首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stream waters draining granitic terrains from the highest part (850 to 2200 m a.s.l.) of Sierras Pampeanas (Córdoba, Argentina, ∼32°S, ∼65°W) were sampled in order to define sources and distribution of dissolved rare earth elements (REE), and to describe the geochemical processes that govern their mobility. The contribution of the regional granite to the dissolved REE pool in stream water is limited due to the physical conditions predominating in the area (i.e., steep slopes and semiarid climate). Therefore, precipitation is considered a seasonally significant source controlling REE concentration in stream water. Dissolved REE concentrations are inversely correlated with monthly precipitation and rainfall frequency. During the rainy season (i.e., the austral summer) REE concentrations in stream water are lower than during the dry season (i.e., austral winter). Such low concentrations reflect the balance between the REE input from precipitation and their removal by adsorption. In contrast, during the dry season, the longer residence time of water within fractures and colluvium determines an increased REE concentration in the base flow. Lower pH values also contribute to raise REE concentration through desorption from mineral surfaces.  相似文献   

2.
In the eastern Sierras Pampeanas, Central Argentina, tourmalinites and coticules are found in close association with stratabound scheelite deposits in metamorphic terranes. In Sierra Grande (Agua de Ramón and Ambul districts) and Sierra de Altautina, tourmalinites are associated with stratabound scheelite deposits related to orthoamphibolites. In the Pampa del Tamboreo area, tourmalinites are located in biotite schists stratigraphically related to acid to intermediate metavolcanic rocks and scheelite-bearing quartzites.The mineral chemistry and boron isotopic compositions of tourmalinite-hosted and vein-hosted tourmalines are investigated. Overall, the tourmalines belong to the dravite-schorl series and are generally aluminous; Fe/(Fe+Mg) ranges from 0.33 to 0.85, Al/(Al+Fe+Mg) from 0.66 to 0.76 and the amount of X-site vacancy (0.12–0.48) indicates significant foitite components. Their boron isotopic compositions (δ11B) are from −24.0‰ to−15.0‰.Similar mineral chemistries and boron isotopic values for tourmaline in tourmalinites related to stratabound scheelite mineralisation and in tungsten-bearing quartz veins suggest a common source for the boron and probably the tungsten. The field, chemical and isotopic relationships are consistent with tungsten and boron in quartz-vein deposits being remobilised from stratabound scheelite and tourmalinite, dominantly by liquid-state transfer associated with regional shear zones. Tungsten and boron in the original sedimentary sequence (now meta-exhalites) are ascribed to volcanogenic exhalations.  相似文献   

3.
A series of medium grade metamorphic rocks of the western sector of the Sierras Pampeanas Terrane in central western Argentina are represented by amphibolites, gneisses and schists derived from sedimentary as well as from igneous rocks. The metavolcanics consist of amphibolites, quartz-K-feldspar-muscovite schists, and hornblende-biotite and biotite-epidote-plagioclase schists. Based on petrographic and geochemical data they are interpreted as originating as basaltic tholeiites, rhyolites and mesosilicic volcanics. The distribution and geochemical behavior are similar to present day western Pacific lavas, mainly those developed on island arcs or heavily attenuated continental crust. Based on these characteristics, an accretionary tectonic model involving a series of island-arc collisions is proposed for the Proterozoic. The complex Proterozoic tectonic history of the western Sierras Pampeanas has been partially obliterated by the emplacement of the Early Paleozoic magmatic arc rocks.  相似文献   

4.
A new LA-ICP-MS crystallization age of 370?±?8 Ma is presented for monzogranite from the Achala batholith, the largest Devonian igneous body in the Sierras Pampeanas, confirming previous U-Pb zircon ages and indicating emplacement within a relatively short episode. Granitic rocks from the central area of the batholith display restricted high SiO2 contents (69.8–74.5 wt.%). Major element plots show ferroan and alkaline-calcic to calc-alkaline compositions with an A-type signature. High concentrations of the high field-strength elements such as Y, Nb, Ga, Ta, U, Th, and flat REE patterns with significant negative Eu anomalies, are also typical of A-type granites. The aluminium saturation index (1.10–1.37) indicates aluminous parent magmas which are further characterised by high FeO/MgO ratios (2.6–3.3) and F contents of igneous biotites (0.9–1.5 wt%), as well as relatively high AlIV (2.39–2.58 a.p.f.u.) in biotites and the occurrence of primary muscovite. Petrogenetic modelling supports a source enriched in plagioclase and progressive fractional crystallization of feldspar. The central area of the batholith displays small-scale bodies composed predominantly of biotite (80 %), muscovite (10 %) and apatite (10 %), yielding rock compositions with 2.3–5.4 wt. % P2O5, and 6–7 wt.% F, together with anomalous contents of U (88–1,866 ppm), Zr (1081–2,581 ppm), Nb (257–1,395 ppm) and ΣREE (1,443–4,492 ppm). Previous studies rule out an origin of these bodies as metasedimentary xenoliths and they have been interpreted as cumulates from the granitic magma. An alternative flow segregation process is discussed here.  相似文献   

5.
6.
 The most appropriate and widely used source of drinking water for the populations of the upper regions of Ghana is groundwater. In general, groundwater quality is acceptable except for some parts of the Bolgatanga and Bongo Districts, where there are occurrences of elevated levels of natural groundwater fluoride. Concentrations of groundwater fluoride in excess of the World Health Organization (WHO) maximum guideline value (1.5 mg/l) in the Bongo area have been known since 1978. However, the effect of fluoride on people ingesting the water did not receive public and medical attention until October 1993, when health personnel were asked to investigate the cause of stained teeth in school children. The investigation established that 62% of the total population of school children in the Bongo area had dental fluorosis. Against this background, a study was initiated to understand the geochemistry, genesis, and distribution of fluoride in relation to the geology of the area. Groundwater fluoride in the upper regions ranges from 0.11 to 4.60 ppm, with the highest concentrations associated with the fluorine-enriched Bongo coarse-grained hornblende granite and syenite suite. The source of groundwater fluoride within the Bongo granitoids is dissolution of the mineral fluorite and dissolution of and anion exchange with micaceous minerals and their clay products. Applying the WHO recommended guideline values for fluoride in drinking water reveals that 49% of wells in the area deliver water below the optimum level of 0.5 mg/l F; these populations are thus prone to dental caries. Twenty-eight percent of the wells fall within the optimum interval for good dental health (0.5–1.5 mg/l F). Twenty-three percent of the wells have concentrations above the recommended maximum guideline limit of 1.5 mg/l F; this population is susceptible to dental and possibly skeletal fluorosis. Climatic conditions of the area suggest that the individual water consumption is in the order of 3 to 4 l which is higher than the WHO estimate of 2 l/adult/day. In addition, dietary intake for the upper region population is probably higher than WHO baseline values (0.2–0.5 mg/day). This implies that a much higher population is susceptible to developing dental and skeletal fluorosis than originally suspected. Geochemical symbol plot maps help geochemists understand factors controlling the distribution and uptake of fluoride in the upper regions, but they are of minimal value to health officials responsible for planning epidemiological studies and dental health education programs in the region. By casting fluoride data into contoured 'geochemical health-risk maps' using intake interval guidelines more closely aligned to regional climatic and dietary conditions, health officals can better judge the impacts (regional and population based) of fluoride on segments of the population, such as various sex and age groups. Received: 11 March 1997 · Accepted: 17 June 1997  相似文献   

7.
The concentration of arsenic measured in groundwater from three aquifers in the study area located in the Eastern Tucuman province, Argentina, mostly depends on the lithology, but the spatial and temporal variations of concentrations seem to be also controlled by pH changes, climatic factors, and human perturbations. The highest concentrations of As (more than 1,000 μg L−1) were found in the shallow aquifer, made of As-rich loess, while the lowest concentrations were measured in the deep confined aquifer, consisting of alternating layers of alluvial sands/gravels and clays. Intermediate values were measured in the semiconfined aquifer made of the fluvial sediments deposited in the Salí River valley, that alternate in the upper part of the sedimentary sequence with layers of loess. Because most of As in the loess is considered to be adsorbed onto Fe-oxyhydroxide coatings, the increase of pH in the flow direction (west-east) leads to increasing arsenic concentrations towards the eastern border of the study area. The decomposition of organic wastes poured into the Salí River or associated with local and diffuse sources of contamination in the eastern part of the study area depletes dissolved oxygen, which leads to the reductive dissolution of Fe and Mn oxyhydroxides, and to the subsequent release of the adsorbed and co-precipitated As. This process mainly affects shallow groundwater and the upper part of the semiconfined aquifer. Geochemical and hydrological data also suggest that rising water table levels at the end of the wet season may also lead to reductive dissolution of As-rich Fe oxyhydroxides in the shallow aquifer.  相似文献   

8.
The Paleozoic granitoids of the Sierra de San Luis comprise the Ordovician tonalite suite (OTS; metaluminous to mildly peraluminous calcic tonalite–granodiorites) and granodiorite–granite suite (OGGS; peraluminous calcic to calc-alkaline granodiorite–monzogranites), as well as the Devonian granite suite (DGS; peraluminous alkali-calcic monzogranites) and monzonite–granite suite (DMGS; metaluminous alkali-calcic quartz monzonite–monzogranite ± granodiorite, mildly peraluminous alkalicalcic monzogranites). The OTS has relatively high K2O, CaO, and YbN and low Cr, Ni, Ba, Sr, Rb/Sr, Sr/Y, and (La/Yb)N, as well as negative Eu/Eu1, high 87Sr/86Sr (0.70850–0.71114), and unradiogenic εNd(470Ma) (−5.3 to −6.0), which preclude an origin of variably fractionated mantle melts and favour a mafic lower crustal source. The OGGS consists of two granitoids: (1) high-temperature characterized by low Al2O3/TiO2, Rb/Sr, and (La/Yb)N, a smooth negative Eu/Eu1, and relatively high CaO and (2) low-temperature with high Al2O3/TiO2 and Rb/Sr, low CaO, (La/Yb)N, and Sr/Y, and negative Eu/Eu1. Melting of metagreywackes at pressures below 10 kbar with a variable supply of water could account for the chemistry of the high-T OGGS, whereas dehydration melting of biotite-bearing metasedimentary sources at low pressures is proposed for the low temperature OGGS. Melting of crustal sources relates to a contemporaneous mafic magmatism.Devonian magmatism is characterized by high Ba, Sr, K2O, Na2O, Sr/Y, and (La/Yb)N. Sources for the DGS include metasedimentary or metatonalitic protoliths. Biotite dehydration melting triggered by the addition of heat, supplied by mantle-derived magmas, is proposed. High Ba, Sr, LREE, MgO, Cr, Ni, Zr, and V of the monzonites suggest an enriched lithospheric mantle source. Low Yb and Y and high Sr and (La/Yb)N indicate a garnet-rich residual assemblage (P  10 kbar). Melts for the peraluminous rocks may have derived from a metasedimentary or metaigneous source at lower pressures in a process dominated by biotite consumption and plagioclase in the residue.The Ordovician granitoids are synkinematic with compressive deformation related to the early stages of Famatinian convergence. The Devonian magmatism is synkinematic with a system of shear zones that were active during the Achalian cycle.  相似文献   

9.
《Applied Geochemistry》2002,17(3):259-284
Groundwaters from Quaternary loess aquifers in northern La Pampa Province of central Argentina have significant quality problems due to high concentrations of potentially harmful elements such as As, F, NO3-N, B, Mo, Se and U and high salinity. The extent of the problems is not well-defined, but is believed to cover large parts of the Argentine Chaco-Pampean Plain, over an area of perhaps 106 km2. Groundwaters from La Pampa have a very large range of chemical compositions and spatial variability is considerable over distances of a few km. Dissolved As spans over 4 orders of magnitude (<4–5300 μg l−1) and concentrations of F have a range of 0.03–29 mg l−1, B of 0.5–14 mg l−l, V of 0.02–5.4 mg l−1, NO3–N of <0.2–140 mg l−1, Mo of 2.7–990 μg l−1 and U of 6.2–250 μg l−1. Of the groundwaters investigated, 95% exceed 10 μg As l−1 (the WHO guideline value) and 73% exceed 50 μg As l−1 (the Argentine national standard). In addition, 83% exceed the WHO guideline value for F (1.5 mg l−1), 99% for B (0.5 mg l−1), 47% for NO3-N (11.3 mg l−1), 39% for Mo (70 μg l−1), 32% for Se (10 μg l−1) and 100% for U (2 μg l−1). Total dissolved solids range between 730 and 11400 mg l−1, the high values resulting mainly from evaporation under ambient semi-arid climatic conditions. The groundwaters are universally oxidising with high dissolved-O2 concentrations. Groundwater pHs are neutral to alkaline (7.0–8.7). Arsenic is present in solution predominantly as As(V). Groundwater As correlates positively with pH, alkalinity (HCO3), F and V. Weaker correlations are also observed with B, Mo, U and Be. Desorption of these elements from metal oxides, especially Fe and Mn oxides under the high-pH conditions is considered an important control on their mobilisation. Mutual competition between these elements for sorption sites on oxide minerals may also have enhanced their mobility. Weathering of primary silicate minerals and accessory minerals such as apatite in the loess and incorporated volcanic ash may also have contributed a proportion of the dissolved As and other trace elements. Concentrations of As and other anions and oxyanions appear to be particularly high in groundwaters close to low-lying depressions which act as localised groundwater-discharge zones. Concentrations up to 7500 μg l−1 were found in saturated-zone porewaters extracted from a cored borehole adjacent to one such depression. Concentrations are also relatively high where groundwater is abstracted from close to the water table, presumably because this zone is a location of more active weathering reactions. The development of groundwaters with high pH and alkalinity results from silicate and carbonate reactions, facilitated by the arid climatic conditions. These factors, together with the young age of the loess sediments and slow groundwater flow have enabled the accumulation of the high concentrations of As and other elements in solution without significant opportunity for flushing of the aquifer to enable their removal.  相似文献   

10.
Waters and sediments in some streams in Colorado contain elevated concentrations of Mo derived from mining areas upstream. In the streams studied, most of the Mo was transported in dissolved form. The suspended load carried a significant amount of Mo (up to 19%) only near the molybdenum mill at Climax.  相似文献   

11.
Fluorite mineralization at the La Nueva and Bubu mines yields Sm-Nd ages of 131 ± 22 and 117 ± 26 Ma, respectively. Thus, the mineralization most probably is related to a late Gondwanian (Lower Cretaceous) extensional and magmatic event that affected the Sierras Pampeanas basement during the opening of the Atlantic Ocean. Hydrothermal fluids involved in the formation of the fluorite probably were of meteoric origin, their isotopic composition (Sr and Nd) resulting largely from the incongruent dissolution of feldspars in the host porphyritic granites.  相似文献   

12.
In the Sierras Pampeanas of San Luis, Argentina, Late Tertiary volcanic rocks extend along a 80-km NW-SE-trending belt, between La Carolina and Sierra del Morro. Several gold deposits, among which those in the western end of the belt are better known, are genetically related to the volcanic rocks, formed during a volcanic episode that occurred between 9.5 Ma and 1.9 Ma. Located 600 km from the Peru-Chile trench, the volcanic belt represents the easternmost and youngest mineralized magmatic manifestation associated with the shallowing of the Nazca plate in the flat-slab Andean segment extending from 28° to 33° S Lat.

The volcanic complex includes lavas and volcaniclastic rocks. Small-volume lavas were emplaced as domes, flows, and dikes. Pyroclastic deposits are associated with them in certain areas, such as at La Carolina, Cerro Tiporco, and Sierra del Morro. At La Carolina, phreatomagmatic breccias and base-surge deposits define a maar-diatreme volcanic setting. At Cerro Tiporco and Sierra del Morro, the volcaniclastic units are related to the formation of calderas. Mesosilicic magmas (SiO2 = 59% to 68%) belong to normal to high-K calc-alkaline and shoshonitic magma types. At both local and regional scales, K enrichment accompanies progressively decreasing age. Although the volcanic rocks differ from the typical Andean series, some geochemical features, such as Ta and Ti depletion, high large-ion-lithophile-element (LILE) contents, and arc-like Ba/La and La/Ta ratios, indicate an arc signature.

In the La Carolina zone, the most important mineralization is the La Carolina volcanic-hosted, low-sulfidation, epithermal gold deposit. Here, several gold and base-metal-bearing epithermal veins cut basement rocks. In the Canada Honda district, the most important mineral deposits are the Diente Verde gold-rich porphyry copper deposit and low-sulfidation epithermal gold and base-metal veins hosted by both basement and coeval volcanics.

There is no strong evidence of gold-bearing mineral deposits on the eastern side of the volcanic belt. However, there are hydrothermal alteration zones at Cerros del Rosario and El Morro as well as traces of gold at the Santa Isabel calcareous onyx deposit and inside the Sierra del Morro caldera. In addition, favorable volcanic structures, such as the calderas at Tiporco, Cerro Lomita, and El Morro, make the eastern side of the belt an interesting target for mineral exploration.  相似文献   

13.
《Applied Geochemistry》2000,15(5):599-609
The effects of agriculture on the isotope geochemistry of Sr were investigated in two small watersheds in the Atlantic coastal plain of Maryland. Stratified shallow oxic groundwaters in both watersheds contained a retrievable record of increasing recharge rates of chemicals including NO3, Cl, Mg, Ca and Sr that were correlated with increasing fertilizer use between about 1940 and 1990. The component of Sr associated with recent agricultural recharge was relatively radiogenic (87Sr/86Sr=0.715) and it was overwhelming with respect to Sr acquired naturally by water–rock interactions in the oxidized, non-calcareous portion of the saturated zone. Agricultural groundwaters that penetrated relatively unoxidized calcareous glauconitic sediments at depth acquired an additional component of Sr from dissolution of early Tertiary marine CaCO3 (87Sr/86Sr=0.708) while undergoing O2 reduction and denitrification. Ground-water discharge contained mixtures of waters of various ages and redox states. Two streams draining the area are considered to have higher 87Sr/86Sr ratios and NO3 concentrations than they would in the absence of agriculture; however, the streams have consistently different 87Sr/86Sr ratios and NO3 concentrations because the average depth to calcareous reducing (denitrifying) sediments in the local groundwater flow system was different in the two watersheds. The results of this study indicate that agriculture can alter significantly the isotope geochemistry of Sr in aquifers and streams and that the effects could vary depending on the types, sources and amounts of fertilizers added, the history of fertilizer use and groundwater residence times.  相似文献   

14.
《Applied Geochemistry》1988,3(2):185-203
Chemical and isotopic analyses of water from drill holes and mines throughout the Fennoscandian Shield show that distinct layers of groundwater are present. An upper layer of fresh groundwater is underlain by several sharply differentiated saline layers, which may differ in salinity, relative abundance of solutes, and O, H, Sr and S isotope signature. Saline groundwater can be classified into four major groups based on geochemistry and presumed origin. Brackish and saline waters from 50–200 m depth in coastal areas around the Baltic Sea exhibit distinct marine chemical and isotopic fingerprints, modified by reactions with host rocks. These waters represent relict Holocene seawater. Inland, three types of saline groundwater are observed: an uppermost layer of brackish and saline water from 300–900 m depth; saline water and brines from 1000–2000 m depth; and superdeep brines which have been observed to a depth of at least 11 km in the drill hole on the Kola Peninsula, U.S.S.R. Electrical and seismic studies in shield areas suggest that such brines are commonly present at even greater depths. The salinity of all inland groundwaters is attributed predominantly to water-rock interaction. The main solutes are Cl, Ca, Na and Mg in varying proportions, depending on the host rock lithology. The abundance of dissolved gases increases with depth but varies from site to site. The main gas components are N2, CH4 (up to 87 vol.%) and locally H2. The δ13C value for methane is highly variable (−25 to −46%), and it is suggested that hydrothermal or metamorphic gases trapped within the surrounding rocks are the most obvious source of CH4. The uppermost saline water has meteoric oxygen-hydrogen isotopic compositions, whereas values from deeper water plot above the meteoric water line, indicating considerably longer mean residence time and effective low temperature equilibration with host rocks. Geochemical and isotopic results from some localities demonstrate that the upper saline water cannot have been formed through simple mixing between fresh water and deep brines but rather is of independent origin. The source of water itself has not been satisfactorily verified although superdeep brines at least may contain a significant proportion of relict Precambrian hydrothermal or metamorphic fluids.  相似文献   

15.
Vein-type fluorite deposits in the southern part of the Sierras Pampeanas, Córdoba Province, Argentina, occur mainly hosted by calc-alkaline porphyritic biotite granites, which belong to the Paleozoic, post-tectonic Cerro Aspero batholith. The fluorite veins, of Cretaceous age, occupy steeply dipping, strike-slip regional fault zones, and are composed of fluorite and chalcedony, locally with subordinate amounts of pyrite and, in some cases, coffinite and pitchblende. These veins show typical open-space-filling textures and are closely related to pervasive silicic and argillic alteration of the host granite.

Three successive stages of mineralization were distinguished on the basis of vein chronology, REE data, and fluid-inclusion study in fluorite ores. These stages generally display slightly fractionated REE patterns (La/Yb = 1.4 to 14), with REE behavior given by a relatively stronger LREE fractionation with respect to HREE. The REE composition of the fluids responsible for fluorite deposition was largely controlled by differential mobility of the REE during the silicic or argillic alteration of the host granite. Preferential leaching of HREE over LREE occurred during both alteration types, but in the argillic alteration the LREE were practically not removed. The total homogenization of primary-like aqueous inclusions took place invariably in the liquid phase at temperatures ranging from 187°C to 103°C, with concentrations of values around 160°C, 136°C, and 116°C (stages I, II, and III, respectively), defining a clear trend of fluid cooling. This cooling is accompanied by large changes in the fO2 of the fluid, from oxidizing to reducing, as inferred from the Eu/Eu? ratios and the mineral assemblage (pyrite, pitchblende, and coffinite).

The three stages of fluorite deposition exhibit temperatures of ice melting within the interval from ?0.3°C to +0.4° C, indicating that the mineralizing fluids were exclusively aqueous and highly dilute. No evidence of fluid mixing or boiling was found. The fluid-inclusion data suggest that the proposed three stages of mineralization probably were the result of a single hydrothermal event, and strongly support a single, uniform fluid reservoir for the ore-forming solutions; evidently, the latter were heated meteoric waters rather than fluids generated in deep-seated environments within the crust.  相似文献   

16.
Provenance studies have been performed utilising major and trace elements, Nd systematics, whole rock Pb–Pb isotopes and zircon U/Pb SHRIMP data on metasedimentary rocks of the Sierra de San Luis (Nogolí Metamorphic Complex, Pringles Metamorphic Complex, Conlara Metamorphic Complex and San Luis Formation) and the Puncoviscana Formation of the Cordillera Oriental. The goal was the characterisation of the different domains in the study area and to give insights to the location of the source rocks. An active continental margin setting with typical composition of the upper continental crust is depicted for all the complexes using major and trace elements. The Pringles Metamorphic Complex shows indications for crustal recycling, pointing to a bimodal provenance. Major volcanic input has to be rejected due to Th/Sc, Y/Ni and Cr/V ratios for all units. The εNd(540 Ma) data is lower for the San Luis Formation and higher for the Conlara Metamorphic Complex, as compared to the other units, in which a good consistency is given. This is similar to the TDM ages, where the metapsammitic samples of the San Luis Formation are slightly older. The spread of data is largest for the Pringles Metamorphic Complex, again implying two different sources. The whole rock 207Pb/206Pb isotopic data lies in between the South American and African sources, excluding Laurentian provenances. The whole rock Pb–Pb data is almost indistinguishable in the different investigated domains. Only the PMC shows slightly elevated 208Pb/204Pb values. Possible source rocks for the different domains could be the Quebrada Choja in the Central Arequipa–Antofalla domain, the Southern domain of the Arequipa–Antofalla basement, the Brazilian shield or southern Africa. Zircon SHRIMP data point to a connection between the Puncoviscana Formation and the Conlara Metamorphic Complex. Two maxima around 600 Ma and around 1000 Ma have been determined. The Nogolí Metamorphic Complex and the Pringles Metamorphic Complex show one peak of detrital zircons around 550 Ma, and only a few grains are older than 700 Ma. The detrital zircon ages for the San Luis Formation show age ranges between 590 and 550 Ma. A common basin can be assumed for the Conlara Metamorphic Complex and the Puncoviscana Formation, but the available data support different sources for the rest of the Complexes of the Sierra de San Luis. These share the diminished importance or the lack of the Grenvillian detrital peak, a common feature for the late Cambrian–early Ordovician basins of the Eastern Sierras Pampeanas, in contrast to the Sierras de Córdoba, the PVF and the Conlara Metamorphic Complex.  相似文献   

17.
Here new data from field bioremediation experiments and geochemical modeling are reported to illustrate the principal geochemical behavior of As in anaerobic groundwaters. In the field bioremediation experiments, groundwater in Holocene alluvial aquifers in Bangladesh was amended with labile water-soluble organic C (molasses) and MgSO4 to stimulate metabolism of indigenous SO4-reducing bacteria (SRB). In the USA, the groundwater was contaminated by Zn, Cd and SO4, and contained <10 μg/L As under oxidized conditions, and a mixture of sucrose and methanol were injected to stimulate SRB metabolism. In Bangladesh, groundwater was under moderately reducing conditions and contained ∼10 mg/L Fe and ∼100 μg/L As. In the USA experiment, groundwater rapidly became anaerobic, and dissolved Fe and As increased dramatically (As > 1000 μg/L) under geochemical conditions consistent with bacterial Fe-reducing conditions. With time, groundwater became more reducing and biogenic SO4 reduction began, and Cd and Zn were virtually completely removed due to precipitation of sphalerite (ZnS) and other metal sulfide mineral(s). Following precipitation of chalcophile elements Zn and Cd, the concentrations of Fe and As both began to decrease in groundwater, presumably due to formation of As-bearing FeS/FeS2. By the end of the six-month experiment, dissolved As had returned to below background levels. In the initial Bangladesh experiment, As decreased to virtually zero once biogenic SO4 reduction commenced but increased to pre-experiment level once SO4 reduction ended. In the ongoing experiment, both SO4 and Fe(II) were amended to groundwater to evaluate if FeS/FeS2 formation causes longer-lived As removal. Because As-bearing pyrite is the common product of SRB metabolism in Holocene alluvial aquifers in both the USA and Southeast Asia, it was endeavored to derive thermodynamic data for arsenian pyrite to better predict geochemical processes in naturally reducing groundwaters. Including the new data for arsenian pyrite into Geochemist’s Workbench, its stability field completely dominates in reducing Eh–pH space and “displaces” other As-sulfides (orpiment, realgar) that have been implied to be important in previous modeling exercises and reported in rare field conditions.  相似文献   

18.
New geochronological and geochemical data are reported for the San Blas Pluton (SBP), in the northwestern Sierra de Velasco, Sierras Pampeanas, which intrudes Ordovician granitoids developed during the Famatinian orogeny. A precise Carboniferous age of 340±3 Ma is established by U–Pb dating of zircon using a sensitive high-resolution ion microprobe (SHRIMP). The SBP illustrates several petrological and geochemical characteristics of previously reported Carboniferous granitoids in the Sierras Pampeanas. Their generation is consistent with a regional reheating of the crust at approximately 342 Ma, which resulted in the formation of relatively large amounts of granitic melts that were emplaced in higher crustal levels along master fractures (older master shear zones of Lower Paleozoic age). The SBP can be chemically defined as a typical A-type granitoid related to postcollisonal or postorogenic magmatism. Its high REE content and extraordinarily high U and Th concentrations may have economic significance. Many previously published Devonian and Carboniferous K–Ar dates are reset Ordovician ages, but the existence of other Carboniferous bodies in the Sierra de Velasco cannot be discounted until detailed mapping of the whole Sierra is completed.  相似文献   

19.
《International Geology Review》2012,54(11):1040-1053
The Ordovician Famatinian-age magmatic cordierite-andalusite-bearing Capillitas batholith, in the Pampean Ranges of northwestern Argentina, encompasses a coarsely porphyritic to equigranular two-mica monzogranite with equigranular, fine-grained, late leucogranitic muscovite-rich facies. This batholith exhibits sharp, discordant contacts with low-pressure biotite-andalusite-cordierite schists of the La Cébila Formation, locally developing biotite-cordierite-muscovite-bearing contact hornfels aureoles.

The two-mica monzogranite contains cordierite, andalusite, and sillimanite, although cordierite and andalusite are more abundant in the leucogranitic equigranular facies. These minerals are not homogeneously distributed and the three minerals are found together only locally. The presence of biotite-rich xenoliths with a high amount of anhydrous aluminum silicates (andalusite, sillimanite) and cordierite, exhibiting textures similar to those of the host monzogranites, suggest that, at least in part, they have been incorporated into the magma and reequilibrated. The pressure during emplacement was probably 4 kbar under near-solidus temperature, thus preserving the anhydrous aluminum-silicate stability under high H2O activity.

The major-element data indicate a peraluminous calc-alkalic trend with compositional gaps. They attest to the existence of two distinct magma pulses. The chondrite-normalized REE patterns and multi-element spidergrams point to a probable origin by crustal (metasediment?) anatexis for both pulses. Peraluminous granitic magma cannot be a primary melt of metaluminous quartz-amphibolite, since there is a great geochemical homogeneity of all the granitoids. Igneous xenoliths are absent and the isotopic compositions of the granitoids correspond to those of metasedimentary sources. Both major and trace elements point to a collisional tectonic environment of an inner-continental magmatic arc.  相似文献   

20.
The crystalline basement of the Sierra de San Luis, which belongs to the Eastern Sierras Pampeanas in central Argentina, consists of three main units: (1) Conlara, (2) Pringles, and (3) Nogolí metamorphic complexes. In the Pringles Metamorphic Complex, mafic–ultramafic bodies occur as discontinuous lenses along a narrow central belt concordant with the general NNE–SSW structural trend. A metamorphic gradient from granulite to greenschist facies is apparent on both sides of the mafic–ultramafic bodies. This work focuses on the characteristics of the mylonitization overprinted on the mafic–ultramafic intrusives in the Pringles Metamorphic Complex and their gneissic–migmatitic surroundings, both previously metamorphosed within the granulite facies. Petrogenetic grid and geothermobarometry applied to the paragenesis equilibrated during the mylonitic event, together with mineral deformation mechanisms, indicate that mafic and adjacent basement mylonites developed under upper amphibolite transitional to granulite facies metamorphic conditions at intermediate pressures (668–764 °C, 6.3–6.9 kbar, 0.3 < XCO2 < 0.7). However, the following mylonitic assemblages can be distinguished from the external limits of the Pringles Metamorphic Complex to its center: lower amphibolite facies  middle amphibolite facies  upper amphibolite transitional to granulite facies. Geothermobarometry applied to mylonitic assemblages indicate a temperature gradient from 555 °C to 764 °C and pressures of 6–7 kbar for the mylonitic event. This event is considered to have developed on a preexisting temperature gradient attributed to the intrusion of mafic–ultramafic bodies. The concentration of sulfides in mylonitic bands and textural relationships provide evidence of remobilization of primary magmatic sulfides of the mafic–ultramafic rocks (+PGM) during the mylonitic event. A lower-temperature final overprint produced brittle fracturing and localized retrogression on mafic–ultramafic minerals and ores by means of a water-rich fluid phase, which gave rise to a serpentine + magnetite ± actinolite association. Concordantly in the adjacent country rocks, fluids channeled along preexisting mylonitic foliation planes produced local obliteration of the mylonitic texture by a randomly oriented replacement of the mylonite mineralogy by a chlorite + sericite/muscovite + magnetite assemblage. Observed mineral reactions combined with structural data and geothermobarometry suggest a succession of tectonometamorphic events for the evolution of the Pringles Metamorphic Complex of Sierra de San Luis, developed in association with a counterclockwise PTd path. The most likely geological setting for this type of evolution is a backarc basin, associated with east-directed Famatinian subduction initiated in Mid-Cambrian times and closed during the collision of the allochthonous Precordillera terrane in Mid-Ordovician times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号