首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
Transient creep of the lithosphere and its role in geodynamics   总被引:1,自引:0,他引:1  
Laboratory experiments with samples of rocks show that at small strains there is transient creep, at which the strain grows with time, and the strain rate decreases. Plate tectonics allows only small strains in the lithospheric plates, so that the lithosphere creep is transient. In geodynamics, the lithosphere is regarded as a cold boundary layer formed by mantle convection. If we assume that the lithosphere has a steady-state creep, which is described by power-law non-Newtonian rheological model, the low effective viscosity of the lower layers of the lithosphere, obtained by data on small-scale postglacial flows, is possible only at high strain rates in these layers. However, the high strain rates in the lithosphere induce large strains that contradict plate tectonics. Transient creep of the lithosphere leads to its mobility at small strains, removing the discrepancy between thermal convection in the mantle and plate tectonics, which holds in the case of power-law rheological model of the lithosphere.  相似文献   

2.
地幔岩石圈热结构差异与中国大陆岩石圈均衡分析   总被引:1,自引:1,他引:0       下载免费PDF全文
单斌  熊熊  郑勇  许厚泽 《地球物理学报》2008,51(4):1058-1065
观测表明,大陆地区存在很多传统均衡模型无法解释的现象,其根本原因在于传统均衡理论中没有考虑地幔岩石圈部分由于热结构差异导致密度差异的影响.本文基于岩石圈尺度的质量平衡模型研究了中国大陆20个构造单元地壳及地幔岩石圈对地形海拔的贡献,以及各块体的均衡状态.计算结果表明,在一些地区,如塔里木盆地、北山和柴达木盆地,尽管岩石圈均衡模型和Airy模型得到了一致的海拔值,但岩石圈均衡模型更能体现均衡过程的物理本质;除青藏高原造山带外的多数块体,岩石圈均衡模型的计算结果更接近观测海拔和地表垂直运动状态;总体上,考虑地幔岩石圈热结构影响后,中国大陆各地区的均衡结果普遍优于传统的均衡模型.通过对均衡状态分析,我们得到以下主要结论:(1)构造稳定地区均衡程度较高;(2) 青藏高原及周边造山带现今地壳运动主要为区域构造过程及深部动力学过程所控制,均衡调整过程不是主要控制因素;(3) 现今地壳垂直运动比较明显的块体处于均衡调整阶段,地表垂直运动的大小反映了该区所受的均衡力作用的程度;(4) 构造稳定地区基于岩石层均衡的理论计算海拔与观测海拔之差值和现今地壳垂直运动速率有较好的相关性,据此我们可以通过均衡分析研究构造块体的运动趋势和动力学性质;(5) 地幔热结构对现今地形、海拔及地壳垂直运动有显著影响,在处理均衡问题时,地幔岩石圈热结构是我们必须考虑的重要因素.  相似文献   

3.
由试验均衡的理论出发,得到了该区的均衡响应函数并建立了复合补偿模式。地形高度对重力场的影响很复杂,波长小于300km的地形起伏具有偏高的均衡响应值。 局部补偿是华北地区的主要补偿机制,所占比例达90%。区域补偿的等效弹性板厚度偏小,仅18km, 表明了华北地壳破裂程度严重和下地壳流变性突出。 均衡重力异常具有块体分布和均衡调整方向同新生代构造运动方向不完全符合等特点,其中一些成分是由于表浅层地质体的非均匀载荷所造成,不能简单地归因于欠补偿或过补偿。均衡异常的垂直导数分布清晰地揭示了华北地区几条重要的断块分界线。从深部构造上看,均衡补偿过程发生在下地壳特别是上地幔中。本文从均衡的角度探讨了地震危险性。   相似文献   

4.
Analysis of results of laboratory studies on creep of mantle rocks, data on seismic wave attenuation in the mantle, and rheological micromechanisms shows that the universal, i.e., relevant to all time scales, rheological model of the mantle can be represented as four rheological elements connected in series. These elements account for elasticity, diffusion rheology, high temperature dislocation rheology, and low temperature dislocation rheology. The diffusion rheology element is described in terms of a Newtonian viscous fluid. The high temperature dislocation rheology element is described by the rheological model previously proposed by the author. This model is a combination of a power-law non-Newtonian fluid model for stationary flows and the linear hereditary Andrade model for flows associated with small strains. The low temperature dislocation rheology element is described by the linear hereditary Lomnitz model.  相似文献   

5.
Viscosity is a fundamental property of the mantle which determines the global geodynamical processes. According to the microscopic theory of defects and laboratory experiments, viscosity exponentially depends on temperature and pressure, with activation energy and activation volume being the parameters. The existing laboratory measurements are conducted with much higher strain rates than in the mantle and have significant uncertainty. The data on postglacial rebound only allow the depth distributions of viscosity to be reconstructed. Therefore, spatial distributions (along the depth and lateral) are as of now determined from the models of mantle convection which are calculated by the numerical solution of the convection equations, together with the viscosity dependences on pressure and temperature (PT-dependences). The PT-dependences of viscosity which are presently used in the numerical modeling of convection give a large scatter in the estimates for the lower mantle, which reaches several orders of magnitude. In this paper, it is shown that it is possible to achieve agreement between the calculated depth distributions of viscosity throughout the entire mantle and the postglacial rebound data. For this purpose, the values of the volume and energy of activation for the upper mantle can be taken from the laboratory experiments, and for the lower mantle, the activation volume should be reduced twice at the 660-km phase transition boundary. Next, the reduction in viscosity by an order of magnitude revealed at the depths below 2000 km by the postglacial rebound data can be accounted for by the presence of heavy hot material at the mantle bottom in the LLSVP zones. The models of viscosity spatial distribution throughout the entire mantle with the lithospheric plates are presented.  相似文献   

6.
The Southern Granulite Terrain of India, formed through an ancient continental collision and uplift of the earth’s surface, was accompanied by thickening of the crust. Once the active tectonism ceased, the buoyancy of these deep crustal roots must have supported the Nilgiri and Palani-Cardamom hills. Here, the gravity field has been utilized to provide new constraints on how the force of buoyancy maintains the state of isostasy in the Southern Granulite Terrain. Isostatic calculations show that the seismically derived crustal thickness of 43–44 km in the Southern Granulite Terrain is on average 7–8 km more than that required to isostatically balance the present-day topography. This difference cannot be solely explained applying a constant shift in the mean sea level crustal thickness of 32 km. The isostatic analysis thus indicates that the current topography of the Southern Granulite Terrain is overcompensated, and about 1.0 km of the topographic load must have been eroded from this region without any isostatic readjustment. The observed gravity anomaly, an order of magnitude lower than that expected (−125 mGal), however, shows that there is no such overcompensation. Thermal perturbations up to Pan-African, present-day high mantle heat flow and low Te together negate the possible resistance of the lithosphere to rebound in response to erosional unloading. To isostatically compensate the crustal root, compatible to seismic Moho, a band of high density (2,930 kg m−3) in the lower crust and low density (3,210 kg m−3) in the lithospheric mantle below the Southern Granulite Terrain is needed. A relatively denser crust due to two distinct episodes of metamorphic phase transitions at 2.5 Ga and 550 Ma and highly mobilized upper mantle during Pan-African thermal perturbation reduced significantly the root buoyancy that kept the crust pulled downward in response to the eroded topography.  相似文献   

7.
The rheology of the lower mantle of the Earth is examined from the viewpoint of solid state physics. Recent developments in high-pressure research suggest that the lower mantle contains a considerable amount of (Mg, Fe)O with Fe/Mg + Fe = 0.2–0.3. The pressure and temperature dependences of diffusion in (Mg, Fe)O are estimated by the theory of diffusion in ionic solids. Of the materials composing the lower mantle, (Mg, Fe)O may be the “softest”, and therefore the rheology of the lower mantle may be that of (Mg, Fe)O, unless the framework effect is important.Temperatures in the lower mantle are inferred from the depths of phase transitions and the melting temperatures of the core materials. A thermal boundary layer at the base of the mantle is suggested. The physical mechanisms of creep are examined based on a grain size-stress relation and non-Newtonian flow is shown to be the dominant flow mechanism in the Earth's mantle.The effective viscosity for the temperature models, with and without the thermal boundary layer, is calculated for constant stress and constant strain rate (with depth). For constant strain rate, which may be appropriate for discussing the mechanics of descending slabs, the increase in effective viscosity with depth is smaller than for the constant-stress case, which may be appropriate for discussing the flow induced by the surface motion of plates.The relatively small depth gradient of viscosity, for constant strain rate, suggests that the lower mantle could also participate in convection. The effective viscosity increases with depth, however, by at least 102 to 103 from the top to the bottom of the lower mantle, for a reasonable range of activation volumes and temperatures. There will be a low-viscosity layer at the base of the mantle, in contrast to the high-viscosity layer at the top of the mantle (plates), if a thermal boundary layer is present. The constant Newtonian viscosity inferred from rebound data may be an apparent feature resulting from the difference in deformation mechanisms between isostatic rebound and large-scale flow.  相似文献   

8.
Inferences on the rheology of the mantle based on theoretical and experimental rate equations for steady state creep are discussed and compared with results from geophysical models. The radial increase of viscosity by one to three orders of magnitude across the mantle, required by inversion of postglacial rebound and geodynamic data, is confirmed by microphysical models based on the estimation of continuous and discontinuous changes of creep parameters with depth. The upper mantle (viscosity 1020–1021 Pa s) is likely to show non-Newtonian rheology (power-law creep) for average grain sizes larger than 0.1 mm as an order of magnitude. Given the variability of both grain size and stress conditions, local regions of linear rheology can be present. The rheology of transition zone and lower mantle (viscosity 1022–1024 Pa s) cannot be definitely resolved at present. Estimation of creep parameters leads to possible nonlinear or mixed rheology, if grain sizes are not lower than 0.1 mm and flow conditions can be approximated by a constant strain rate of about 10−15 s−1. This conclusion can be modified by different flow conditions (e.g. a decrease in strain rate or constant viscous dissipation). Furthermore, experiments on fine-grained garnetites and perovskite analogues have shown that diffusion creep is predominant at laboratory conditions. However, the pressure dependence of creep in these phases is unknown, and therefore direct extrapolation to lower mantle conditions is necessarily speculative. Lateral variations of viscosity, largest in the upper and lowermost mantle (up to 2–4 orders of magnitude) are predicted by models based on lateral temperature anomalies derived from seismic tomographic models.  相似文献   

9.
The modern concepts of the rheology of viscous mantle and brittle lithosphere, as well as the results of the numerical experiments on the processes in a heated layer with a viscosity dependent on pressure, temperature, and shear stress, are reviewed. These dependences are inferred from the laboratory studies of olivine and measurements of postglacial rebound (glacial isostatic adjustment) and geoid anomalies. The numerical solution of classical conservation equations for mass, heat, and momentum shows that thermal convection with a highly viscous rigid lithosphere develops in the layer with the parameters of the mantle with the considered rheology under a temperature difference of 3500 K, without any special additional conditions due to the self-organization of the material. If the viscosity parameters of the lithosphere correspond to dry olivine, the lithosphere remains monolithic (unbroken). At a lower strength (probably due to the effects of water), the lithosphere splits into a set of separate rigid plates divided by the ridges and subduction zones. The plates submerge into the mantle, and their material is involved in the convective circulation. The results of the numerical experiment may serve as direct empirical evidence to validate the basic concepts of the theory of plate tectonics; these experiments also reveal some new features of the mantle convection. The probable structure of the flows in the upper and lower mantle (including the asthenosphere), which shows the primary role of the lithospheric plates, is demonstrated for the first time.  相似文献   

10.
Some consequences arising from the superposition of flows of two different kinds or scales in a non-Newtonian mantle are discussed and applied to the cases mantle convection plus postglacial rebound flow as well as small- plus large-scale mantle convection. If the two flow types have similar magnitude, the apparent rheology of both flows becomes anisotropic and the apparent viscosity for one flow depends on the geometry of the other. If one flow has a magnitude significantly larger than the other, the apparent viscosity for the weak flow is linear but develops direction-dependent variations about a factorn (n being the power exponent of the rheology). For the rebound flow lateral variations of the apparent viscosity about at least 3 are predicted and changes in the flow geometry and relaxation time are possible. On the other hand, rebound flow may weaken the apparent viscosity for convection. Secondary convection under moving plates may be influenced by the apparent anisotropic rheology. Other mechanisms leading to viscous anisotropy during shearing may increase this effect. A linear stability analysis for the onset of convection with anisotropic linear rheology shows that the critical Rayleigh number decreases and the aspect ratio of the movement cells increases for decreasing horizontal shear viscosity (normal viscosity held constant). Applied to the mantle, this model weakens the preference of convection rolls along the direction of plate motion. Under slowly moving plates, rolls perpendicular to the plate motion seem to have a slight preference. These results could be useful for resolving the question of Newtonian versus non-Newtonian or isotropic versus anisotropic mantle rheology.  相似文献   

11.
Plate tectonics only allows small deformations in the lithospheric plates. The laboratory experiments with the rock specimens show that the creep is transient when the creep strain is at most 1%. Hence, if we assume that the creep strain in the lithospheric plates is below this threshold, the creep is transient. The present paper addresses the role of the elastic, brittle (pseudo-plastic), and creep rheology of the lithosphere during the accumulation of elastic shear strains on the locked faults in the Earth’s crust, i.e., during the process of preparation of the earthquakes. The effective viscosity characterizing the transient creep is lower than that under the steady-state creep and it depends on the characteristic time of a given process. The characteristic duration of the stress and strain accumulation process in the vicinity of the locked faults is a few dozen years. On these time intervals, the thin upper crustal layer behaves as brittle; the underlying layer behaves as elastic (it is just this layer which accommodates stress accumulation leading to the earthquake), whereas the transient creep is predominant in the lower crust and mantle lithosphere. Transient creep entails nonlinear time dependence of the strains arising in the vicinity of the locked fault in the elastic crust. The perturbations in the magnetic field induced by these strains can be treated as the magnetic precursor of the earthquake.  相似文献   

12.
中国大陆及邻区岩石圈三维流变结构   总被引:15,自引:3,他引:12       下载免费PDF全文
依据地震波速得到的上地幔温度和气象台站记录的地表温度为约束,结合地表热流和热导率观测数据,利用有限元方法计算了中国大陆及邻区岩石圈三维热结构.基于此温度结果和GPS观测得到的应变率数据,以滑动摩擦、脆性破裂和蠕变三种强度机制为约束,计算得到了中国大陆及邻区岩石圈三维流变结构.结果显示:弱强度和低等效黏滞性系数的下地壳在中国大陆及邻区普遍存在,并且下地壳的流变强度和等效黏滞性系数比上地壳和岩石圈地幔一般要低1~2个数量级;中国大陆范围内青藏高原存在着厚度最大、强度最低的下地壳;青藏高原的岩石圈强度和等效黏滞性系数比华北、华南和印度板块的都要低;岩石圈流变结构的横向分布特征与重力梯度带和地形过渡带比较一致.  相似文献   

13.
14.
3-D rheological structure is mainly the spatial distribution of lithospheric strength or viscos-ity, its strength and viscosity are indispensable parameters in quantitative study of the lithosphere deformation. Plate tectonics theory initially divided the…  相似文献   

15.
The rheological properties of upper mantle rocks play an important role in controlling the dynamics of the lithosphere and mantle convection. Experimental studies and microstructures in naturally deformed mantle rocks usually imply that olivine controls the upper mantle rheology. Here we show for the first time evidence from the geometry of folded compositional layers in mantle rocks from Western Norway that garnet-rich rocks can have lower solid-state viscosities than olivine-rich rocks. Modeling of melt-free and dry rheology of garnet and olivine confirms that the reversed viscosity contrast between garnet-rich and olivine-rich layers for this folding event can be achieved over a relatively wide range of temperatures at low stress conditions when the fine-grained garnet deforms by diffusion creep while the coarse-grained olivine deforms by dislocation creep and/or diffusion creep.In general, modeling of the fold viscosity contrast shows that in the stable subcontinental lithospheric mantle or convecting mantle such a reversed viscosity contrast can be formed due to diffusion creep processes in fine-grained garnets in a dry mantle environment or at conditions where the garnet-pyroxene layer is partially molten, i.e. close to solidus–liquidus conditions in the upper mantle. Alternatively in cold plate tectonic settings, e.g. in subduction zones, some water-weakening is a feasible mechanism to create the reversed viscosity contrast between garnet and olivine.  相似文献   

16.
The WEGENER activities related to the study of post-glacial rebound are presented together with a review of the present state-of-the-art in this study field. Post-glacial rebound research is an unique tool for studying the viscoelastic behaviour of the Earth's mantle on time scales of thousands of years. The viscosity structure of the Earth's mantle determined from an inversion of observations of glacially induced deformations is a basic requirement for modelling long-term phenomena such as the convection in the Earth's mantle, and for better understanding unsolved questions such as the nature of the mantle discontinuities or the vertical scale of convection.First, an introduction to the scientific background is given, and the three principal ingredients for post-glacial rebound studies, namely the ice model, the Earth model, and the observations are briefly considered. For the ice model, the uncertainties due to a trade-off between ice model and Earth rheology are outlined. The different approaches used to model the Earth and its deformations in post-glacial rebound studies are discussed emphasising the preliminary nature of the derived rheologies and depth dependencies. The observations, in particular the relative sea-level changes and three-dimensional surface deformations, are described with special emphasis on observational gaps. Based on the discussion of the ingredients, an outline of the future developments in post-glacial rebound research is attempted with particular emphasis on the Earth model and the theory of deformations.For several decades extreme efforts have been made to precisely monitor the land uplift in Scandinavia. However, for the height component the existing data still are associated with large uncertainties while reliable data on the horizontal component are practically nil. The ongoing long-term (longer than ten years) spacegeodetic measurements are likely to provide the three-dimensional deformations with the spatial resolution and accuracy required in order to substantially contribute to post-glacial rebound studies. Thus, present-day three-dimensional deformations of the Earth's surface beneath and around the former ice sheets as a constraint for the mantle rheology and viscosity structure will increasingly become important as they become known from space-geodetic measurements with high spatial resolution and an accuracy approaching the mm/a-level.  相似文献   

17.
孟秋  胡才博  石耀霖 《地球物理学报》1954,63(10):3751-3763
挪威北海北部在末次冰期存在较大范围的冰盖,其冰盖的加载和卸载会对地表变形和内部应力调整产生重要影响.本文基于Maxwell黏弹性本构关系,根据初应力法自主开发了一套Maxwell黏弹性体有限元程序,它可以考虑重力和构造加载、地球介质弹性的纵向和横向不均匀性以及黏性的分层性,可以计算冰川载荷变化引起的地球表面变形及内部应力状态的变化.利用它研究了挪威北海北部1.1 Ma以来的冰川载荷变化、特别是两万多年以来冰盖的消退引起的地表冰后回弹.结果表明,自2万年以来,冰后回弹效应在冰盖载荷变化的不同阶段呈现明显的时空变化,现今地表垂直变化速率为几个毫米/年,与观测结果一致.下地壳和上地幔的黏弹性松弛效应明显,上地壳的应力状态在现今海岸线两侧存在差异性,水平和垂直正应力变化可达几十兆帕,剪应力变化有一个先增加后迅速减小至零的过程,与古地震、现今地震时空分布及应力测量结果也比较符合,研究结果有助于加深对冰后回弹的动力学过程的认识.  相似文献   

18.
Lateral variation in upper mantle viscosity: role of water   总被引:1,自引:0,他引:1  
Differences in the viscosity of the earth's upper mantle beneath the western US (∼1018-1019 Pa s) and global average values based on glacial isostatic adjustment and other data (∼1020-1021 Pa s) are generally ascribed to differences in temperature. We compile geochemical data on the water contents of western US lavas and mantle xenoliths, compare these data to water solubility in olivine, and calculate the corresponding effective viscosity of olivine, the major constituent of the upper mantle, using a power law creep rheological model. These data and calculations suggest that the low viscosities of the western US upper mantle reflect the combined effect of high water concentration and elevated temperature. The high water content of the western US upper mantle may reflect the long history of Farallon plate subduction, including flat slab subduction, which effectively advected water as far inland as the Colorado Plateau, hydrating and weakening the upper mantle.  相似文献   

19.
均衡重力异常和地壳表、浅层地质结构   总被引:5,自引:1,他引:5       下载免费PDF全文
殷秀华  刘铁胜 《地震地质》1993,15(2):149-156
从理论和试验角度论证了利用均衡重力异常研究地壳表、浅层地质结构的可行性,从而指出:所有合理的地壳均衡模型产生的均衡效应几乎是一样的;地壳均衡模型类型和模型参数的变化,仅使均衡改正值在长波长上发生很小变化,而对均衡重力异常的局部异常影响不大;均衡重力异常与地壳表、浅层地质结构具有明显的对应关系。因此,利用均衡重力异常研究地表和地壳浅层地质结构,以选择简单的地壳均衡模型为好。本方法的优点是不受地形格架影响,便于进行广泛对比和定量研究  相似文献   

20.
赵斌  王敏  胡岩  王琪 《中国地震》2020,36(4):806-816
大地测量技术观测的震后变形是地壳和地幔岩石对同震应力扰动的变形响应,震后变形的强度及时空演化特征主要受断层面的摩擦性质、下地壳及上地幔岩石的流变参数等控制。震后大地测量被广泛用于研究断层及深部岩石的流变性质及其动力学过程,是对岩石力学实验、冰后回弹等手段探测结果的检验和补充。本文回顾性地总结了中国及邻域中强地震震后变形监测成效,这些震例主要集中在青藏高原内部和边界带。通过对包括昆仑山口西地震、汶川地震和尼泊尔地震在内的发生在青藏高原及周缘的强震震后变形机制、岩石圈流变参数约束等方面的研究,大大提升了对青藏高原不同区域深部岩石流变结构和性质的认识,为研究地震周期变形、地震危险性、青藏高原的形变模式、高原演化动力学提供了观测依据和定量参数。同时,指出进一步约束青藏高原深部岩石流变参数,一方面需要进一步提高西部地区连续GNSS监测能力,另一方面需要与地球物理成像技术进行融合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号