首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Dachang tin-polymetallic district, Guangxi, China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite (91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite. The ore minerals mainly consist of sphalerite, arsenopyrite, pyrrhotite, galena, chalcopyrite, and minor molybdenite. However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma (MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district’s biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions (206Pb/204Pb = 18.417–18.594, 207Pb/204Pb = 15.641–15.746, and 208Pb/204Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma.  相似文献   

2.
The Baishan Mo–Re deposit is located in the eastern section of the eastern Tianshan orogenic belt, NW China. The deposit has a grade of 0.06% Mo and a high content of rhenium of 1.4 g/t. Rhenium and osmium isotopes in sulfide minerals from the Baishan deposit are used to determine the age of mineralization. Rhenium concentrations in molybdenite samples are between 74 and 250 g/g. Analysis of eight molybdenite samples yields an isochron age of 224.8±4.5 Ma (2). Pyrite samples have rhenium and osmium concentrations varying in the range 33.4–330.6 ng/g and 0.08–0.81 ng/g, respectively. Isotope data on seven pyrite samples yield an isochron age of 225±12 Ma (2) on the 187Re/188Os versus 187Os/188Os plot and an age of 233±14 Ma (2) on the 187Os versus 187Re correlation diagram. The ages of molybdenite and pyrite are consistent within the analytical errors. Combined with field observations, the data indicate that Mo–Re mineralization in the Baishan deposit is produced by a magmatic-hydrothermal event in an intracontinental extensional setting after late Paleozoic orogeny. The initial 187Os/188Os ratio of pyrite is 0.3±0.07. The 34S values of molybdenite vary from +0.5 to +3.6. Both data indicate that mineralization is derived mainly from a mantle source.Editorial handling: J. Richards  相似文献   

3.
The Zhongdian area in Yunnan, southwestern China, located at the southern end of the Yidun volcano-magmatic arc that was formed during the Triassic westward subduction of the Gaze-Litang Ocean, hosts numerous Triassic large porphyry and skarn deposits. The arc suffered Jurassic to Cretaceous arc-continental orogenic collision and Cenozoic intracontinental strike-slip shearing. The Hongshan Cu (–Mo–Pb–Zn) deposit is potentially a large deposit and contains two ore types: 1) predominant layered skarn Cu–(Pb–Zn) ores along marble-hornfels contacts; and 2) minor crosscutting vein-type Cu–Mo mineralization. Previous research forwards a two-stage genetic model without sufficient dating evidence, supposing the skarn mineralization is related to the Triassic calc-alkalic intrusions and the vein-type mineralization related to Cretaceous quartz monzonite porphyries. Re–Os dating of molybdenite from vein-type ores and quartz monzonite porphyries and that of pyrrhotite from skarn ores are presented here to constrain the mineralization age and rebuild the genetic model. Analyses of eight molybdenite samples yield an isochron age of 79.7 ± 3.1 Ma (MSWD = 9.2) for the vein-type mineralization and a model age of 81.9 ± 1.1 Ma for the quartz monzonite porphyries. Isotope data on seven pyrrhotite samples from the skarn ores yield an isochron age of 79 ± 16 Ma z(MSWD = 8.4). The Re–Os ages for the two ore types are concordant within analytical errors, indicating that the Hongshan deposit was formed in the Late Cretaceous. Elevated Re contents in molybdenite (13.65 to 63.91 μg/g) and extremely radiogenic initial 187Os/188Os ratios in pyrrhotite (0.7673 to 0.8184; weighted average 0.796 ± 0.038), together with elevated γOs values in pyrrhotite (507 to 547; average 528) imply a significant crustal component in the ore-forming materials that was likely derived from a lower crustal reservoir. Combined with the tectonic evolution of the Zhongdian area and geochemical characteristics of corresponding intrusions, the ages of mineralization obtained in this study indicate that the Hongshan deposit was formed in a post-collision setting with a genetic relationship to the emplacement of the quartz monzonite porphyry. These results provide significant new information for the study and exploration of the Late Cretaceous metallogeny in the Zhongdian area.  相似文献   

4.
《International Geology Review》2012,54(13):1616-1625
We report new zircon U–Pb and pyrite Re–Os geochronological studies of the Yinjiagou poly-metallic deposit, sited along the southern margin of the North China Craton (SMNCC). In this deposit, pyrite, the most important economic mineral, is intergrown/associated with Mo, Cu, Au, Pb, Zn, and Ag. Prior to our new work, the age of chalcopyrite–pyrite mineralization was known only from its spatial relationship with molybdenite mineralization and with intrusions of known ages. The U–Pb and Re–Os isotope systems provide an excellent means of dating the mineralization itself and additionally place constraints on the ore genesis and metal source. Zircons separated from the quartz–chalcopyrite–pyrite veins include both detrital and magmatic groups. The magmatic zircons confine the maximum age of chalcopyrite–pyrite mineralization to 142.0 ± 1.5 Ma. The Re–Os results yield an age of 141.1 ± 1.1 Ma, which represents the age of the chalcopyrite–pyrite mineralization quite well. The common Os contents are notably low (0.5–20.1 ppt) in all samples. In contrast, the Re contents vary considerably (3.0–199.2 ppb), most likely depending on intensive boiling, which resulted in an increase of Re within the pyrite. This study demonstrates that the main chalcopyrite–pyrite mineralization occurred late in the magmatic history and was linked to a deeper intrusion involving dominant mantle-derived materials. This mineralization event might be related to the Early Cretaceous lithospheric destruction and thinning of the SMNCC.  相似文献   

5.
The Miocene porphyry Cu–(Mo) deposits in the Gangdese orogenic belt in southern Tibet were formed in a post-subduction collisional setting. They are closely related to the Miocene adakite-like porphyries which were probably derived from a thickened basaltic lower crust. Furthermore, mantle components have been considered to have played a crucial role in formation of these porphyry deposits (Hou et al. Ore Geol Rev 36: 25–51, 2009; Miner Deposita doi:10.1007/s00126-012-0415-6, 2012). In this study, we present zircon Hf isotopes and molybdenite Re–Os ages on the newly discovered Gangjiang porphyry Cu–Mo deposit in southern Tibet to constrain the magma source of the intrusions and the timing of mineralization. The Gangjiang porphyry Cu–Mo deposit is located in the Nimu ore field in the central Gangdese porphyry deposits belt, southern Tibet. The copper and molybdenum mineralization occur mainly as disseminations and veins in the overlapped part of the potassic and phyllic alteration zones, and are predominantly hosted in the quartz monzonite stock and in contact with the rhyodacite porphyry stock. SIMS zircon U–Pb dating of the pre-mineral quartz monzonite stock and late intra-mineral rhyodacite porphyry yielded ages of 14.73?±?0.13 Ma (2σ) and 12.01?±?0.29 Ma (2σ), respectively. These results indicate that the magmatism could have lasted as long as about 2.7 Ma for the Gangjiang deposit. The newly obtained Re–Os model ages vary from 12.51?±?0.19 Ma (2σ) to 12.85?±?0.18 Ma (2σ) for four molybdenite samples. These Re–Os ages are roughly coincident with the rhyodacite porphyry U–Pb zircon age, and indicate a relatively short-lived episode of ore deposition (ca. 0.3 Ma). In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS indicate that the ε Hf(t) values of zircons from a quartz monzonite sample vary from +2.25 to +4.57 with an average of +3.33, while zircons from a rhyodacite porphyry sample vary from +5.53 to +7.81 with an average of +6.64. The Hf data indicate that mantle components could be partly involved in the deposit formation, and that mantle contributions might have increased over time from ca. 14.7 to 12.0 Ma. Combined with previous works, it is proposed that the Gangjiang deposit could have resulted from the convective thinning of the lithospheric root, and the input of upper mantle components into the magma could have played a key role in the formation of the porphyry deposits in the Miocene Gangdese porphyry copper belt in the Tibetan Orogen.  相似文献   

6.
Apparent Re–Os ages of some magmatic sulfide ore deposits are older than the zircon and baddeleyite U–Pb ages which are interpreted as the formation age of the host intrusions. The Jinchuan Ni–Cu–PGE deposit of China, the world's third largest, is such a case. We report apparent Re–Os isochron ages of 1117 ± 67 Ma, 1074 ± 120 Ma and 867 ± 75 Ma with initial 187Os/188Os ratios of 0.120 ± 0.012, 0.162 ±0.017 and 0.235 ± 0.027 for disseminated ores, sulfides from the disseminated ores and massive ores from Jinchuan, respectively. Using these data and Re–Os ages from the literature, we find that the oldest apparent Re–Os age and lowest initial Os isotope ratio are from disseminated ores which contain small amounts of sulfide minerals, the highest initial Os isotope ratios and youngest apparent Re–Os ages, consistent with the zircon and baddeleyite U–Pb ages, are from massive ores containing 90–100 modal% sulfide, and net-textured ores with about 25 modal% sulfides yield apparent Re–Os ages and initial Os ratios intermediate between those of the disseminated and massive ores.Because Os diffusion between sulfides is inhibited by the intervening silicates even at high temperatures, re-equilibration did not occur in the disseminated ore and the samples retained the Os ratios of the contaminated magma, leading to geologically meaningless ages that are older than the formation age of the rocks. While Os-bearing sulfide minerals and magnetite show low closure temperatures of Os diffusion and the sulfide minerals in the massive ore are closely connected with each other, facilitating fast diffusion of Os, re-equilibration of Os was achieved during cooling of the ore from about 850 °C after the segregation to about 400 °C. Thus, an age corresponding to the formation time and an elevated initial Os ratio were yielded by the massive ore. Os isotopes in the net-textured ore behave in the way intermediate between the disseminated and massive ores. Pb isotope data support the Os results. Disseminated ores have heterogeneous Pb isotope ratios whereas Pb in the massive ores is more uniform, consistent with Pb isotopic equilibration in the massive ores, but not in the disseminated ores.  相似文献   

7.
The Zhifang Mo deposit is located in the northeastern Qinling Orogen along the southern margin of the North China Craton. The deposit represents a quartz-vein system hosted in the Mesoproterozoic Xiong'er Group volcanic rocks. We identify three hydrothermal stages (early, middle and late), characterized by veinlets of quartz–pyrite, quartz–molybdenite–pyrite–chalcopyrite–galena–sphalerite, and quartz–carbonate assemblages, respectively. Five molybdenite samples from the Zhifang deposit yield Re–Os ages ranging from 241.2 ± 1.6 Ma to 247.4 ± 2.5 Ma, with an isochron age of 246.0 ± 5.2 Ma (2σ, MSWD = 7.4), and a weighted mean age of 243.8 ± 2.8 Ma (2σ, MSWD = 5.5). The Re–Os age shows that the Mo mineralization occurred during the Indosinian Orogeny, and suggests that the mineralization is unrelated to the Yanshanian magmatism or the Paleo-Mesoproterozoic volcanic–hydrothermal event.This study also reports a new Sr–Nd–Pb isotope dataset from ore sulfides in an attempt to constrain the source of the ore-forming fluids. Ten sulfide samples from middle stage of the Zhifang Mo deposit yield ISr(t) ratios of 0.710286–0.711943, with an average of 0.711004; εNd(t) values between − 19.5 and − 14.8, with an average of − 16.7; and (206Pb/204Pb)i, (207Pb/204Pb)i and (208Pb/204Pb)i ratios of 17.126–17.535, 15.374–15.466 and 37.485–37.848, with averages of 17.380, 15.410 and 37.631, respectively. One pyrite from the early stage yield ISr(t) of 0.722711–0.722855, with an average of 0.722783, which is higher than those of the middle stage sulfides and suggests equilibration with wallrocks. The εNd(t) values are in the range of − 17.3 to − 16.6 with a mean at − 17.0; and (206Pb/204Pb)i, (207Pb/204Pb)i and (208Pb/204Pb)i ratios are 17.386, 15.405 and 37.622, respectively. The ore sulfides show higher Pb-isotope ratios, higher εNd(t) and lower ISr(t) values than the host rocks. The results suggest that the ore-forming fluids had lower ISr(t), and higher εNd(t) values than the ore sulfides, and were possibly sourced from the Dengfeng Complex. The southward subduction of the North China Craton beneath the Huaxiong Block during the Triassic was possibly responsible for the formation of the Waifangshan orogenic Mo system.  相似文献   

8.
The Shuangqing Fe–Pb–Zn–Cu deposit is located in the Xiangride County of Qinghai Province, China, and is a typical example of skarn deposits in the East Kunlun Mountains. Skarnization and mineralization took place along the contact zone between Carboniferous carbonates and the concealed Triassic plagiogranite. LA–ICP–MS U–Pb dating of zircons from the plagiogranite has yielded ages of 227.2 ± 1.0 and 226.54 ± 0.97 Ma, which are interpreted as the emplacement age of the plagiogranite. Molybdenites separated from ore-bearing quartz-veins yielded a Re–Os isochron age of 226.5 ± 5.1 Ma. These age data confirm that both intrusion and related skarn mineralization initiated at ~ 227 Ma. Re contents of molybdenite, zircon εHf(t) and 176Hf/177Hf values fall into the ranges 3.31 to 6.58 μg/g, − 8.6 to − 0.0, and 0.282403 to 0.28263850, respectively. The timing of the Shuangqing Fe–Pb–Zn–Cu mineralization coincided with a major change in the stress field in East Kunlun from transpression to extension, related to the partial melting of thickening crustal materials in a post-collisional tectonic setting.  相似文献   

9.
The Yinan gold deposit in the Luxi area of Shandong Province in northeastern China is a skarn-type ore deposit. In this article, we present results from sulphur, lead, carbon–oxygen, and helium–argon isotope chemistry to characterize the ore genesis and source features. We also present rhenium–osmium ages from molybdenite to evaluate the timing of ore formation. The δ34S values of pyrite from the ore deposit range from 0.7‰ to 5.60‰ with a mean at 2.70‰, close to mantle and meteorite sulphur. Among Pb isotopes, 206Pb/204Pb values range from 18.375 to 18.436, 207Pb/204Pb values from 15.694 to 15.8, and 208Pb/204Pb values from 38.747 to 39.067. The δ13C values of calcite associated with the ores range from ?0.2‰ to ?0.5‰ and their δ18O values show variation from 9.4‰ to 12.6‰, suggesting a mixed fluid source. The 3He/4He and 40Ar/36Ar ratios of fluids trapped in pyrite are in the range of 0.27–1.11 Ra and 439.4–826, respectively, with calculated proportion of the mantle-derived He ranging from 3.25% to 14.03% and atmosphere argon ranging from 35.8% to 67.3%. The data suggest that the ore-forming fluids were derived from the crust and were mixed with a distinct contribution of mantle helium. The Re and Os values vary from 32 × 10?6 to 93.02 × 10?6 and from 0.01 × 10?9 to 0.34 × 10?9, respectively. The model ages of molybdenite range from 126.96 ± 1.82 Ma to 129.49 ± 2.04 Ma, with a weighted mean age of 128.08 ± 0.75 Ma and isochron age of 130.3 ± 3 Ma. These ages are close to the age of the associated quartz diorite porphyrite pluton, suggesting a close relationship between Cretaceous magmatism and metallogeny in NE China. A comparison of the Yinan gold deposit in the Luxi area with those of the Jiaodong area shows that the contrast in metallogenic features between the two are linked with the tectonic and geodynamic history.  相似文献   

10.
The Eastern Tianshan Orogenic Belt of the Central Asian Orogenic Belt and the Beishan terrane of the Tarim Block, NW China, host numerous Fe deposits. The Cihai Fe deposit (>90 Mt at 45.6 % Fe) in the Beishan terrane is diabase-hosted and consists of the Cihai, Cinan, and Cixi ore clusters. Ore minerals are dominantly magnetite, pyrite, and pyrrhotite, with minor chalcopyrite, galena, and sphalerite. Gangue minerals include pyroxene, garnet, hornblende and minor plagioclase, biotite, chlorite, epidotite, quartz, and calcite. Pyrite from the Cihai and Cixi ore clusters has similar Re–Os isotope compositions, with ~14 to 62 ppb Re and ≤10?ppt common Os. Pyrrhotite has ~5 to 39 ppb Re and ~0.6 ppb common Os. Pyrite has a mean Re–Os model age of 262.3?±?5.6 Ma (n?=?13), in agreement with the isochron regression of 187Os vs. 187Re. The Re–Os age (~262 Ma) for the Cihai Fe deposit is within uncertainty in agreement with a previously reported Rb–Sr age (268?±?25 Ma) of the hosting diabase, indicating a genetic relationship between magmatism and mineralization. Magnetite from the Cihai deposit has Mg, Al, Ti, V, Cr, Co, Ni, Mn, Zn, Ga, and Sn more elevated than that of typical skarn deposits, but both V and Ti contents lower than that of magmatic Fe–Ti–V deposits. Magnetite from these two ore clusters at Cihai has slightly different trace element concentrations. Magnetite from the Cihai ore cluster has relatively constant trace element compositions. Some magnetite grains from the Cixi ore cluster have higher V, Ti, and Cr than those from the Cihai ore cluster. The compositional variations of magnetite between the ore clusters are possibly due to different formation temperatures. Combined with regional tectonic evolution of the Beishan terrane, the Re–Os age of pyrite and the composition of magnetite indicate that the Cihai Fe deposit may have derived from magmatic–hydrothermal fluids related to mafic magmatism, probably in an extensional rift environment.  相似文献   

11.
12.
The Weibao copper–lead–zinc deposit, located in the eastern part of the Qimantagh area, East Kunlun Orogenic Belt (EKOB), consists of three skarn ore blocks known as Weixi, Main and Weidong from west to east. The mineralization within the Weibao Cu–Pb–Zn deposit is hosted by the Mesoproterozoic Langyashan Formation. In this study, we describe for the first time basaltic lavas that intruded into this host sequence and chronological, isotopic, major and trace element data of these volcanic rocks are presented here to constrain their eruption age as well as the tectonic setting. Two basaltic lava samples yield sensitive, high-resolution ion-microprobe (SHRIMP) U–Pb zircon ages of 393.0 ± 5.5 Ma–392.0 ± 5.0 Ma, indicating that volcanic rocks in the Weibao deposit erupted in Middle Devonian. The majority of the volcanic rocks have compositions characterized by high potassium, light rare earth element (LREE)-enriched patterns in chondrite-normalized rare earth elements (REE) diagrams, and evident enrichment of Rb, Ba and K and depletion of Th, U, Nb and Ta contents in primitive mantle-normalized patterns, although the degrees of enrichment and depletion are variable. These characteristics of major and trace element data highlight a hornblende-dominated fractionation during ascent of magmas. The εHf(T) values of zircons are relatively scattered and slightly enriched, ranging from −2.6 to +7.5. Modelling the features of the major, trace and isotopic element data indicates a hybrid origin involving combined depleted mantle (and hence asthenospheric mantle) and melts and/or fluids inherited from an early subduction event. Besides, these geochronological and geochemical data, together with previously published data in the EKOB, suggest that the Weibao basaltic lavas formed in a post-collisional setting, and that the Qimantagh area underwent strong interactions between mantle and crust in Early Paleozoic–Middle Devonian.  相似文献   

13.
The footwall volcanic rocks of the Ordovician Tanjianshan Group in the world-class Xitieshan Pb–Zn deposit have experienced prolonged arc volcanism followed by strong metamorphism and deformation. This has resulted in a complex thermal history and led to ambiguity in interpretation of zircon geochronological results. An integrated study involving textural characterization, CL imaging, trace element analysis, Ti-in-zircon thermometry and LA-ICPMS U–Pb dating has provided tight constraints on the age and genesis of the zircon groups in the volcanic rocks. The temperature of metamorphism and deformation indicated by metacryst minerals and micro-structures in the volcanic rocks ranges from 550 to 650 °C, which partially overlaps with the lower temperature range of zircon crystallization (600–750 °C) calculated using the Ti-in-zircon thermometer. Cathodoluminescence images and trace element compositions confirm a magmatic origin for the zircons, which have also been variably altered by metamorphic fluids. Two ranges of U–Pb ages, 475–470 Ma and 460–450 Ma, have been obtained on typical magmatic zircons and are interpreted to represent pre-mineralization arc volcanism in the Xitieshan deposit. A younger age group of 440–430 Ma for the fluid-modified zircons is considered to record post-ore metamorphism during the North Qadaim Orogeny. Thus, we propose that the original exhalative ores at the Xitieshan Pb–Zn deposit formed at 450–440 Ma.  相似文献   

14.
Determining the precise timing of mineralization and mineralizing events is crucial to understanding regional mineralizing and other geological events and processes. However, there are a number of mineralogical and analytical limitations to the approaches developed for the absolute dating of mineralizing systems, such as molybdenite Re–Os and zircon and garnet U–Pb, among others. This means that the precise and accurate dating of mineralizing systems that may not contain minerals suitable for dating using existing approaches requires the development of new (and ideally in situ) approaches to absolute dating. This study outlines a new in situ analytical approach that has the potential to rapidly and accurately evaluate the timing of ore formation. Our study employs a novel application of in situ scheelite U–Pb dating analysis using laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) and samples from the Qiaomaishan deposit, a representative example of skarn mineralization within the Xuancheng ore district of eastern China. Our approach to scheelite dating of the deposit is verified by cross-comparison to dating of cogenetic garnet and apatite, proving the effectiveness of this approach. Our new approach to dating of scheelite-bearing geological systems is rapid, cheap, requires little sample preparation, and is undertaken in situ, allowing crucial geological and mineralogical context to be retained during analysis. The approaches outlined here not only allow the determination of the absolute timing of formation of the Qiaomaishan deposit through the U–Pb dating of scheelite [138.6 ± 3.2 Ma, N = 39, mean square weighted deviation (MSWD) = 1.17], garnet (138.4 ± 1.0 Ma, N = 40, MSWD = 1.3), and apatite (139.6 ± 3.3 Ma, N = 35, MSWD = 0.72), but also further supports the theoretical genetic links between this mineralization and the emplacement of a proximal porphyritic granodiorite intrusion (zircon U–Pb age: 139.5 ± 1.2 Ma, N = 23, MSWD = 0.3). Moreover, our research indicates that the higher the concentrations of U within scheelite, the more suitable that scheelite is for U–Pb dating, with the main factor controlling the U content of scheelite seemingly being variations in oxygen fugacity conditions. This novel approach provides a potentially powerful tool, not just for the dating of skarn systems but also with potential applications in orogenic and intrusion-related gold, porphyry W–Mo, and greisen mineralizing systems as well as other scheelite-bearing geological bodies or geological systems.  相似文献   

15.
The Donggebi Mo deposit located in NW China is a newly discovered, large, stockwork-type Mo deposit with ore reserves of 441 Mt @ 0.115% Mo. Ore bodies occur along faults and fractures at the external contact zone of a concealed porphyritic granite and volcaniclastic rocks of Gandun Formation, spatially associated with a fine-grained granite. Mo-bearing veins are mainly assemblages of volatile-rich K-feldspar-quartz-oxide, K-feldspar-quartz, polymetallic sulfides and calcite-quartz. Zircon LA-ICP-MS U–Pb dating yielded concordant ages of 234.6 ± 2.7 Ma and 231.8 ± 2.4 Ma for the porphyritic granite and the fine-grained granite, respectively; molybdenite Re–Os dating gave an isochron age of 234.0 ± 2.0 Ma. These ages further confirm an important and extensive magmatic-metallogenic event in Eastern Tianshan during the Triassic Indosinian orogeny. Whole-rock major and trace element analyses indicate that the granitic rocks associated with Mo mineralization are high in Si, K, Rb, Th, Nb, Ta, Ga and LREE, but low in P, Ti, Sr and Ba, belonging to high-K calc-alkaline granites with A-type features. Magma was likely derived from the re-melting of thickened lower crust in a post-collision compression environment in the Late Permian, experienced strong crystal fractionation and formed the large Donggebi Mo deposit under an intra-plate extension setting in the Early to Middle Triassic.  相似文献   

16.
The Erlihe Pb–Zn deposit is an important mine of the Pb–Zn metallogenic zone in the South Qinling Orogen. It has been considered a sedimentary exhalative deposit in previous investigations because the ore body occurs concordantly at the transitional location of an upright fold. Re and Os isotopic analyses for paragenetic pyrites with sphalerite and galena from the ore body have been used to determine the timing of mineralization and to trace the source of metallogenic materials. The Re–Os isotopic data of four pyrite samples construct an isochron, yielding a weighted average age of 226±17 Ma (mean square weighted deviation=1.7), which is considered the main mineralization age. A dioritic porphyrite vein sample, showing weaker mineralization, was also dated using the SHRIMP zircon U–Pb isotopic method to constrain the youngest metallogenic age of the ore deposit, because it distributes along a group of tensional joints cutting not only the upright fold in the deposit field, but also the main ore bodies. The dioritic porphyrite sample yields a weighted mean 206Pb/238U age of 221±3 Ma, which is slightly younger than the Re–Os isotopic isochron age of the pyrites, considered as the upper age limit of the mineralization, namely the ending age of the mineralization. The Os isotopic compositions of sulfide minerals distribute within a range between Os isotopic compositions of the crust and the mantle, indicating that the ore deposit can be derived from magma-related fluid, and the metallogenic materials are most likely derived from the mixing source of the crust and the mantle. The Erlihe Pb–Zn deposit and associated dioritic porphyrite vein, important records of Qinling tectonic–magmatism–mineralization activities, were formed during the Triassic collisional orogeny processes.  相似文献   

17.
A recently recognized molybdenum (Mo) metallogenic belt is present within and adjacent to the northern part of the North China Craton (NCC). More than 20 Mo deposits are present in the belt, including the Sadaigoumen and Dacaoping porphyry deposits located in the Fengning region of the northern part of Hebei Province. The Sadaigoumen deposit has a Re–Os molybdenite weighted mean age of 236.5 ± 2.2 Ma (MSWD = 1.4, n = 6), which is more reliable than existing dates and is interpreted as the precise age for formation of the deposit. The Dacaoping Mo deposit is about 100 million years younger, with a Re–Os molybdenite isochron age of 140.1 ± 3.4 Ma (2σ, MSWD = 0.26, n = 5), which is within error of the weighted mean age of 139.4 ± 0.9 Ma. The ages of the two deposits show that there are at least two episodes of Mo porphyry formation in the Fengning region. In combination with the regional geological evolution of this part of the craton margin, we propose that the Triassic Mo event at Sadaigoumen is associated with a collisional event during the closure of the ancient Asian Ocean, whereas the Early Cretaceous Mo event at Dacaoping is associated with lithospheric thinning of the NCC.  相似文献   

18.
A Re–Os isochron age is reported for massive sulfides from near the basal contact of the Radio Hill layered mafic‐ultramafic intrusion in the west Pilbara Craton, Western Australia. The isochron age is 2892 ± 34 Ma (mean square of weighted deviates = 1.06) with an initial 187Os/188Os = 0.1265 ± 0.0028. This age is in agreement with the ages of other nearby layered mafic intrusions that are considered to have a similar geological evolution to the Radio Hill Intrusion.  相似文献   

19.
The Xitian tungsten–tin (W–Sn) polymetallic deposit, located in eastern Hunan Province, South China, is a recently explored region containing one of the largest W–Sn deposits in the Nanling W–Sn metallogenic province. The mineral zones in this deposit comprise skarn, greisen, structurally altered rock and quartz-vein types. The deposit is mainly hosted by Devonian dolomitic limestone at the contact with the Xitian granite complex. The Xitian granite complex consists of Indosinian (Late Triassic, 230–215 Ma) and Yanshanian (Late Jurassic–Early Cretaceous, 165–141 Ma) granites. Zircons from two samples of the Xitian granite dated using laser ablation-inductively coupled mass spectrometer (LA-ICPMS) U–Pb analysis yielded two ages of 225.6 ± 1.3 Ma and 151.8 ± 1.4 Ma, representing the emplacement ages of two episodic intrusions of the Xitian granite complex. Molybdenites separated from ore-bearing quartz-veins yielded a Re–Os isochron age of 149.7 ± 0.9 Ma, in excellent agreement with a weighted mean age of 150.3 ± 0.5 Ma. Two samples of muscovites from ore-bearing greisens yielded 40Ar/39Ar plateau ages of 149.5 ± 1.5 Ma and 149.4 ± 1.5 Ma, respectively. These isotopic ages obtained from hydrothermal minerals are slightly younger than the zircon U–Pb age of 151.8 ± 1.4 Ma of the Yanshanian granite in the Xitian area, indicating that the W–Sn mineralization is genetically related to the Late Jurassic magmatism. The Xitian deposit is a good example of the Early Yanshanian regional W–Sn ore-forming event (160–150 Ma) in the Nanling region. The relatively high Re contents (8.7 to 44.0 ppm, average of 30.5 ppm) in molybdenites suggest a mixture of mantle and crustal sources in the genesis of the ore-forming fluids and melts. Based upon previous geochemical studies of Early Yanshanian granite and regional geology, we argue that the Xitian W–Sn polymetallic deposit can be attributed to back-arc lithosphere extension in the region, which was probably triggered by the break-off of the flat-slab of the Palae-Pacific plate beneath the lithosphere.  相似文献   

20.
《International Geology Review》2012,54(10):1220-1238
Recently, many Mo deposits genetically related to emplacement of Early Cretaceous granites have been found in the Dabie–Qinling belt. A typical intrusion that combines magmatism and metallogenesis, the Bao'anzhai granite, yields a zircon 238U–206Pb age of 123.2 ± 1.1 Ma and a molybdenite Re–Os isochron age of 122.5 ± 2.7 Ma. This granite is characterized by high silica and alkali, but low Mg, Fe, and Ca. It is enriched with light rare earth elements (REEs) and large-ion lithophile elements (LILEs, Rb, K, Th, U) but depleted of heavy REEs, high field strength elements (HFSEs, Nb, Ta, Ti, and Y), and Sr. This high-K granite has medium initial 87Sr/86Sr ratios (0.706518–0.707116) and low initial Pb isotopic ratios [(206Pb/204Pb)i, 16.423–16.699; (207Pb/204Pb)i, 15.285–15.345; (208Pb/204Pb)i, 37.335–37.633], and is characterized by low ?Nd(t) and ?Hf(t) values (?14.92 to??14.22 and??21.67 to??19.19, respectively). These data indicate that this pluton is a high-K calc-alkaline fractionated I-type granitite. It was generated by partial melting of the Yangtze lower crust, which is probably similar to Neoproterozoic TTG-like magmatic rocks at the north Yangtze Block under a non-thickened lower crust environment (<35 km). The ores also have low radiogenic Pb isotopes (206Pb/204Pb, 16.592–17.674; 207Pb/204Pb, 15.300–15.476; 208Pb/204Pb, 37.419–37.911) and low Re content in molybdenite (5.693–10.970 ppm), suggesting a crustal magmatic source for the metallogenic minerals in the Mo deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号