首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为探究石英闪长玢岩成因及幔源基性岩浆对斑岩铜矿的贡献,本文选取德兴矿床石英闪长玢岩开展了锆石U-Pb定年、Hf同位素和全岩地球化学研究。获得石英闪长玢岩LA-ICP-MS锆石U-Pb年龄为169 Ma,与成矿花岗闪长斑岩侵位时间一致,岩体为中侏罗世岩浆活动的产物。石英闪长玢岩具有低的SiO2(58.41%~63.12%)和K2O(1.68%~2.94%)含量及A/CNK值(0.85~1.04),富集大离子亲石元素和轻稀土元素,亏损高场强元素Nb、Ta、Ti和重稀土元素,属于钙碱性到高钾钙碱性系列岩石。具有相对亏损的锆石Hf同位素组成,εHf(t)=2.20~7.93(最大值7.93),指示其源区为岩石圈地幔。锆石稀土元素配分模式图显示出明显的正Ce异常,岩浆氧逸度(lg fO2)为-20.05~-6.66,达到磁铁矿-赤铁矿氧逸度等级,指示石英闪长玢岩结晶自高氧逸度岩浆。全岩地球化学特征显示,德兴石英闪长玢岩与成矿花岗闪长斑岩及其暗色包体符合岩浆混合的演化趋势,说明成矿花岗闪长斑岩可能是中侏罗世幔源基性岩浆和地壳酸性岩浆大规模混合作用的产物,并且石英闪长玢岩代表了岩浆混合过程中的幔源基性端员。结合前人研究成果,认为在中侏罗世伸展构造背景下,软流圈物质上涌导致新元古代受交代的岩石圈地幔部分熔融形成幔源基性岩浆,基性岩浆的底侵作用诱发下地壳物质熔融并与之发生一定程度的岩浆混合作用,形成了花岗闪长斑岩的母岩浆。高氧逸度幔源岩浆的加入可抑制斑岩体系硫化物的过早饱和,同时为德兴矿床注入了成矿所需的部分挥发分和金属元素。  相似文献   

2.
甲玛矿区的岩浆岩为二长花岗斑岩、花岗闪长斑岩、(石英)闪长玢岩和花岗斑岩,是两种不同的岩石演化序列。花岗斑岩的斜长石矿物为偏酸性的斜长石,副矿物中具有钛铁矿,K2O/Na2O值较低,显示了S型花岗岩的特征。花岗斑岩是壳源熔融产生,在其演化的过程中,结晶分异起着主导作用。通过S型花岗岩的地质特征以及化学元素的定量模型的变化趋势来研究甲玛花岗斑岩的演化序列,体现结晶分异作用的特征及成矿机理。通过分析甲玛花岗斑岩地质特征、地球化学特征及结晶分异作用对花岗斑岩的成矿机理,得出甲玛矿区具有W、Sn矿的形成  相似文献   

3.
王翠云  李晓峰  肖荣  白艳萍  杨锋  毛伟  蒋松坤 《岩石学报》2012,28(12):3869-3886
德兴铜矿是中国华南地区重要的大型斑岩铜矿,由朱砂红、铜厂和富家坞3个矿床组成。在系统的钻孔样岩相观察基础上,本文把德兴朱砂红花岗闪长斑岩划分为3种类型蚀变岩(钾化-黑云母化蚀变岩、绿泥石化蚀变岩、石英-绢(白)云母化蚀变岩),其主要标志性蚀变矿物依次为:钾长石(黑云母)→绿泥石→石英+绢(白)云母,且热液蚀变程度依次增强。以Al2O3作为不活动组分,通过Isocon分析法表明:随着热液蚀变作用的持续进行,蚀变程度的逐渐增强,主量元素(P2O5)行为较稳定,Na2O、Sr元素大量活化迁出;高场强元素Hf、Th、U、V、Co、Nb、Ta等表现为弱活动性或不活动性;成矿元素Cu、Pb、W显示出大量带入,表明热液流体和成矿流体可能属于同一流体系统。稀土元素均发生一定程度的活化迁移,其中绿泥石化蚀变岩的LREE、HREE均较原岩亏损,而石英-绢(白)云母化花岗闪长斑岩的LREE、HREE富集/亏损情况因样品而异,相对增量/减量变化幅度较大。各类蚀变花岗闪长斑岩球粒陨石化配分模式表现较一致,均为轻稀土相对于重稀土富集的右倾分布,极弱Eu负异常,曲线左陡右平缓,尾部轻微上翘,形似铲状,反映岩浆源区角闪石的分离结晶作用。蚀变花岗闪长斑岩的Y/Ho比值与球粒陨石的Y/Ho比值基本一致,表明Y-Ho在热液蚀变过程中未发生明显分离。弱蚀变花岗闪长斑岩具有较高Sr/Y比值、La/Sm比值以及中等Sm/Yb比值,暗示源区残留相主要为角闪石±石榴子石。  相似文献   

4.
浙江洋滨斑岩锡矿的同位素地质研究   总被引:4,自引:2,他引:4  
洋滨斑岩锡矿的含矿母岩为燕山晚期黄玉花岗斑岩。高的(^87Sr/^86Sr)1和^207Pb/^204Pb值表明,它主要来源于地壳物质。根据氧,氧,硫,铅和锶同位素数据并结合矿床地质特征,笔者认为,成矿流全由岩浆水和大气降水混合组成,成矿物质主要原源于花岗斑岩,部分可能源于基底变质岩。  相似文献   

5.
德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学   总被引:38,自引:10,他引:38  
德兴斑岩铜矿区的成矿斑岩的形成时代一直存在争议。本文对铜厂、富家钨花岗闪长斑岩进行了SHRIMP锆石U-Pb年代学研究。研究结果显示:(1)铜厂花岗闪长斑岩样品中锆石15个分析点的206Pb/238U年龄为165~177Ma.206Pb/238U年龄的加权平均值为171±3 Ma;(2)富家钨花岗闪长斑岩样品中锆石15个分析点的206Pb/238U年龄为166-177Ma,206Pb/238U年龄的加权平均值也为171±3 Ma。因此,德兴花岗闪长斑岩形成于中侏罗世(171±3 Ma)。该年龄与德兴斑岩铜矿区辉钼矿的Re-Os同位素年龄(173 Ma)在误差范围内一致,暗示了成岩成矿的一致性。德兴花岗闪长斑岩的形成时代与华南地区许多A型花岗岩,双峰式或板内火成岩和矿床的形成时代也大致一致,同时也与赣-杭裂谷带的活动时间一致,表 明德兴斑岩铜矿和花岗闪长斑岩形成于一个伸展的动力学背景下。另外,德兴花岗闪长斑岩很少有老的继承锆石以及其高的εNd(t)(-1.14- 1.80)和极低的初始87St/86Sr比值(0.7044-0.7047),暗示古老的地壳物质对其贡献并不明显,地幔物质可能在德兴花岗闪长斑岩的成因中发挥了重要作用。再结合其具有的埃达克质岩的元素地球化学特征。本文认为德兴花岗闪长斑岩很可能由拆沉下地壳物质的熔融形成。  相似文献   

6.
江西德兴铜厂铜矿水-岩体系氢氧同位素演化   总被引:10,自引:0,他引:10       下载免费PDF全文
张理刚  刘敬秀 《地质科学》1996,31(3):250-263
江西铜厂铜矿床露天采场岩石76个全岩氧同位素组成表明,该超大型铜矿的形成与具有5个水-岩交换成矿体系汇集在一起有关。水-岩体系计算表明,成矿流体储库形成是大气降水与千枚岩和花岗闪长斑岩在300℃以及W/R比值为0.5左右条件下形成,而后上升进入矿化沉积体系时温度降低,W/R比值超过10.0,计算的最少水量达1.9×1010t以上。  相似文献   

7.
姚家岭锌金多金属矿床位于铜陵矿集区东部,其形成与小青塘花岗闪长斑岩密切相关.然而,前人对该岩体的研究仍较少,为了深入认识姚家岭矿区的成矿作用,利用岩石地球化学的方法,对花岗闪长斑岩及锆石特征进行研究,结果表明:花岗闪长斑岩具有较高的SiO2,K2O/Na2O比值为0.68~1.02,为I型花岗岩,属于高钾钙碱性系列;锆石具有明显的环带结构,Th/U比值为0.34~1.20,为典型的岩浆锆石;锆石的206Pb/238 U加权平均年龄为141.0±1.7 Ma,说明花岗闪长斑岩形成于早白垩世;锆石的εHf(t)为-22.5~-9.2,Hf同位素两阶段模式年龄为1 639~2 620Ma,表明形成花岗闪长斑岩的岩浆是古元古代地壳岩石部分熔融的产物.此外,研究还表明,花岗闪长斑岩的结晶温度为558~739℃,成岩压力为50~250MPa.  相似文献   

8.
云南迪庆春都斑岩铜矿床同位素地球化学   总被引:1,自引:0,他引:1  
春都铜矿床为近年来新发现的斑岩型铜多金属矿床,矿体主要赋存于花岗闪长斑岩及岩体与圈岩接触带内.文章对春都斑岩铜矿床的同位素地球化学进行研究,分析表明:硫同位素组成具幔源硫特征,硫主要来源于深部岩浆,同时有少量地壳沉积物还原硫的混入;铅同位素组成具有壳、幔混合源特征,主要来自于下地壳或上地幔.成矿流体以原始岩浆水为主,同...  相似文献   

9.
五子骑龙矿床——被改造的斑岩铜矿上部带   总被引:8,自引:1,他引:8  
五子骑龙矿床产于紫金山矿田的一个早白垩世火山管道旁侧。火山管道中充填的英安斑岩向深部逐渐相变为花岗闪长斑岩。由于后期断裂的破坏,该花岗闪长斑岩及其矿化系统被上冲到与五子骑龙矿床相邻的中寮矿床近地表位置,从而形成斑岩型铜矿床-中寮矿床。五子骑龙矿床中,环绕英安斑岩发育明矾石化、迪开石化、埃洛石化和红柱石化蚀变,这些蚀变是改造并叠加早期绢英岩化蚀变的结果。其铜矿石中的铜蓝、硫砷铜矿和蓝辉铜矿,也经常交  相似文献   

10.
煎茶岭金矿床位于勉略宁三角区东北缘,矿体产于环绕超基性岩体分布的含金蚀变带中,属蚀变岩型矿床。由于对其成矿作用认识分歧较大,严重影响了后续的找矿勘探工作。从矿床地质特征入手,通过矿区岩矿石常量元素、微量元素、稀土元素以及硫、氢、氧同位素的测试分析,探讨其控矿因素和成矿机理。结果表明,矿床受叠加于接触带部位的韧脆性剪切带控制,成矿不仅与超基性岩有关,而且与花岗斑岩关系密切。花岗斑岩的侵入引起超基性岩的彻底蚀变,同时导致原岩中的金等成矿物质被释放出来。矿石、蚀变超基性岩、白云岩中黄铁矿的硫同位素组成与花岗斑岩中黄铁矿的硫同位素组成具有较好的一致性,并表现出一定的规律性,说明花岗斑岩提供了成矿所需的硫;矿石氢、氧同位素组成介于岩浆水与大气降水之间,且多数样品聚集在雨水线附近,暗示花岗斑岩提供了初始热液,随着成矿作用的进行,大气降水不断加入,从而形成复合热液。鉴于矿床与花岗斑岩的密切关系以及铬云母化的产出特点,根据同位素年龄,认为矿床形成于印支中期—燕山中期。  相似文献   

11.
江西德兴铜厂铜矿水-岩体系氢氧同位素演化   总被引:4,自引:0,他引:4       下载免费PDF全文
 江西铜厂铜矿床露天采场岩石76个全岩氧同位素组成表明,该超大型铜矿的形成与具有5个水-岩交换成矿体系汇集在一起有关。水-岩体系计算表明,成矿流体储库形成是大气降水与千枚岩和花岗闪长斑岩在300℃以及W/R比值为0.5左右条件下形成,而后上升进入矿化沉积体系时温度降低,W/R比值超过10.0,计算的最少水量达1.9×1010t以上。  相似文献   

12.
江西铜厂斑岩铜(钼金)矿床是德兴斑岩矿集区最大的矿床.文章根据铜厂矿床发育的钾硅酸盐化、绢英岩化、青磐岩化蚀变组合特征,和已厘定的铜厂矿床脉体类型,选取代表不同蚀变矿化阶段的石英、黑云母、绢云母及绿泥石等,进行单矿物的H、O同位素测试.石英和黑云母单矿物O同位素,与石英、黑云母平衡流体的δ 18O 值和δD值联合示踪结果显示,铜厂矿床早期A脉(不规则疙瘩状A1脉、石英-黑云母A2脉和石英-磁铁矿A4脉)和中期B脉(矿物组合为石英-黄铁矿+黄铜矿±辉钼矿±斑铜矿)形成时,成矿热液均为岩浆流体来源,但B脉可能混入了少量大气降水;晚期低温D脉和碳酸岩脉(180~200℃)的成矿热液全部为大气降水来源.斑晶黑云母平衡水的δ 18O和δD值变化范围较大表明,黑云母形成时的热液系统主要为岩浆水,局部受区域变质水和大气降水的混染,也可能与少量黑云母斑晶受到后期绿泥石化、水云母化蚀变有关.绿泥石蚀变主要由岩浆流体作用形成,但混入了一些大气降水,导致其δ 18O值少量降低.绢云母平衡的水的δ18O值和δD值(4.6‰和-19.4‰)表明,绢云母是大气降水与千枚岩共同作用的结果.总体来说,铜厂矿床钾硅酸盐化、绿泥石化蚀变,以及钾硅酸盐化阶段形成的A脉和B脉,均由岩浆流体作用引起,大气降水在绿泥石化阶段进入蚀变-矿化系统,而绢云母化、晚期低温D脉和碳酸盐脉均是大气降水作用的产物.  相似文献   

13.
The Dexing deposit is located in a NE‐trending magmatic belt along the southeastern margin of the Yangtze Craton. It is the largest porphyry copper deposit in China, consisting of three porphyry copper orebodies of Zhushahong, Tongchang and Fujiawu from northwest to southeast. It contains 1168 Mt of ores with 0.5% Cu and 0.01% Mo. The Dexing deposit is hosted by Middle Jurassic granodiorite porphyries and pelitic schist of Proterozoic age. The Tongchang granodiorite porphyry has a medium K cal‐alkaline series, with medium K2O content (1.94–2.07 wt%), and low K2O/(Na2O + K2O) (0.33–0.84) ratios. They have high large‐ion lithophile elements, high light rare‐earth elements, and low high‐field‐strength elements. The hydrothermal alteration at Tongchang is divided into four alteration mineral assemblages and related vein systems. They are early K‐feldspar alteration and A vein; transitional (chlorite + illite) alteration and B vein; late phyllic (quartz + muscovite) alteration and D vein; and latest carbonate, sulfate and oxide alteration and hematite veins. Primary fluid inclusions in quartz from phyllic alteration assemblage include liquid‐rich (type 1), vapor‐rich (type 2) and halite‐bearing ones (type 3). These provide trapping pressures of 20–400 ´ 105 Pa of fluids responsible for the formation of D veins. Igneous biotite from least altered granochiorite porphyry and hydrothermal muscovite in mineralized granodiorite porphyry possess δ18O and δD values of 4.6‰ and ?87‰ for biotite and 7.1–8.9‰, ?71 to ?73‰ for muscovite. Stable isotopic composition of the hydrothermal water suggests a magmatic origin. The carbon and oxygen isotope for hydrothermal calcite are ?4.8 to ?6.2‰ and 6.8–18.8‰, respectively. The δ34S of pyrite in quartz vein ranges from ?0.1 to 3‰, whereas δ34S for chalcopyrite in calcite veins ranges from 4 to 5‰. These are similar to the results of previous studies, and suggest a magmatic origin for sulfur. Results from alteration assemblages and vein system observation, as well as geochemical, fluid inclusion, stable isotope studies indicate that the involvement of hydrothermal fluids exsolved from a crystallizing melt are responsible for the formation of Tongchang porphyry Cu‐Mo orebodies in Dexing porphyry deposit.  相似文献   

14.
碾子山晶洞碱性花岗岩矿物-水氧同位素交换反应动力学   总被引:4,自引:0,他引:4  
对黑龙江碾子山碱性花岗岩的全岩及其主要单矿物进行了氧同位素分析,结果表明,全岩和单矿物不仅δ^18O 值变化范围较大(全岩-2.4-2.0‰,石英0.0-5.8‰,碱性长石-3.8-0.1‰,磁铁矿-8.5-1.0‰),而且强烈亏损^18O。共生矿物之间表现出明显不平衡的氧同位素分馏特征,指示在花岗岩侵位之后与水之间发生了同位素交换,根据锆石和现代大气降水的氧同位素组成,对岩石与外来流体的δ^18O值进行了估计,多维矿水-岩反应时限约为0.3-3Ma,水/岩比(氧摩尔比)介于0.11-1.02之间。水-岩反应温度较高(约400度)和反应时间较长是导致石英δ^18O值降低的主要原因。  相似文献   

15.
华东南相山铀矿田的氢氧同位素地球化学研究   总被引:2,自引:0,他引:2       下载免费PDF全文
矿物及包裹体水的氢氧同位素组成的研究结果表明,相山铀矿田成矿热液的δ^18O与δD值分别变化于-67‰--7.2‰(SMOW)和-44.1‰--5.2‰,属大气降水成因流体,蚀变体系δ^18O的变化情况显示,与岩石作用的流体具低δ^18O的降水特征,不同水/岩比值条件下的水-岩同位素平衡交换反应的理论计算和综合分析揭示,本矿田的铀成矿热液起源于大气降水与相山主要岩石的相互作用,岩浆水对成矿热液的贡献不大。  相似文献   

16.
德兴斑岩铜矿成矿过程的氧、锶、钕同位素证据   总被引:10,自引:0,他引:10  
为探讨德兴铜厂斑岩铜矿床成矿热液流体的来源、作用范围、时空演化及Cu在热液流体中的行为和迁移方向等重要问题,对采集于该矿床南部不同蚀变程度的岩石进行了氧、锶、钕同位素分析,结果表明,虽然与铜三斑岩铜矿成矿过程有关的热液流体至少有3种,包括高温岩浆流体、来自深部围岩的非岩浆流体和大气降水,但是起主导作用的是岩浆流体,钕、锶同位素在空间上的变化表明,在成矿流体形成及演化过程中,锶同位素值由斑岩体内部向围岩接触带有规律地升高(0.705→0.711),指示了矿床是因热液流体将成矿元素从岩体内部迁移到接触带附近富集而成的,它符合斑岩铜矿的正岩浆模式,而钕同位素则相对稳定,可作为蚀变侵入体岩浆起源的示踪剂。  相似文献   

17.
通过矿床地质特征、流体包裹体及氧、氢稳定同位素的研究,认为马家窑金矿属再平衡岩浆热液矿床,金青顶和十里铺金矿属大气降水热液矿床。马家窑金矿石英的δD、δ18O值高,变化小,比较稳定;蚀变岩石的δ18O在磺向上由围岩向矿脉逐渐升高。金青顶和十里铺金矿石英的δD、δ18O值低、变化大;蚀变岩石的δ18O值由地表向深部逐渐降低。开展金矿的氮稳定同泣素研究,在国内尚数首次。马家窑金矿36Ar在温度300℃以下相对含量不到10%,金青顶和十里铺金矿36Ar则达90%以上,表明前者以岩浆成因40Ar为代表,后者则以大气氩36Ar为代表,进而表明马家窑金矿是再平衡岩浆热液成因,金青顶和十里辅金矿是大气降水热液成因。示踪结果与H、O同位素一致,表明氩同位素在示踪成矿热液、矿床成因研究方面是一种较为有效的手段。  相似文献   

18.
The skarn‐type tungsten deposit of the Date‐Nagai mine is genetically related to the granodiorite batholith of the Iidateyama body. Skarn is developed along the contact between pelitic hornfels and marble that remains as a small roof pendant body directly above the granodiorite batholith. Zonal arrangement of minerals is observed in skarn. The zonation consists of wollastonite, garnet, garnet‐epidote, and vesuvianite‐garnet zones, from marble to hornfels. Sheelite is included in garnet, garnet‐epidote, and vesuvianite‐garnet zones. The oxygen isotope values of skarn minerals were obtained as δ18O = 4.2–7.7‰ for garnet, 5.9–6.9‰ for vesuvianite, ?0.3–3.4‰ for scheelite, 6.0–10.9‰ for quartz, and 8.2‰ for muscovite. The temperature of skarn‐formation was calculated from oxygen isotopic values of scheelite‐quartz pairs to be 288°C. Calculated oxygen isotope values of fluid responsible for skarn minerals were 6.1–9.5‰ for garnet, 1.2–4.8‰ for scheelite, ?1.3‐3.6‰ for quartz, and 4.5‰ for muscovite. Garnet precipitated from the fluids of different δ18O values from scheelite, quartz, and muscovite. These δ18O values suggest that the origin of fluid responsible for garnet was magmatic water, while evidence for the presence of a meteoric component in the fluids responsible for middle to later stages minerals was confirmed.  相似文献   

19.
四川省石棉县大水沟碲矿床成矿物质来源的一些证据   总被引:1,自引:0,他引:1  
该矿床是一个新矿床类型,成矿作用分为磁黄铁矿-黄铁矿、辉碲铋矿和黄铁矿-黄铜矿三个阶段。矿化围岩为三叠纪镁铁质火山岩。在矿脉周围广泛发育有以黑云母、白云母、石英和斜长石为代表的蚀变及分带,磁黄铁矿和辉碲铋矿的硫同位素值δ34S=-1.7‰-2.8‰,白云石和方解石的δ13CPDB=-5.3‰——7.42‰,δ18OSMOW=10.9‰-13.1‰。根据以硅质、碱质和富挥发组分为特征的围岩蚀变和S、O、C同位素信息,表明大水沟碲矿床的成矿物质来源与岩浆有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号