have been shown to be useful archives of rapid changes in ocean chemistry during the last glacial cycle. Their aragonitic skeleton can be absolutely dated by U-Th data, freeing radiocarbon to be used as a water-mass proxy. For certain species of deep-sea corals, the growth rate allows time resolution that is comparable to ice cores. An additional proxy is needed to exploit this opportunity and turn radiocarbon data into rates of ocean overturning in the past.Neodymium isotopes in seawater can serve as a quasi-conservative water-mass tracer and initial results indicate that deep-sea corals may be reliable archives of seawater Nd isotopes. Here we present a systematic study exploring Nd isotopes as a water-mass proxy in deep-sea coral aragonite. We investigated five different genera of modern deep-sea corals (Caryophyllia, Desmophyllum, Enallopsamia, Flabellum, Lophelia), from global locations covering a large potential range of Nd isotopic compositions. Comparison with ambient seawater measurements yields excellent agreement and suggests that deep-sea corals are reliable archives for seawater Nd isotopes.A parallel study of Nd concentrations in these corals yields distribution coefficients for Nd between seawater and coral aragonite of 1-10, omitting one particular genus (Enallopsamia). The corals and seawater did however not come from exactly the same location, and further investigations are needed to reach robust conclusions on the incorporation of Nd into deep-sea coral aragonite.Lastly, we studied the viability of extracting the Nd isotope signal from fossil deep-sea corals by carrying out stepwise cleaning experiments. Our results show that physical removal of the ferromanganese coating and chemical pre-cleaning have the highest impact on Nd concentrations, but that oxidative/reductive cleaning is also needed to acquire a seawater Nd isotope signal.  相似文献   

2.
关成国  王伟  周传明 《地质学报》2024,98(3):712-724
湖北宜昌地区埃迪卡拉系陡山沱组记录了多次显著的无机碳同位素(δ13Ccarb)波动事件,它们可以在华南乃至全球范围内进行广泛对比。然而,在一些特定剖面中,陡山沱组底部盖帽碳酸盐岩记录了δ13Ccarb极负值(<30‰,VPDB),以及上覆陡山沱组二段底部地层中δ13Ccarb在正负值之间频繁波动的现象。一般认为,成岩作用中形成的碳酸盐矿物导致了这些分布不规律的δ13Ccarb波动,并对利用碳酸盐岩全岩无机碳同位素(δ13Cbulk)数据进行古海洋碳同位素组成恢复的可靠性造成了干扰。为了评估成岩作用对δ13Cbulk的影响,本文利用宜昌雾河地区埃迪卡拉系的一口钻井岩芯,对陡山沱组下部地层进行了详细的岩石学观察和碳同位素分析。研究结果表明,陡山沱组下部的碳酸盐岩中存在形成于成岩过程中的方解石矿物,而碳酸盐岩中的白云石组分并未遭受严重的后期成岩作用改造,白云石组分的碳同位素(δ13Cdolo)组成能够更加准确地反映沉积时的海水信息。为获得样品的δ13Cdolo信息,本研究首先将全岩粉末样品与30%磷酸反应2 h,去除其中的方解石组分,然后测试残余样品的碳同位素。实验结果显示,该方法可以有效去除岩石粉末中的方解石组分,最终获得的数据能够准确地反映δ13Cdolo特征。陡山沱组二段下部样品δ13Cdolo为连续稳定的正值,且明显高于δ13C bulk,δ13Cdolo 曲线更加真实地反映了新元古代冰期结束之后海洋碳同位素组成的变化特征。  相似文献   

3.
《Gondwana Research》2013,23(3-4):1102-1109
Conodonts collected from sections near the small towns of Thong Pha Phum and Mae Sariang in the westernmost part of Thailand are used to reconstruct the neodymium (Nd) isotopic composition of seawater during the Late Devonian. The study provides the first Devonian seawater signatures recognized within the Australian shelf of northeastern Gondwana and the adjacent Paleotethys Ocean. At Thong Pha Phum site, the seawater was characterized by very low εNd values (from − 13.1 to − 18.2) and very high Sm/Nd ratios (between 0.36 and 0.66). In contrast, the seawater at the Mae Sariang site was characterized by much more radiogenic signatures (εNd values from − 8.7 to − 11.1) and uniform, low Sm/Nd ratios (between 0.20 and 0.23). Extremely low εNd values recognized at Thong Pha Phum attest to a passive margin continental setting and a paleogeographic position very close to a continental area where Paleoproterozoic and Neoarchean rocks were eroded. Thus, the isotopic data provide strong evidence that during Late Devonian time the Sibumasu terrane was situated in the proximity to the Archean cratons of Western Australia, presumably adjacent to the Carnarvon intracratonic basin. Moreover, Sibumasu may not have been situated in an outboard position on the shelf, as previously suggested, but could have been directly attached to the Australian continental crust. By contrast, low and uniform Sm/Nd ratios of seawater at Mae Sariang resemble those of the Variscan and the present-day oceanic seawaters. Therefore, a pelagic setting within the Paleotethys Ocean is postulated for the Mae Sariang succession. This conclusion is also constrained by minor temporal changes in εNd values and suggests that the Paleozoic of Mae Sariang is not part of the Sibumasu terrane but belongs to the Inthanon Zone.  相似文献   

4.
Heterogeneous magnesium isotopic composition of the upper continental crust   总被引:3,自引:0,他引:3  
High-precision Mg isotopic data are reported for ∼100 well-characterized samples (granites, loess, shales and upper crustal composites) that were previously used to estimate the upper continental crust composition. Magnesium isotopic compositions display limited variation in eight I-type granites from southeastern Australia (δ26Mg = −0.25 to −0.15) and in 15 granitoid composites from eastern China (δ26Mg = −0.35 to −0.16) and do not correlate with SiO2 contents, indicating the absence of significant Mg isotope fractionation during differentiation of granitic magma. Similarly, the two S-type granites, which represent the two end-members of the S-type granite spectrum from southeastern Australia, have Mg isotopic composition (δ26Mg = −0.23 and −0.14) within the range of their potential source rocks (δ26Mg = −0.20 and +0.15) and I-type granites, suggesting that Mg isotope fractionation during crustal anatexis is also insignificant. By contrast, δ26Mg varies significantly in 19 A-type granites from northeastern China (−0.28 to +0.34) and may reflect source heterogeneity.Compared to I-type and S-type granites, sedimentary rocks have highly heterogeneous and, in most cases, heavier Mg isotopic compositions, with δ26Mg ranging from −0.32 to +0.05 in nine loess from New Zealand and the USA, from −0.27 to +0.49 in 20 post-Archean Australian shales (PAAS), and from −0.52 to +0.92 in 20 sedimentary composites from eastern China. With increasing chemical weathering, as measured by the chemical index of alternation (CIA), δ26Mg values show a larger dispersion in shales than loess. Furthermore, δ26Mg correlates negatively with δ7Li in loess. These characteristics suggest that chemical weathering significantly fractionates Mg isotopes and plays an important role in producing the highly variable Mg isotopic composition of sedimentary rocks.Based on the estimated proportions of major rock units within the upper continental crust and their average MgO contents, a weighted average δ26Mg value of −0.22 is derived for the average upper continental crust. Our studies indicate that Mg isotopic composition of the upper crust is, on average, mantle-like but highly heterogeneous, with δ26Mg ranging from −0.52 to +0.92. Such large isotopic variation mainly results from chemical weathering, during which light Mg isotopes are lost to the hydrosphere, leaving weathered products (e.g., sedimentary rocks) with heavy Mg isotopes.  相似文献   

5.
The geochemical and isotopic signature of Quaternary alluvial sediments filling a post-orogenic basin along the Tyrrhenian coasts of Italy (Cornia Plain, Tuscany) was investigated to unravel possible interactions with geothermal fluids from the Larderello geothermal field. Two cores located in the upper (UCP) and lower (LCP) sector of the plain were sampled to depths of up to 80 m. A third core in a neighbouring area not affected by geothermal activity was also sampled (Arno plain at Pisa), and its sediment composition was used as reference. The Cornia sediments (fraction < 65 μm) show high B, Cs and Sb concentrations related to a peculiar chemical enrichment of the clay fraction. They also show remarkable enrichments in As (up to 1000 μg g− 1) reflecting a contribution from local ore deposits.87Sr/86Sr ratios, ranging from 0.71022 to 0.71698, reveal the nature of the weathered mother rocks of the alluvial sediments, whereas the boron isotopic composition, varying from − 20‰ to − 10‰, suggests an interaction between the clay fraction and boron-rich fluids at temperatures greater than 50 °C. This implies that hydrothermal fluids widely circulated within the Cornia basin in the past, ultimately leading to the geochemical anomalies currently recorded in local sediments.Although natural (geogenic) in origin, these anomalies cause severe problems to the regional water management (groundwater exploitation) through leaching of trace elements into circulating groundwater, a phenomenon which has to be carefully studied and monitored.  相似文献   

6.
夏攀  甯濛  文华国  郎咸国 《沉积学报》2021,39(6):1546-1564
镁(Mg)作为主要的造岩元素及生物营养元素,是连接大陆、海洋和地球内部循环的重要纽带。碳酸盐岩作为Mg的主要储库,是全球Mg循环的重要组成环节,利用Mg同位素示踪碳酸盐岩沉积—成岩过程是有效反演深时海水Mg同位素组成(δ26Mg海水)、恢复全球Mg循环的基本前提。近二十年来,Mg同位素在示踪碳酸盐岩沉积—成岩过程研究中取得了较大进展:1)不同类型碳酸盐矿物形成过程中的Mg同位素分馏及其影响因素的研究得到完善;2)建立了Mg同位素地球化学模型,对不同白云石化过程进行半定量—定量模拟;3)初步探索了利用Mg同位素反演早期成岩流体体系的方法。以上研究进展为利用碳酸盐岩恢复δ26Mg海水奠定了理论基础,在选择有效的碳酸盐岩载体恢复δ26Mg海水时,需充分考虑碳酸盐岩的沉积—成岩过程及其对Mg同位素组成的影响,并适当结合地球化学模型,消除沉积—成岩因素的影响,进而恢复δ26Mg海水。  相似文献   

7.
The carbon isotopic composition of carbonate rocks is widely used for the reconstruction of sedimentation paleoenvironment. Of special interest is the study of the Upper Proterozoic-Cambrian interval—the turning point in the Earth’s geological evolution. Rocks of this age show the widest variations in the carbon isotopic composition of carbonates typically correlated with epochs of global glaciations and change in the CO2 regime. In this paper, we attempted to show that carbon isotopic variations often indicate postsedimentary alterations of carbonates and reflect the specific geochemical transformations of the rocks. Study of variations of carbon and oxygen isotopic compositions in the Vendian-Cambrian rocks provide insight into lithogenetic processes.  相似文献   

8.
The isotopic composition of strontium in surface water in continental basins is determined primarily by the geology of the basin and to a lesser extent by climatic conditions. Consequently, the 87Sr/86Sr ratios of brines in such basins can change only as a result of changes in the geology or climate. This principle of isotope geology was studied by analysis of a suite of non-marine carbonate rocks from the Flagstaff Formation (Palaeocene-Eocene) of Utah. The samples were collected from a section in Fairview Canyon of Sanpete County. They include both limestone and dolomite and were selected to have low non-carbonate residues. The concentrations of strontium in calcites averages 383 ± 128 p.p.m., while those of dolomites increase from 354 ± 74 p.p.m. in the lower 43 m of section to a maximum of 2259 p.p.m. higher up. The increase in the strontium content of dolomite is interpreted as evidence for a change from steady-state to progressively more evaporitic conditions. Two dolomites have isotopic compositions of oxygen expressed as δ18O = -2.75‰ (relative to the PDB standard) and are enriched in 18O relative to two calcites whose average δ18O value is -9.9‰. The 87Sr/86Sr ratios of the carbonate minerals range from 0.70890 to 0.71260. These values are clearly greater than the 87Sr/86Sr ratio of marine carbonates of Early Eocene age which is 0.70744. The variation of the 87Sr/86Sr ratio in this section of the Flagstaff Formation is real and reflects the occurrence of geological events which changed the isotopic composition of Sr entering Lake Flagstaff. The non-carbonate fractions of six carbonate rocks and one sandstone fit a straight line on the strontium mixing diagram in co-ordinates of initial 87Sr/86Sr and 1/Sr concentration. These results suggest that the isotopic composition of strontium in Lake Flagstaff may have been modulated by periodic input of volcanogenic detritus of felsic composition.  相似文献   

9.
During early Carboniferous times a major sea-level rise led to the development of an extensive carbonate ramp over what is now South Wales. Differential subsidence and sea-level changes resulted in distinctive facies sequences in the ramp succession and a model is offered which recognizes three distinct geomorpho-tectonic settings; inner, mid- and outer ramp. The inner ramp zone occurs in the more landward part of the province and was an area undergoing little or no subsidence. The sequence is dominated by oolitic grainstones and peritidal limestones representing shoal and back shoal environments. The peritidal units are transgressive deposits consisting of stacked asymmetrical shallowing-up cycles. The sequence contains many subaerial breaks and tectonic uplift resulted in base-level changes and fluvial incision. The mid-ramp zone sequence is intermediate in thickness between the inner and outer ramp successions and consists mainly of bioclastic limestones deposited below fairweather wave base. Sedimentation periodically exceeded sea-level rise and subsidence, and regressive (progradational) oolitic sand bodies developed, the thickest of which are stacked units with up to four individual sand bodies. Storm processes were of major importance in this setting. The outer ramp zone is represented by a thick sequence of muddy bioclastic limestones deposited below storm wave base and major Waulsortian reef-mounds also developed. None of the shallowing phases seen in the other ramp zones can be detected in this sequence. Subsidence and eustatic sea-level rise seem to have been the major controls on deposition but the recognition of eustatic sea-level falls is difficult. The detailed facies model for ramp carbonates presented here may be applicable elsewhere in the geological record.  相似文献   

10.
Rb–Sr systematics has been studied in 13C-rich carbonate rocks of the Paleoproterozoic (2.09 ± 0.07 Ga) Tulomozero Formation in the northern Onega Lake area, the SE Fennoscandian Shield. The formation is divided into eight members (A–F) consisting of greenschist-facies-grade, variegated sandstones, siltstones, mudstones, stromatolitic dolostones and subordinate crystalline limestones. Samples of carbonate rocks were obtained from two overlapping drillholes intersecting the entire thickness of the Tulomozero Formation. Prior to isotope analysis, the rocks powders were treated with 1N ammonium acetate for partial removal of the late epigenetic carbonate phases. Major resetting of the Rb–Sr systems in the Tulomozero carbonate rocks appears to take place during the Svecofennian regional metamorphic event, and it was screened by using Mn/Sr, Fe/Sr, Mg/Ca, and 18O/16O ratios. High Sr content (up to 2080 μg/g in limestones, and 530 μg/g in dolostones) coupled with low Fe/Mn (<0.40) ratios in the Tulomozero carbonate rocks of Members A, B (the lower part), D, F, and E are consistent with accumulation of original carbonate sediments in evaporitic lacustrine, playa, and sabkha environments. A decrease in the Sr content with concurrent increase in the Fe/Mn ratio (>0.40) in dolostones of the upper part of Member B, and of Members G and H is indicative of seawater influxes (sea transgression) into the Tulomozero basin. The 87Sr/86Sr values in the least altered (Mn/Sr < 2.0) marine dolostones are 0.70418–0.70442 and 0.70343–0.70409 for the earlier and late phases of the marine transgression, respectively. The decrease in the 87Sr/86Sr ratio in ca. 2.1 Ga seawater is attributable to an increase in hydrothermal flux Sr into the Palaeoproterozoic ocean.  相似文献   

11.
造礁珊瑚是研究热带海洋高分辨率气候环境演变的重要载体。对采自海南岛南部三亚湾的活体滨珊瑚SY10进行了约为月分辨率的碳、氧、硼同位素组成分析,并利用珊瑚δ11B重建了海水pH。结果显示,所测量样品的δ13C变化范围为–3.32‰~–1.76‰,δ18O为–6.13‰~–4.78‰,δ11B为23.51‰~26.23‰,且这些珊瑚样品的碳、氧、硼同位素组成均存在明显的季节性周期波动。其中pH与δ18O之间存在明显的正相关关系,高的pH值更倾向于在低温的季节出现,这意味着短时间尺度该处珊瑚礁海水pH可能主要不是受海水CO2溶解度控制,而是与生物活动有密切的关系。利用SY10珊瑚样品硼同位素组成重建的海水pH值变化范围为7.77~8.37,并呈季节性周期波动,这种大幅度的周期波动与我们对三亚珊瑚礁海水pH进行现场观测所得到的结果以及前人的研究成果相符,说明了利用珊瑚δ11B重建海水pH记录是可靠的。  相似文献   

12.
The isotopic composition of total dissolved inorganic carbon in seawater was determined as a function of time of day in coral reef environments at Saipan, Abaiang Atoll, Tahiti, Florida and Heron Island on the Great Barrier Reef of Australia. At each locality water collected during the day was enriched in 13C with respect to water collected at night. The form and magnitude of the diurnal cycles is dependent upon the ratio of local biomass to local water mass and on the degree of exchange between local water mass and the open ocean reservoir. Comparison of open and closed system models is made using computer generated δ13C vs. time curves to illustrate modulation by the tidal cycle of the simple diurnal variation in a closed system. The results are of geochemical significance in that the δ13C of CaCO3 precipitated in certain environments is dependent on the time of crystallization. This must be taken into account in isotope ratio studies of both plant and animal secreted carbonates which are preferentially precipitated during certain periods of the day.  相似文献   

13.
黄土醋酸淋溶实验及其碳酸盐组分的地球化学特征   总被引:5,自引:0,他引:5  
选择性的化学淋溶实验 ,广泛用于沉积物的地球化学研究中。通过对比 1mol/L的盐酸和醋酸两种溶剂对黄土和古土壤的淋溶效果 ,发现 1mol/L的醋酸能选择性淋溶黄土和古土壤中碳酸盐组分 ,对硅酸盐、铁的氧化物等影响很小。在确定溶剂后 ,以 1mol/L醋酸溶液选择性淋溶了洛川剖面 4 3个黄土和古土壤样品 ,通过分析淋溶液的组成 ,得出黄土和古土壤中碳酸盐组分的平均成分 (wB)为 :MgO 1.71% ,MnO 670× 10 - 6 ,Sr 4 90× 10 - 6 。淋溶结果较好地反映了黄土-古土壤剖面的风化成壤程度 ,其中醋酸淋溶液中MnO含量能更好地反映当时的古气候信息。  相似文献   

14.
We evaluate the impact of exceptionally sparse plant cover (0-20%) and rainfall (2-114 mm/yr) on the stable carbon and oxygen composition of soil carbonate along elevation transects in what is among the driest places on the planet, the Atacama Desert in northern Chile. δ13C and δ18O values of carbonates from the Atacama are the highest of any desert in the world. δ13C (VPDB) values from soil carbonate range from −8.2‰ at the wettest sites to +7.9‰ at the driest. We measured plant composition and modeled respiration rates required to form these carbonate isotopic values using a modified version of the soil diffusion model of [Cerling (1984) Earth Planet. Sci. Lett.71, 229-240], in which we assumed an exponential form of the soil CO2 production function, and relatively shallow (20-30 cm) average production depths. Overall, we find that respiration rates are the main predictor of the δ13C value of soil carbonate in the Atacama, whereas the fraction C3 to C4 biomass at individual sites has a subordinate influence. The high average δ13C value (+4.1‰) of carbonate from the driest study sites indicates it formed—perhaps abiotically—in the presence of pure atmospheric CO218O (VPDB) values from soil carbonate range from −5.9‰ at the wettest sites to +7.3‰ at the driest and show much less regular variation with elevation change than δ13C values. δ18O values for soil carbonate predicted from local temperature and δ18O values of rainfall values suggest that extreme (>80% in some cases) soil dewatering by evaporation occurs at most sites prior to carbonate formation. The effects of evaporation compromise the use of δ18O values from ancient soil carbonate to reconstruct paleoelevation in such arid settings.  相似文献   

15.
The sulfur isotopic composition of sulfides and barite from hydrothermal deposits at the Valu Fa Ridge back-arc spreading center in the southern Lau Basin has been investigated. Sulfide samples from the White Church area at the northern Valu Fa Ridge have δ34S values averaging +3.8‰ (n= 10) for bulk sphalerite-chalcopyrite mineralization and +4.8‰ for pyrite (n= 10). Barite associated with the massive sulfides exhibits an average of +20.7‰ (n= 10). Massive sulfides from the active Vai Lili hydrothermal field at the central Valu Fa Ridge have much higher δ34S ratios averaging +8.0‰ for bulk sphalerite-chalcopyrite mineralization (n= 5), +9.3‰ for pyrite samples (n= 5), and +8.0‰ and +10.9‰ for a chalcopyrite and a sphalerite separate, respectively. The isotopic composition of barite from the Vai Lili field is similar to that of barite from the White Church area and averages +21.0‰ (n= 8). Sulfide and barite samples from the Hine Hina area at the southern Valu Fa Ridge have δ34S values that are considerably lighter than those observed for samples from the other areas and average −4.9‰ for pyrite (n= 9), −4.0 and −5.7‰ for two samples of sphalerite-chalcopyrite intergrowth, and −3.4‰ for a single chalcopyrite separate. The total spread in the isotopic composition of sulfides from Vai Lili and Hine Hina is more than 20‰ over a distance of less than 30 km. The δ34S values of sulfides at Hine Hina are the lowest values so far reported for volcanic-hosted polymetallic massive sulfides from the modern seafloor. Barite from the Hine Hina field also has unusually light sulfur with δ34S values of +16.1 to +16.7‰ (n= 5). Isotopic compositions of the sulfides at Hine Hina indicate a dramatic decrease in δ34S from ordinary magmatic values and, in the absence of biogenic sulfur and/or boiling, imply a unique 34S-depleted source of probable magmatic origin. Sulfide-barite mineralization in the Hine Hina area is associated with a distinctive alteration assemblage consisting of cristobalite, pyrophyllite, kaolinite, opal-CT, talc, pyrite, native sulfur, and alunite. Similar styles of alteration are typically known from high-sulfidation epithermal systems on land. Alunite-bearing, advanced argillic alteration in the Hine Hina field confirms the role of acidic, volatile-rich fluids, and a δ34S value of +10.4‰ for the sulfur in the alunite is consistent with established kinetic isotope effects which accompany the disproportionation of magmatic SO2 into H2S and H2SO4. The Hine Hina field occurs near the propagating tip of the Valu Fa back-arc spreading center (i.e., dominated by dike injections and seafloor eruptions) and therefore may have experienced the largest contribution of magmatic volatiles of the three fields. The sulfur isotopic ratios of the hydrothermal precipitates and the presence of a distinctive epithermal-like argillic alteration in the Hine Hina field suggest a direct contribution of magmatic vapor to the hydrothermal system and support the concept that magmatic volatiles may be an important component of some volcanogenic massive sulfide-forming hydrothermal systems. Received: 16 January 1997 / Accepted: 28 October 1997  相似文献   

16.
17.
18.
19.
We used positive thermal ionization mass spectrometry (PTIMS) to generate high precision δ11B records in Porites corals of the mid-late Holocene from the South China Sea (SCS). The δ11B values of the Holocene corals vary significantly, ranging from 22.2‰ to 25.5‰. The paleo-pH records of the SCS, reconstructed from the δ11B data, were not stable as previously thought but show a gradual increase from the Holocene thermal optimal and a sharp decrease to modern values. The latter is likely caused by the large amount of anthropogenic CO2 emissions since the Industrial Revolution but variations of atmospheric pCO2 cannot explain the pH change of the SCS before the Industrial Revolution. We suggest that variations of monsoon intensity during the mid-late Holocene may have driven the sea surface pH increase from the mid to late Holocene. Results of this study indicate that the impact of anthropogenic atmospheric CO2 emissions may have reversed the natural pH trend in the SCS since the mid-Holocene. Such ocean pH records in the current interglacial period can help us better understand the physical and biological controls on ocean pH and possibly predict the long-term impact of climate change on future ocean acidification.  相似文献   

20.
Three categories of fibrous calcite from early to middle Caradoc platform-marginal buildups in east Tennessee can be delineated using cathodoluminescent microscopy, minor element chemistry and stable C-O isotopic composition. Bright luminescent fibrous cement has elevated Mn (>1000 p.p.m.), negative δ13C and intermediate δ18O values relative to other types of fibrous calcite. This cement reflects fibrous calcite that interacted with reducing Mn-rich fluids. Dully luminescent fibrous cement has elevated Fe (>400 p.p.m.), positive δ13C and negative δ18O values relative to other fibrous cements. This cement was stabilized by burial fluids. Nonluminescent fibrous cement has low Mn and Fe (generally below 400 p.p.m.) and positive δ13C and δ18O values relative to other types of fibrous calcite. The latter cement is interpreted to be the best material for determining the isotopic composition of calcite precipitated in equilibrium with early to middle Caradoc seawater, which is δ13C=1% PDB and δ18O=?4 to ?5‰ PDB. Results from this study and Ashgillian brachiopods indicate that the average δ18O composition of the Ordovician ocean, during nonglacial periods, was probably never more negative than ?3‰ SMOW. Assuming an Ordovician seawater δ18O value of ?1‰ SMOW, Holston Formation fibrous cements would have precipitated at temperatures between 27 and 36 °C, which is near the upper temperature limit for metazoans. A seawater δ18O value of ?2‰ SMOW yields temperatures ranging from 23 to 31 °C, while a ?3‰ SMOW value yields temperatures of 18–26 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号