共查询到20条相似文献,搜索用时 0 毫秒
1.
Cometary material inevitably undergoes chemical changes before and on leaving the nucleus. In seeking to explain comets as the origin of many IDPs (interplanetary dust particles), an understanding of potential surface chemistry is vital. Grains are formed and transformed at the nucleus surface; much of the cometary volatiles may arise from the organic material. In cometary near-surface permafrost, one expects cryogenic chemistry with crystal growth and isotope. This could be the hydrous environment where IDPs form. Seasonal and geographic variations imply a range of environmental conditions and surface evolution. Interplanetary dust impacts and electrostatic forces also have roles in generating cometary dust. The absence of predicted cometary dust ‘envelopes’ is compatible with the wide range of particle structures and compositions. Study of IDPs would distinguish between this model and alternatives that see comets as aggregates of core-mantle grains built in interstellar clouds. 相似文献
2.
David W. Hughes 《Monthly notices of the Royal Astronomical Society》2000,316(3):642-646
The macro-features of the surface layer of a 'fresh' cometary nucleus are modelled by assuming that the dust and the snow particles of which it consists both have a mass distribution index of 1.65, and that the dust/gas mass ratio is 0.45. Conclusions are drawn as to how this model helps us to understand the cometary sublimation process and the cometary surface layer. The latter most probably consists of weak, low-density, friable, slightly dusty snow. Its ability effectively to support even the small weight of, say, the Rosetta landing probe is in considerable doubt. 相似文献
3.
N. C. Wickramasinghe M. K. Wallis S. Al-Mufti F. Hoyle D. T. Wickramasinghe 《Earth, Moon, and Planets》1988,40(1):101-108
Infrared observations of comets over the 2–4 m waveband are interpreted in terms of a model with varying contributions from bacterial-type and viral-type particles, and with small additional contributions arising from degraded organic molecules at grain surfaces. 相似文献
4.
K. Szegö 《Astrophysics and Space Science》1988,144(1-2):439-449
Considerations are summarized concerning the physical properties of and plasma phenomena around a cometary nucleus aiming at a new model of the nucleus and its interaction with the solar wind.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988. 相似文献
5.
A.H. Delsemme 《Icarus》1975,24(1):95-110
In order to prepare a flyby mission to Comet Encke, six different sources of information on the possible chemical composition of the cometary nucleus are compared. These are: the neutral and charged radicals and molecules observed in cometary spectra; the chemical composition of type I carbonaceous chondrites; the meteor spectra; the metallic ions collected in the upper atmosphere and correlated with the meteor shower associated with Comet Encke; and finally the volatile molecules observed in a volatile-rich sample of lunar soil, that were interpreted as a possible cometary impact. Possible molecular abundances for the volatile fraction of Comet Encke are tentatively proposed. 相似文献
6.
E. N. Slyuta 《Solar System Research》2009,43(5):443-452
Physical-mechanical properties of cometary nuclei matter are described in detail. As compared to other Solar System bodies,
cometary nuclei are characterized by low strength properties. The ultimate tensile strength of cometary matter and cometary
nuclei on the whole is about 2 kPa. An analysis performed based on a rheological model of a self-gravitating triaxial solid
body showed that cometary nuclei less than 50–60 km (this actually being all known comets) are characterized by a constant
ultimate tensile strength which is determined only by the matter composition and structure. The effective ultimate tensile
strength for bodies larger than 50–60 km is determined by the body mass and figure parameters and increases according to the
quadratic law depending on the body dimensions and mass. Such an increase of the effective strength can explain the absence
or deficit of cometary nuclei more than 60 km in size, since it can significantly affect the parameters of the parent body
destruction and the formation of a secondary population. The dependence of the mechanism and character of destruction on the
parameters of the figure for Kuiper objects more than 50–60 km is size can yield a deficit of the population of the bodies
whose figure parameters are a/c > 1.75 with respect to the bodies with a/c < 1.75 figure parameters. 相似文献
7.
Bradley T. De GREGORIO Rhonda M. STROUD George D. CODY Larry R. NITTLER A. L. DAVID KILCOYNE Sue WIRICK 《Meteoritics & planetary science》2011,46(9):1376-1396
Abstract– Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X‐ray absorption near‐edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen‐rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl‐containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule‐like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector. 相似文献
8.
It is shown that, as a consequence of the non-uniform temperature distribution of the cometary nucleus, large lateral pressure gradients are set up, which in turn drive strong lateral flows. However, at small heliocentric distances the onset of turbulence within a thin boundary layer destroys these steady lateal flows and the eventual outflow of gas from within the outer boundary of this layer is expected to be more or less radial. On the other hand, at large heliocentric distances, turbulence is unlikely to set in, and the lateral flows that are set up, may persist. Consequently, it is expected that the gas flow out of the cometary nucleus at these large distances to be highly non-radial. 相似文献
9.
P. Gronkowski 《Astronomische Nachrichten》2009,330(8):784-790
One explanation of the sudden changes in the brightness of comets is proposed based on the author's earlier suggestions involving the fragmentation of cometary grains. Within the inner coma, a core‐mantle model of the structure of grains is assumed. The proposed mechanism is a combination of electrostatic stress and thermodynamical fragmentation of the cometary grains water‐ice mantle. It has been shown that the vapour pressure of volatile inclusions placed in the waterice mantle of grains can increase sufficiently to cause their fragmentation. It takes place before grains can completely sublime into the vacuum away. Numerical calculations have been carried out for a large range of values of probable physical characteristics of cometary material. The proposed approach yields increases in cometary brightness consistent with observations of typical cometary outbursts. It is concluded that this approach can provide an explanation of the sudden change in activity of comets for a wide range of heliocentric distances (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
Joseph A. Nuth III 《Earth, Moon, and Planets》1989,47(1):33-50
Nucleation is a non-equilibrium process: the products of this process are seldom the most thermodynamically stable condensates but are instead those which form fastest. It should therefore not be surprising that grains formed in a circumstellar outflow will undergo some degree of metamorphism if they are annealed or are exposed to a chemically active reagent. Metamorphism of refractory particles continues in the interstellar medium (ISM) where the driving forces are sputtering by cosmic ray particles, annealing by high energy photons and grain destruction in supernova generated shocks. Studies of the depletion of the elements from the gas phase of the interstellar medium tell us that if grain destruction occurs with high efficiency in the ISM, then there must be some mechanism by which grains can be formed in the ISM. Various workers have shown that refractory mantles could form on refractory cores by radiation processing of organic ices. A similar process may operate to produce refractory inorganic mantles on grain cores which survived the supernova shocks. Most grains in a cloud which collapses to form a star will be destroyed; many of the surviving grains will be severely processed. Grains in the outermost regions of the nebula may survive relatively unchanged by thermal processing or hydration. It is these grains which we hope to find in comets. However, only those grains encased in ice at low temperature can be considered pristine since a considerable degree of hydrous alteration might occur in a cometary regolith if the comet enters the inner solar system. Some discussion of the physical, chemical and isotopic properties of a refractory grain at each stage of its life cycle will be attempted based on the limited laboratory data available to date. Suggestions will be made concerning types of experimental data which are needed in order to better understand the processing history of cosmic dust. 相似文献
11.
The shape and intensity distribution of tails for several large comets are estimated on the basis of grain properties in the solar radiation field. The following results are obtained: (1) The ratio of the maximum radiation pressure force to the gravitaional force acting on dust grains in cometary tails is found to be less than 2.5. This means that grains such as graphite particles in the size range 0.02–0.2 μm do not exist in them, because such particles would allow forces greater than 2.5 (2) Tail substances supplied near the time of perihelion passage for the Sun-grazing comet Ikeya-Seki (1965 VIII) and Comet Seki-Lines (1962 III) were composed of particular grains which had values of radiation pressure ratio less than 1.0. Therefore, it is concluded that the material was composed of silicate grains only, since iron grains had sublimated and there were no graphite particles. 相似文献
12.
《Icarus》1987,71(1):178-191
The recent discovery of CN and C2 gas jets in comet Halley has led to basic speculation as to their physical source mechanism. A basic quantitative study of the photosputtering of CHON grains and the spatial evolution of trace gas jets is presented here. Two possible single sources, a parent gas and CHON grains, for both the jet and the background gas, are also investigated. It is shown that a parent trace gas jet will remain focused out to distances as large as 105 km from the nucleus and could provide a source for the observed radical jets. Conversely, photosputtering of small CHON grains by solar UV radiation can provide the source not only for cometary CN and C2 but also possibly for inner coma C atoms and C+ ions. However, constraints on the size and/or morphology of the contributing grains themselves are found. Isotropic speed components comparable to the outflow speed are likely to be added to radicals upon production from either the CHON grain or the parent gas source and will yield a radical jet which becomes more diffuse with increasing distance from the nucleus. However, in neither case will the radical jet completely isotropicize; it will be confined generally to a quadrant as projected on the sky plane. Observational tests which can be made once the large set of in situ and remote observations have been analyzed are suggested to distinguish between the two scenarios. 相似文献
13.
P. Gronkowski 《Monthly notices of the Royal Astronomical Society》2009,397(2):883-889
The catastrophic thermodynamic destruction of large cometary heterogeneous grains lying on the surface of a comet nucleus is examined. The core–mantle grain-structure model is assumed. Grain fragmentation as an explanation of sudden changes in cometary brightness is proposed. The approach presented to the problem of cometary outbursts is a development of a previous author's paper. The proposed mechanism is based on the idea of thermodynamical destruction of heterogeneous cometary grains. Numerical simulations have been carried out for a wide range of values of physical characteristics of cometary material. The results obtained are consistent with observational data. The main conclusion of this paper is that thermodynamical fragmentation of large grains can explain variations in brightness and also outbursts of comets. 相似文献
14.
J. Svoreň 《Earth, Moon, and Planets》1995,68(1-3):539-544
Not considering very rare in situ measurements of cometary nuclei, observations of comets at large heliocentric distances are the only direct source of our knowledge on their sizes. Observations of a cometary nucleus in pure reflected sunlight, at the time when coma is absent, are the way in which the nucleus size can be estimated. Probabilities that extreme observations represent non—active stages of cometary nuclei and also reliability of derived cometary nucleus sizes are investigated. Statistical analysis is based on a sample of 2842 photometric observations of 67 long-period comets observed at large heliocentric distances. For any long-period comet, there is a probability of 2:3 that the sizes derived on the basis of observations at extreme distances are in good agreement with the real nucleus sizes. For new comets in Oort's sense the probability is 3:4 independent of investigated arcs of orbits. For old comets a chance to estimate correct sizes is 1:2 but on the pre-perihelion arc only 1:3. It is also demonstrated that a premature start of activity prior to perihelion or a longer fading after perihelion is more frequent than a short-time isolated activity at large heliocentric distances. 相似文献
15.
Joseph A. NUTH Frans J. M. RIETMEIJER Hugh G. M. HILL 《Meteoritics & planetary science》2002,37(11):1579-1590
Abstract— We review the results of our recent experimental studies of astrophysical dust analogs. We discuss the condensation of amorphous silicates from mixed metal vapors, including evidence that such condensates form with metastable eutectic compositions. We consider the spectral evolution of amorphous magnesium silicate condensates as a function of time and temperature. Magnesium silicate smokes anneal readily at temperatures of about 1000–1100 K. In contrast we find that iron silicates require much higher temperatures (?1300 K) to bring about similar changes on the same timescale (days to months). We first apply these results to infrared space observatory observations of crystalline magnesium silicate grains around high‐mass‐outflow asymptotic giant branch stars in order to demonstrate their general utility in a rather simple environment. Finally, we apply these experimental results to infrared observations of comets and protostars in order to derive some interesting conclusions regarding large‐scale nebular dynamics, the natural production of organic molecules in protostellar nebulae, and the use of crystalline magnesium silicates as a relative indicator of a comet's formation age. 相似文献
16.
Hans -Georg Grothues 《Astrophysics and Space Science》1995,229(1):1-22
The interrelations between the physical parameters of a cometary nucleus, and the morphology of the dust tail and its streamers are systematically investigated by means of a model developed by Beißer (1990a), involving a rotating nucleus. The analysis of streamers in the tail, using direct modeling and synchrone grids, provides a suitable tool to deduce substantial informations on the nucleus' state of rotation. Opportunities and limitations of this analysis are discussed. Dust emission parameters like the distribution of active regions on the nucleus, or the emission characteristics can only be determined if certain other physical properties of the nucleus have been independently measured before. 相似文献
17.
Analysis of a dust sample (e.g. collected during a cometary rendezvous mission) by SIMS (Secondary Ion Mass Spectroscopy) can provide information on elemental abundances (? 100 amu), the molecular composition of grain surfaces, and isotopic ratios of selected elements. This can be accomplished with dust covering as little as 10?4 of the collector surface area. In order to demonstrate these capabilities a special experimental set-up for substrate preparation, dust collection and SIMS analysis of dust under ultrahigh vacuum conditions was developed. The comparison of elemental abundance ratios for different olivines and pyroxenes measured with the special SIMS equipment with that measured by an electron microprobe indicated an accuracy for SIMS of the elemental abundance measurements of ? 30%. By varying the energy threshold of secondary ions to be mass-analysed from 0 to 50 eV it is possible to identify molecular ions in the spectra and to estimate their abundance with respect to elemental ions on the same mass line. The ratios of molecular to elemental ions vary by a factor of 1–25. The concept for a future cometary rendezvous experiment as well as first results of chemical investigation on mineral dust samples obtained are reported. 相似文献
18.
Arguments are presented to suggest that surface layers of the nuclei of periodic comets consist of crystallized rather than
amorphous water ice and thermal modelling of such nuclei is presented. The rate of sublimation of water from a rotating nucleus
is found to be greater than that from a uniformly heated nucleus. When the model is applied to P/Halley, the sublimation rate
at perihelion is found to be 8.1 × 1029 mol s−1 for a nucleus rotating with a period of 50 hours and 7.6 × 1029 for a uniformly heated nucleus on the premise that the effective radius of the nucleus is 2.5 km. The total sublimation of
water per revolution is 5.38 × 1036 molecules for P/Halley and 3.91 × 1036 molecules per P/Crommelin. The result so obtained is discussed in relation to the observational data. 相似文献
19.
Dependence of the central velocity gradients on Hubble's type is presented for 78 spiral galaxies with existing rotation curves. Also the dependence of the maximum rotational velocities of 27 galaxies on both Hubble's type and the luminosity is studied. The central velocity gradient is shown to be related with Hubble's type. Maximum rotational velocities of 27 galaxies of our sample depend on Hubble's type such that the mean values of maximum rotational velocity decrease from Sa through Sc. It is also determined that there is a dependence of the maximum rotational velocity on the absolute blue magnitude for each intrinsic Hubble type. For each Hubble type, maximum rotational velocity increases with increasing absolute blue magnitudes. 相似文献
20.
Part of the lander payload for the comet rendezvous mission Rosetta is the thermal probe multi-purpose sensors for surface and subsurface science (MUPUS). In this paper, we discuss the relationship of the expected MUPUS data to structural and textural parameters of the near-surface layers of the cometary nucleus. Such properties could be crucial parameters concerning the formation and evolution of the nucleus. Thus, we calculate the thermal conductivity of a porous material in terms of microstructural parameters, using a geometrical model with a solid matrix, a surrounding pore space and a distinct contact area between different particles. We include the possibility that a significant amount of heat may be transported by pore filling vapour in addition to heat conducted via the matrix. Furthermore, we consider that the heat is transmitted through only a fraction of the grains and these are organized into a chain-like structure. These chains—and not the single grains—should be regarded as the basic unit of structure. Applying our model to measured thermal conductivities of porous water ice, we interpret the material in terms of microparameters and estimate the effective size of the contact area and the effective pore radius. The results are in good agreement with our knowledge of the prepared samples. Contrary, we can also show that popular models used in cometary research do not fit with laboratory data at all. 相似文献