首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the critical flutter wind speed for long-span bridges is presented in this paper. The RNG k-ε turbulent model is introduced to establish the governing equations, including the continuity equation and the Navier-Stokes equations, for solving the wind flow field around a two-dimensional bridge section. To illustrate the effectiveness and accuracy of the proposed approach, a simple application to the Hume Bridge in China is provided, and the numerical results show that the aerodynamic derivatives and the critical flutter wind speed obtained agree well with the wind tunnel test results.  相似文献   

2.
High buildings or architectural complex in urban areas remarkably distort the urban surface wind fields. As the air flow approaches,local strong wind may appear around the buildings. The strong wind makes the pedestrians on sidewalks, entrances and terrace very uncomfortable and causes the pedestrian level wind environment problem. In this studies, hot-wire wind measurement, wind scouring in wind tunnel and numerical computation were carried out to evaluate the wind environment of tall buildings in the prevailing flow conditions in Beijing areas. The results obtained by three techniques were compared and mutually verified. The conclusions drawn from three approaches agree with each other. Also the advantages and limitations of each method were analyzed. It is suggested that the combination of different techniques may produce better assessment of wind environment around high buildings.  相似文献   

3.
This paper describes the results obtained from the full‐scale measurements of wind effects on a 70‐storey building in Hong Kong. The building which has a height of approximately 370 m is the second tallest structure in Hong Kong. The field data such as wind speed, wind direction and wind‐induced acceleration responses have been measured since 1995 including the close passage of two typhoons; typhoon Sally and typhoon Kent. Detailed analysis of the field data is conducted. The full‐scale measurements are compared with the wind tunnel results obtained in the Boundary Layer Wind Tunnel Laboratory at Western Ontario University. The amplitude‐dependent characteristics of damping and natural frequency that were obtained by using the random decrement technique are investigated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
时变行星际太阳风模拟及其结果评估   总被引:1,自引:0,他引:1       下载免费PDF全文
背景太阳风对于地球附近的空间环境有着重要的影响,三维磁流体力学太阳风模型是背景太阳风研究和预报的重要工具.通过太阳光球磁场数据驱动的边界条件,我们发展了一个时变的行星际三维磁流体力学太阳风模型.使用这个模型,我们模拟了2008年全年的行星际背景太阳风,分析了该年太阳风结构全球特征的演化和行星际局地观测与日冕结构间的联系.实现了一套太阳风连续参数和特征结构模拟质量的定量评估方法.对2008年模拟结果的评估表明,模型较好地重现了背景太阳风的大尺度特征.模拟与观测速度间的相关性系数达到了0.6以上,行星际磁场强度与观测吻合得较好,捕获了全部的行星际磁场极性反转和82.76%的流相互作用区,行星际磁场极性反转的误报率仅为6.67%,流相互作用区的误报率仅为11.11%,两种结构的到达时间误差在1天左右.同时,通过综合分析评估结果,我们明确了高速流结构、内边界磁场分布等模型在进一步改进中需要重点注意的问题.  相似文献   

5.
行星际背景太阳风的三维MHD数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
杨子才  沈芳  杨易  冯学尚 《地球物理学报》2018,61(11):4337-4347
近地空间的太阳风参数预报具有重要的科学研究意义和实际应用价值,三维磁流体力学(MHD)数值模拟是太阳风参数预报的重要手段.本文建立了一套基于经验模型的三维MHD数值模型.模型的内边界设置在0.1天文单位(AU)处,在六片网格系统下利用TVD Lax-Friedrich格式求解理想MHD方程组,采用扩散法消除磁场的散度.模型以GONG的观测磁图作为输入数据,利用经验模型并结合卫星观测特征确定内边界条件.边界条件中保留了6个可调参数,以便适当调整参数使其方便适合模拟不同太阳活动期的太阳风.利用该模型分别模拟了2007年和2016年的背景太阳风,得到了太阳风速度、密度、温度和磁场强度,这些参数与ACE/WIND卫星观测符合较好.  相似文献   

6.
Wind flow has been studied in situations where it encounters porous and solid windbreaks, but there has been a lack of research exploring turbulent wind dynamics around and in the lee of real vegetation elements. In dryland contexts, sparse vegetation plays an important role in modulating both the erosivity of the wind and the erodibility of surfaces. Therefore, understanding the interactions between wind and vegetation is key for improving wind erosion modelling in desert landscapes. In this study, turbulent wind flow around three typical dryland vegetation elements (a grass clump, a shrub, and a tree) was examined in Namibia using high‐frequency (10 Hz) sonic anemometry. Spatial variations in mean wind velocity, as well as Reynolds stresses and coherent turbulent structures in the flow, were compared and related to the porosities and configurations of the study elements. A shelter parameter, originally proposed by Gandemer ( 1979 , Journal of Wind Engineering and Industrial Aerodynamic 4 : 371–389), was derived to describe the combined impact of the different elements on the energy and variability of horizontal wind flow. Wind velocity was reduced by 70% in the immediate lee of the grass and 40% in the lee of the shrub, but velocity recovered exponentially to equilibrium over the same relative distance in both cases (~9 element heights downwind). Quadrant analysis of the high‐frequency wind flow data revealed that the grass clump induced a small recirculation zone in its lee, whereas the shrub did not. Also, higher Reynolds shear stress and higher ‘flow positivity magnitude’ [ratio of Q1 (outward interaction) and Q4 (sweep) quadrants to Q2 (ejection) and Q3 (inward interaction) quadrants] was generally observed in the wake of the grass. These differences arose because the porosity of the grass clump (53%) was lower than the porosity of the shrub (69%), and thus bleed flow through the shrub was more significant. The bluff‐body behaviour of the grass resulted in a more intense and more extensive sheltering effect than the shrub, which implies that overall sediment transport potential is lower in the wake of the grass. The tree displayed a different wake structure to the grass and shrub, owing to the elevation of its crown. A ‘bottom gap’ effect was observed, whereby wind velocities increased possibly due to streamline compression in the gap between the ground and the underside of the tree crown. Differences in flow momentum between the bottom gap and the low‐pressure leeward region of the crown are a probable explanation for the formation of a large recirculation vortex. The bottom gap effect led to decreased sheltering up to three tree heights downwind, but the surface became increasingly protected by the frontal impact of the crown over a further eight tree heights downwind (~30 m). The extraction of momentum from the air by the tree therefore resulted in a far more extensive sheltering effect compared to the grass and shrub. This study represents an important investigation of the impact of different vegetation types on turbulent wind flow, and results can be integrated as parameterizations into spatial sediment transport models that explore landscape‐scale change on semi‐vegetated desert surfaces. Copyright © 2016 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

7.
Wind erosion measurements were carried out in Nellis Dunes Recreation Area, southern Nevada, USA. Gross erosion (the total mass of sediment effectively blown away from a surface), gross deposition (the total mass of sediment effectively depositing on a surface) and net erosion (the difference in sediment mass before and after an event) were measured for 1 year, on 17 different types of surfaces developed on loose dune sand, compacted sand, loose silt, compacted and/or aggregated silt, rock‐covered sands and silts, mixtures of sand, silt and clay, exposed petrocalcic horizons, gravelly substrata and bedrock. Results showed that net erosion, which is the type of erosion measured in field and laboratory experiments, strongly differs from gross erosion. Activity on a surface is much higher than classic net erosion measurements suggest. Future studies on wind erosion should better acknowledge the distinction between the two types of process. Also, a grain diameter of maximum susceptibility to wind erosion (‘optimum deflation diameter’) near 70 µm as proposed by the aeolian literature only exists for net wind erosion. No such optimum diameter was found for gross wind erosion within the particle range 0–100 µm delineating the transport modes of suspension and modified saltation. In addition, desert surfaces predominantly composed of sand did not show an optimum deflation diameter (for net erosion) around 70 µm. Instead, there was a preferential grain size around 15 µm at which particles were most vulnerable to net emission. Desert surfaces poor in sand showed the classic value of 70 µm. This suggests that interactions exist between the type of surface and the susceptibility of particles to wind erosion. This study is solely based on field data. Although results are supported by two previous wind tunnel studies, more wind tunnel experiments documenting the interactions between gross erosion and gross deposition are necessary. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
为探究超高层建筑周围风场特性,以天津高银117大厦为例,通过DZZ2型采集系统进行现场实测,对该大厦周围的平均风速、脉动风速、湍流强度、湍流积分尺度、Von Karman谱等风场特性进行分析。结果表明:顺风向及横风向脉动风速变化规律不服从标准高斯分布;顺风向及横风向湍流强度与平均风速呈负相关,且其变化程度与平均风速范围有关;顺风向及横风向湍流积分尺度均随平均风速的增加而增大;Von Karman谱对低频范围内超高层周围风场特性描述较为准确。  相似文献   

9.
半横向通风方式隧道内污染物分布的数值仿真   总被引:1,自引:0,他引:1  
某城市公路隧道采用半横向通风方式进行火灾排烟,其排风孔位于隧道侧壁顶部。针对该城市公路隧道,运用CFD数值仿真方法建立1:1的三维数值仿真模型,模拟不同工况下,开启不同形状排风孔时,隧道内的风速、风压以及污染物浓度的分布情况。研究表明,排风孔所在位置的隧道横断面上,形成一个左侧区域负压较高、压强变化梯度大而右侧区域负压较小的"排风横断面";随着排风孔开口高度的增加,排风横断面上负压分布向右侧扩大,右侧区域风速增加,有利于右侧区域内污染物的稀释,而左侧区域竖直方向风速减小,左下角区域风流方向紊乱,左侧区域污染物不能得到有效稀释,浓度较高。  相似文献   

10.
Stochastic simulation is an important means of acquiring fluctuating wind pressures for wind induced response analyses in structural engineering. The wind pressure acting on a large-span space structure can be characterized as a stationary non-Gaussian field. This paper reviews several simulation algorithms related to the Spectral Representation Method (SRM) and the Static Transformation Method (STM). Polynomial and Exponential transformation functions (PSTM and ESTM) are discussed. Deficiencies in current algorithms, with respect to accuracy, stability and efficiency, are analyzed, and the algorithms are improved for better practical application. In order to verify the improved algorithm, wind pressure fields on a large-span roof are simulated and compared with wind tunnel data. The simulation results fit well with the wind tunnel data, and the algorithm accuracy, stability and efficiency are shown to be better than those of current algorithms.  相似文献   

11.
风垂直切变对中尺度地形对流降水影响的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
赵玉春  王叶红 《地球物理学报》2012,55(10):3213-3229
针对长江中下游中尺度地形特点以及暴雨过程发生发展期间风垂直切变的主要观测特征,设计了一系列中尺度地形的三维理想数值试验,分析了干大气地形流和重力波特征,探讨了条件不稳定湿大气地形对流降水的模态分布,在此基础上研究了圆形、直线风垂直切变和切变厚度对中尺度地形对流降水强度和模态分布的影响.结果发现:在 Fr≈1的干大气条件下,气流遇到地形后分支、绕流和爬升现象同时存在,地形激发的重力波在水平和垂直方向上传播,其在迎风坡、背风坡、地形上游和下游的振幅不同,并组织出不同强度的垂直上升运动.在Fr > 1的条件不稳定湿大气下,地形对流降水主要存在三种模态,即迎风坡和背风坡准静止对流降水以及地形下游移动性对流降水,地形对流降水的形成与重力波在低层组织的上升运动密切相关.风垂直切变对地形对流降水的强度和模态分布有重要作用,其中圆形风垂直切变(风随高度旋转)不仅影响地形下游对流降水系统的移动方向,而且影响迎风坡和背风坡山脚处对流降水中心的分布和强度;直线风垂直切变(风随高度无旋转)主要影响地形对流降水的移动速度和强度.风随高度自下而上顺(逆)时针旋转,地形对流系统向下游传播时向右(左)偏移.风垂直切变主要通过影响地形重力波的结构和传播以及对流系统的形成、移动方向和速度,来影响地形对流降水的模态分布,其中对流层中低层的风垂直切变对地形对流降水强度和模态分布有重要影响.  相似文献   

12.
下击暴流是雷暴天气产生的近地面短时强风,具有和大气边界层近地风显著不同的风场特征,其风荷载数值模拟方法也和常规风荷载模拟方法不同。在将下击暴流风速表达为时变的平均风速和调制的非平稳脉动风速之和的前提下,本文采用基于改进的OBV模型(Oseguera and Bowles/Vicroy(OBV))的方法来模拟平均风速,其平均风速直接由改进的OBV模型表达,而不同于已往研究中将平均风速表达为竖向风剖面与时间函数的乘积,并采用结合快速傅里叶变化的谐波叠加法来模拟调制的非平稳脉动风速。改进的OBV模型考虑了下击暴流的风暴中心移动和强度演化的影响,更准确地描述了下击暴流的实际物理过程。通过实例仿真,说明结果准确合理。  相似文献   

13.
在大气边界层风洞进行了"珠江城"商务写字楼大比例尺(1:150)模型风洞试验,通过对风洞试验数据分析,获得了基础等效静风荷载及结构顶部风致加速度响应。并将其结果与其它较小比例尺的两个风洞试验结果相对比,分析了模型几何缩尺比、周边建筑及平均风剖面对试验结果的影响。获得的结果可以为此结构设计提供风荷载,同时也为其他建筑的抗风设计和风洞实验提供技术参考。  相似文献   

14.
介绍了高速铁路防风明洞的基本作用及设计方法;利用计算流体动力学原理中的数学模型及控制方程,对兰新第二双线铁路防风明洞大风作用下的风荷载进行了分析;通过计算工况的假定以及边界条件的合理设定,采用有限体积法建立防风明洞数值分析模型,并模拟计算了平地路段、浅路堑地段和路堤地段三大类工况和70、60、50、40m/s4种风速情况。研究结果表明:①开孔情况下,明洞各部位所受风荷载随着风速增大而增大;②明洞迎风侧均为正压,平地地段与路堤地段所受正压较接近,最大值出现在风速为70m/s时,迎风边墙正压为3202Pa;③明洞拱顶及背风侧均为负压,浅路堑地段所受负压最大值出现在风速为70m/s时,拱顶负压为-3550Pa;④各地段背风侧所受负压均小于-1500Pa,背风墙脚与背风边墙受力基本相同;⑤各地段各风速情况下,拱顶处负压均为最大;⑥开孔情况下的明洞各部位风荷载,普遍小于不开孔情况;⑦明洞开孔附近有回流风速,并随着外界风速增大而增大。  相似文献   

15.
Wind tunnel experiments were conducted with a well mixed, flat sand bed, 5·7 m in length, to study the initial sand flux response at three different shear velocities. In some experiments, the bed was allowed to deplete without replenishment; in others, sand was fed 10·8 m upstream of the monitored cross-section. The results indicated that the transport rate increases rapidly during the first minute, and then adjusts slowly towards a steady rate. The time to reach such an equilibrium was observed to be on the order of 2–4 min in non-fed experiments and on the order of 8–9 min in fed experiments. Many factors may affect such development and bring about non-stationarity in total sand transport rate. Among these factors are differences in the natural composition of the sand bed, changes in both the topographical features of the sand bed (ripples) and its surface texture, and any artificial features that influence the adjustment between the boundary layer profile and the sand load on the wind. A useful key to the influence of each factor is obtained by noting that each has a typical and distinct ‘time constant’. The nature and relative importance of each is discussed by reference to the reported wind tunnel experiments and to the behaviour of saltation cloud numerical models. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical study of irregular waves in the Norwegian continental shelf wind farm (HAVSUL-II) was conducted using 3rd generation spectral wave models. The study was composed of two parts: the study of the effect of a single windmill monopile in the local incoming wave field using an empirical JONSWAP spectrum, and a wave hindcast study in the wind farm area using realistic incoming wave spectra obtained from large scale simulations for the 1991-1992 winter period. In the single windmill monopile study the SWAN wave model was used, while the hindcast study was conducted by successively nesting from a coarse grid using the WAM model up to a high-resolution (56 m) grid covering 26.2 km2 of the HAVSUL-II windmill farm using the SWAN model. The effect of a single monopile on incident waves with realistic spectra was also studied. In the single windmill study the monopile was represented as a closed circular obstacle and in the hindcast study it was represented as a dry grid point. The results showed that the single windmill monopile creates a shadow zone in the down wave region with lower significant wave height (Hs) values and a slight increase of Hs in the up wave region. The effects of the windmill monopile on the wave field were found to be dependent on the directional distribution of the incoming wave spectrum and also on the wave diffraction and reflection. The hindcast study showed that the group of windmill monopiles may contribute to the reduction of the wave energy inside the offshore wind farm and that once the waves enter into the offshore wind farm they experience modifications due to the presence of the windmill monopiles, which cause a blocking of the wave energy propagation resulting in an altered distribution of the Hs field.  相似文献   

17.
典型体育场屋盖风荷载特性的风洞试验研究   总被引:1,自引:0,他引:1  
对某一具有代表性的大型体育场刚性模型进行了表面测压风洞试验,介绍了试验所采用的主要技术参数和基本的数据处理方法,分析了结构典型测点在不同风向角下的风压变化规律,给出了该体育场屋盖上的对应于50年和100年重现期的10min平均风压值及前10个最小极值风压值。分析表明:风压系数平均值分布规律明显,能体现屋盖上流场分布的情况;均方根值能在一定程度上反映出气流分离和旋涡脱落情况。典型体育场屋盖上表面主要分布负压,其中迎风边缘及突出部位较大,低凹处及尾流区域较小;屋盖下表面在迎风的钝体边缘有较大区域正压出现,背风处分布有不大的均匀负压。  相似文献   

18.
The nonhydrostatic pressure effects on the generation and propagation of wind-forced internal waves are studied with a two-dimensional numerical ocean model. A one-way directed wind pulse over a stratified ocean initiates surface and internal waves in a closed basin. The studies are performed with horizontal grid sizes in the range from 1 km to 62.5 m. The experiments are performed with both a hydrostatic and a nonhydrostatic model, facilitating systematic studies of the sensitivity of the numerical model results to the grid size and to the nonhydrostatic pressure adjustments. The results show that the nonhydrostatic pressure effects are highly dependent on the grid size and grow with increased resolution. In the internal depression wave, the horizontal nonhydrostatic pressure gradients reach the same order of magnitude as the hydrostatic gradients in the high-resolution nonhydrostatic studies. In these studies, the nonhydrostatic pressure gradients approximately balance the corresponding hydrostatic pressure gradients in the internal depression wave, and the wave degenerates into a train of soliton waves. The time for the soliton form to develop agrees with the steepening timescale calculated from Korteweg-de Vries theory. In the high-resolution hydrostatic model, the internal depression wave takes the form of a single wave front. When the internal waves are generated in the boundary layers, the nonhydrostatic pressure gradients are much smaller than the hydrostatic gradients and the generation processes are not effected by the nonhydrostatic pressure with the present range of grid sizes.  相似文献   

19.
The wind‐driven‐rain effect refers to the redistribution of rainfall over micro‐scale topography due to the existence of local perturbed wind‐flow patterns. Rainfall measurements reported in the literature point to the fact that the wind‐driven‐rain distribution can show large variations over micro‐scale topography. These variations should be taken into account in hillslope hydrology, in runoff and erosion studies and in the design of rainfall monitoring networks. In practice, measurements are often not suitable for determining the wind‐driven‐rain distribution. Therefore, a few researchers have employed numerical modelling. In order to provide confidence in using numerical models, experimental verification for a range of different topographic features is imperative. The objective of this study is to investigate the adequacy of a two‐dimensional Computational Fluid Dynamics (CFD) model to predict the wind‐driven‐rain distribution over small‐scale topography. The numerical model is applied to a number of topographic features, including a succession of cliffs, a small isolated hill, a small valley and a field with ridges and furrows. The numerical results are compared with the corresponding measurement results reported in the literature. It is shown that two‐dimensional numerical modelling can provide a good indication of the wind‐driven‐rain distribution over each type of micro‐scale topography that is considered in this study. It is concluded that more detailed verification procedures are currently inhibited due to the lack of available and detailed spatial and temporal rainfall data from field measurements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号