首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Spatiotemporal variations of P species and adsorption behavior in water column, interstitial water, and sediments were investigated in the large shallow eutrophic Lake Chaohu. Ortho-phosphate (Ortho-P) and total phosphorus (TP) concentrations were significantly higher in the western part than in the eastern part of the lake, due to different nutrient inputs from the surrounding rivers. Moreover, paniculate phosphorus (PP) concentration was in a similar spatial pattern to Ortho-P and TP concentrations, and also showed significantly positive correlation with the biomass of Microcystis, indicating more uptake and store of phosphorus by Microcystis than by other algae. Increase of pH and intensive utilization of P by phytoplankton were the main factors promoting P (especially Fe-P) release from the sediment to interstitial water during the cyanobacterial blooms in Lake Chaohu. Spatial dynamics in TP concentration, P species and adsorption behavior of the sediment, coupled with the statistical analyses, suggested that the spatial heterogeneity of P contents in the sediment was influenced by various factors, e.g. human activities, soil geochemistry and mineral composition. In spite of similar TP contents in the sediments, increase in proportion of Fe-P concentration in the sediment may result in a high risk of P release.  相似文献   

2.
Lake sediment can sequestrate large amounts of carbon and this issue has become a research hotspot. However, most of research on carbon burial in lakes is based on a single (or a few) sediment core records and so may underestimate the variability of carbon burial features within a single lake. In this study, therefore, Chaohu Lake, a typical large shallow lake in the middle and lower reaches of the Yangtze River, was selected to conduct multiple, high resolution sediment core studies to elucidate that variability. Overall 18 sediment cores are analyzed according to paleolimnological proxies (including 210Pb/137Cs for 3 master cores); sediment accumulation rate, total organic carbon, grain size and loss of ignition is measured or estimated for most cores. The spatiotemporal variations of organic carbon burial rate (OCBR), carbon storage and their driving factors were examined. Results show: 1) There was a clear temporal difference in carbon burial during the past 150 years, with OCBR varying from 1.1 g C/m2/y to 25.6 g C/m2/y (mean 9.8 g C/m2/y). OCBR began to increase after around 1900, a rapid increase followed after 1950s and a downward trend after 1970s. Total carbon burial amount (OCBA) in the lake since the 1850s is 1.11 x 1010 g. 2) The average OCBR of six sediment cores in the northwest lake area is 13.4 g C/m2/y, significantly higher than that for sediment cores in other areas (9.6 g C/m2/y). 3) TOC, OCBR, OCBA in all 18 cores exhibited similar temporal patterns (i.e. marked increase since 1950s in most of the cores) but with significant differences in several lake locations. 4) During the last 150 years, carbon burial in Chaohu Lake appears to be greatly affected by changes in regional temperature and population size, according to their significant correlations. OCBR also has a significant correlation with the average lake level in the past 50 years, indicating human activity (notably dam building). This has imposed an important impact on OCBR in Chaohu Lake. This multi-sediment core study reveals the spatiotemporal characteristics of carbon burial in the lake and provides an important basis for increasing the accuracy of calculating carbon storage in large shallow lakes.  相似文献   

3.
Estimation of internal nutrient release in large shallow Lake Taihu, China   总被引:17,自引:2,他引:17  
Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 -N for whole lake is ca. 10,000 ton/a, and PO43--P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as "calm" (wind speed is less than 2 m/s), "gentle" (wind speed is greater than 2 m/s and less than 6 m/s) and "gust" (wind speed is greater than 6 m/s). The release rate in the condition of "calm" was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of "gentle" and "gust" was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for "calm", "gentle" and "gust", respectively. The yearly release of nitrogen was 81,000 ton and phos- phorus was 21,000 ton, which is about 2-6 folds of annual external loading, respectively.  相似文献   

4.

Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 +-N for whole lake is ca. 10,000 ton/a, and PO4 3−-P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as “calm” (wind speed is less than 2 m/s), “gentle” (wind speed is greater than 2 m/s and less than 6 m/s) and “gust” (wind speed is greater than 6 m/s). The release rate in the condition of “calm” was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of “gentle” and “gust” was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for “calm”, “gentle” and “gust”, respectively. The yearly release of nitrogen was 81,000 ton and phosphorus was 21,000 ton, which is about 2–6 folds of annual external loading, respectively.

  相似文献   

5.
Estimation of internal nutrient release in large shallow Lake Taihu,China   总被引:1,自引:0,他引:1  
Based on field investigation of wave, sediment suspension and the changes in nutrient concentration of the water column in Lake Taihu, China, we proposed two release models to quantify nutrient release under static and dynamic conditions, respectively. Under static conditions, nutrient release from sediments to the overlying water mainly depends on chemical diffusion induced by concentration gradient, in which the nutrient release is controlled by the temperature, dissolved oxygen concentration in the sediment-water interface, oxidation-reduction potential and the concentration difference between porewater and overlying water. Under dynamic condition (or disturbed condition), both dissolved and particulate nutrients in sediments are released into the water column because of wind-induced sediment suspension. The amount of nutrient release under dynamic conditions is larger than that under the static condition. The release of dissolved nutrients, however, does not increase because the wind induced turbulence made oxidation of metallic elements such as Fe (ferric iron), Mn which are capable of precipitating soluble reactive phosphate (SRP). Under dynamic conditions, therefore, the release of total phosphorus (TP) increases dramatically but the release of SRP is close to those under static conditions. In sediments of Lake Taihu, high Fe content leads to a high ratio of Fe to P contents in sediments (Fe:P ratio). Under dynamic conditions, therefore, nutrient release is controlled by the intensity of disturbance, sediment consolidation and nutrient content in sediments. As for dissolved nutrients, especially SRP, the release is also controlled by the intensity of dynamic re-oxidation, Fe content in sediments and nutrient concentration gradient between porewater and overlying water. Based on these two release modes, the release flux in Lake Taihu has been estimated. In the static condition (i.e. laboratory experimental condition), total release of NH4 +-N for whole lake is ca. 10,000 ton/a, and PO4 3?-P is ca. 900 ton/a. In the dynamic condition, nutrient release following sediment suspension was estimated according to three different intensities of wind forcing which were defined as “calm” (wind speed is less than 2 m/s), “gentle” (wind speed is greater than 2 m/s and less than 6 m/s) and “gust” (wind speed is greater than 6 m/s). The release rate in the condition of “calm” was estimated in terms of the nutrient release in the laboratory experimental static condition; whereas the release rate in conditions of “gentle” and “gust” was estimated in terms of measurement during sediment resuspension conducted in flume experiments. With the observation of wind velocity and frequency in 2001, each type of wind forcing took the frequency of 12%, 82% and 6% for “calm”, “gentle” and “gust”, respectively. The yearly release of nitrogen was 81,000 ton and phosphorus was 21,000 ton, which is about 2–6 folds of annual external loading, respectively.  相似文献   

6.
有害蓝藻释放微囊藻毒素(MCs),严重威胁饮用水源地用水安全.为了解巢湖MCs污染状况及其异构体组成对水质的影响,于2012年夏季(8月)和秋季(11月),2013年冬季(2月)和春季(5月)进行采样分析,研究了巢湖水体中胞内微囊藻毒素(IMCs)和胞外微囊藻毒素(EMCs)异构体的时空分布及其与环境因子的关系.结果发现,IMCs和EMCs的平均浓度变化范围分别为0.12~6.45 μg/L和0.69~1.92 μg/L.在3种常见的异构体中,MC-RR和MC-LR比例较高,MC-YR最低,MC-RR和MC-LR是巢湖水体中MCs的主要异构体类型.IMCs和EMCs的异构体浓度及其比例呈现不同的时空分布特征.微囊藻生物量、水温、总磷浓度是影响IMCs和EMCs异构体浓度及其组成变化的关键环境因子.本研究表明巢湖富营养化严重的西湖区夏季能合成更多的MC-RR异构体,而秋、冬季节偏向于释放生理毒性更强的MC-LR异构体.了解MCs异构体组成变化及其关键影响因素,有助于预测预警水体MCs污染状况和评估饮用水源地MCs风险.  相似文献   

7.
浮游细菌在驱动湖泊物质循环、指示湖泊水环境质量等方面发挥重要作用,探明其在湖泊中的空间分布格局及其驱动机制,是揭示湖泊物质循环过程及水环境状况的关键。浅水湖泊具有水动力扰动强烈的生境特点,其中的浮游细菌群落空间格局的形成机制尚未明晰。本研究以大型浅水湖泊——太湖为研究对象,通过对全湖开展系统的野外调查,结合高通量测序技术、多元统计分析方法及生态学模型构建,系统探明太湖浮游细菌的空间分布格局,并揭示格局形成的驱动机制。结果显示:(1)太湖西北部湖区(藻型湖区)与东南部湖区(草型湖区)之间浮游细菌群落结构存在显著差异,而这两个区域内各湖区间及湖心区与周边湖区间之间的浮游细菌群落结构差异不显著,太湖浮游细菌群落结构整体上呈现较弱的距离衰减规律;(2)太湖草、藻型湖区及湖心区中浮游细菌群落结构分别与叶绿素a、透明度及总悬浮物显著相关,总体上环境变量对太湖浮游细菌群落空间格局的相对贡献率大于空间变量;(3)尽管确定性过程中的异质化选择、随机过程中的非主导性过程以及扩散限制对太湖浮游细菌空间格局的形成均产生重要影响,但总体上随机过程对格局形成的相对贡献更大;(4)太湖无序风场驱动的水力混合作用导致...  相似文献   

8.
巢湖水环境因子的时空变化及对水华发生的影响   总被引:2,自引:4,他引:2  
王书航  姜霞  金相灿 《湖泊科学》2011,23(6):873-880
为研究巢湖水环境因子与藻类生物量的相互作用,筛选出对藻类生物量相对重要的环境因子,以2008年巢湖水质监测数据为基础,采用多元统计方法对巢湖监测点数值数据进行了聚类分析、判别分析及污染特征识别,研究了水环境因子与藻类生物量的关系.结果表明:巢湖水环境自西向东分为重度污染区、中度污染区和轻度污染区,叶绿素、溶解性总氮可作...  相似文献   

9.
张之丽 《湖泊科学》1994,6(3):283-286
巢湖是我国五大淡水湖之一,湖泊水面面积784km~2,位于安徽省中部。巢湖及其流域是长江下游北岸的一条主要水系,流域面积14200km~2。行政区划包括巢湖、六安两地区及合肥市,计有九县二市,人口530万人。耕地44×104hm~2,其中江淮分水岭以南丘陵地区26×104hm~2,沿江滨湖圩区18×10~4hm~2。是安徽省粮油、水禽、鱼类的主要产地之一,在全省经济发展中占有重要的位置。 建国后,在国家的大力支持下,巢湖流域进行了大规模的水利建设。长江大堤全面加固,巢湖闸、裕汐闸先后建成,控制了江洪倒灌,初步解除了江洪的威胁。但在流域治理中,尚有以下两个关键问题没有得到解决:一是巢湖洪水出路少,全流域排水出路仅有裕汐河一处,  相似文献   

10.
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.  相似文献   

11.
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.  相似文献   

12.
巢湖、太湖蓝藻湖靛及其提取物的动物毒性初步研究   总被引:1,自引:0,他引:1  
瞿文川  苏晨伟 《湖泊科学》1996,8(2):156-160
对国内淡水湖泊巢湖、太湖中的蓝藻湖靛及其提取物(藻胆蛋白),进行了动物毒性实验。实验动物为昆明种小白鼠,采用灌胃法给药。给药后小白鼠均无中毒症状,一周内无死亡。说明巢湖、太湖中蓝藻湖靛及其提取物,对以小白鼠为代表的哺乳类动物消化系统,基本不产生毒性。这对于开发两湖中的蓝藻作为鱼、家禽等饲料和提取其中的植物蛋白(藻胆蛋白)作为营养食品添加剂等有一定意义。  相似文献   

13.
巢湖富营养化研究进展   总被引:50,自引:10,他引:50  
殷福才  张之源 《湖泊科学》2003,15(4):377-384
本文系统论述了20年来巢湖富营养化的研究过程,根据不同阶段对巢湖研究的特点,将巢湖富营养化研究过程划分为三个阶段:初步调查阶段、深入研究阶段和应用研究阶段. 综述了巢湖富营养化研究的8个方面的内容,包括流域自然和社会环境的调查、水域生态调查与评价、流域水污染源调查与评价、巢湖富营养化机理研究、水质区划与容量研究、流域的非点源污染研究、生态环境现状调查研究和内源污染控制研究等. 文中指出了近10多年来缺少对巢湖的基础研究,形成背景资料的断裂,10多年前的研究成果不能完全满足当今巢湖富营养化防治的需要. 目前,巢湖仍然处于全湖富营养化状态,急需对巢湖进一步开展基础研究,为从根本上治理巢湖污染寻求对策. 最后指出了一些主要的研究方向.  相似文献   

14.
阳振  史小丽  陈开宁  张民 《湖泊科学》2021,33(4):1043-1050
原位生长率是研究藻类生长、衰亡、种群演变、生产力估算,以及藻类对环境变化响应的重要指标,针对水华蓝藻原位生长率的测定,目前还缺乏成熟可靠的手段.本研究利用改进的原位培养法,根据培养前后藻蓝素浓度的变化,对巢湖东、中、西3个湖区水华蓝藻的原位生长率进行周年调查.结果 表明,巢湖水华蓝藻的原位生长率变化范围在-1.16~0...  相似文献   

15.
湖泊水体的对流混合是最基本的物理过程,其能显著影响湖泊生态系统温室气体等循环,但浅水湖泊水体对流混合的研究鲜有报道.本研究基于太湖(面积2400 km2,平均水深1.9 m)中尺度通量网的原位、高频、连续和多点的观测数据,分析该大型浅水湖泊水体对流混合速率w*的时空特征.结果表明太湖水体w*的均值为2.49 mm/s,因太湖的风速、水温和辐射等物理参数无空间变化,w*也无明显的空间变化.但是研究表明w*呈现显著的昼夜变化和季节变化,且昼夜变化幅度强于季节变化.总体上夜间w*是白天的4倍多,冬季w*(均值1.79 mm/s)明显低于春季(均值2.42 mm/s)、夏季(均值2.91 mm/s)和秋季(均值2.82 mm/s).太湖w*主要受风速和能量收支影响,白天风速是主要驱动因子,夜晚能量收支是主要驱动因子.  相似文献   

16.
通过连续9d(2010年7月24日至2010年8月1日)对太湖水体理化指标垂向分层的高频率观测,揭示太湖多指标垂向分层规律.观测表明:(1)太湖中各水质指标频繁出现分层现象,但不稳定;(2)分层的主要控制因素包含气温的日变化、蓝藻水华堆积与风浪扰动等;(3)气温和太阳辐射日变化影响水温分层,水温垂向变幅可达3.94℃,...  相似文献   

17.
Using sediment traps, we aimed to elucidate the temporal and spatial variations in sediment fluxes in large and shallow Lake Peipsi, over the May to October 2011 period, and analyze the factors behind those variations. The effects of weather factors (mean and maximum wind velocity, water level and water temperature) on sediment resuspension and the concentrations of suspended solids (SS), total phosphorus (TP), soluble reactive phosphorus (SRP), and chlorophyll a (Chl a) were investigated. Moreover, the internal loading of TP due to sediment resuspension was determined. The sediment resuspension rates were significantly higher in the shallower waters than in the deeper parts of the lake. Resuspension was a major factor in sedimentation dynamics of the lake, which is presently subject to eutrophication. The rates of sediment resuspension followed the same pattern as gross sedimentation during the study period, and their respective values differed significantly between sampling dates. The highest resuspension rates were observed in September (mean 55.4 g dw m?2 day?1), when the impacts of wind events were particularly pronounced. Weather factors that were recorded approximately 2 weeks before water and sediment sampling affected the gross sedimentation and sediment resuspension. The water quality variables of SS, TP, SRP, Chl a were similarly affected. During the study, TP concentrations of the water were mainly determined by the resuspension of sediments containing a large pool of organic material. Although internal loading of TP due to resuspension was several times greater than external loading, external loading determines the amount of phosphorus that enters the lake and can be resuspended.  相似文献   

18.
百花湖是贵阳市重要的城市饮用水源地,并且近年来经常发生水质异常现象.本文利用2009-2018年百花湖长时间序列的监测数据,采用综合营养状态指数法和Pearson相关性分析,研究了百花湖10年间的水质变化特征和影响因素.结果表明:1)库区叶绿素a(Chl.a)、总磷(TP)、总氮(TN)、高锰酸盐指数(CODMn)和透明度(SD)的浓度范围分别是3.43~39.72 mg/m3、0.034~0.115 mg/L、1.200~2.759 mg/L、1.41~5.51 mg/L和0.75~2.07 m,且高氮磷比(12~63)表明百花湖是磷限制型.2)在空间上,TP、TN、氨氮、CODMn和Chl.a浓度沿水体流向逐渐降低,SD呈相反变化趋势.3)10年来,百花湖水质由Ⅳ类转变为Ⅲ类,综合营养状态由轻度富营养化状态转变为中营养状态,水质整体向好.4)入库支流是影响百花湖库区水质的主要因素,长期以来,东门桥河、南门河水质TP和TN等超标严重,给库区水质稳定达标带来威胁.5)百花湖Chl.a浓度与气温、水位、风速和TP等指标显著相关,是受水文、气象及营养盐因素的综合控制.未来在百花湖水环境保护治理过程中,应加大对东门桥河、南门河等重点支流的污染治理,加强对水动力学、气候变化等水文气象因素影响库区水质(藻类水华)的机制研究.  相似文献   

19.
浅水湖泊风浪过程对于湖泊生态系统具有重要的意义.基于巢湖风场、风浪和水环境参数同步高频观测结果,详细分析了快速变化风场下的风浪快速变化特征及其对湖泊水环境的影响特征.浅水湖泊风浪的有效波高和平均波周期均随风速的快速变化有较好的同步响应规律.在风速快速衰减阶段,相较有效波高,波周期有更好的稳定性.湖泊水体pH、水温、溶解氧会快速响应风浪的变化,随着风浪强度增强,对水体浊度、总磷浓度以及藻密度和生物量的扰动影响逐渐呈现.强烈的风浪扰动引起水体浊度变化的滞后时间可达3 d.快速变化的风浪场下,风浪的强烈扰动会改变水体固有的理化参数分布特征,扰动藻类常规的水体分布规律,风浪强度是造成差异的主要因子.  相似文献   

20.
张怡辉  胡维平  彭兆亮 《湖泊科学》2020,32(4):1177-1188
基于实测数据,利用验证良好的SWAN风浪模型开展了2018年巢湖风浪变化及分布特征研究.巢湖2018年平均有效波高和波周期分别为0.16 m和1.22 s,整体春季风浪大,秋季风浪小.月均最大值出现在4月,分别为0.22 m和1.36 s,月均最小值出现在11月,分别为0.11 m和1.06 s,变化幅度分别为最大值的52%和22%.月均值整体中巢湖最大,东巢湖次之,西巢湖最小.巢湖月最大有效波高和波周期主要出现在东巢湖或中巢湖,各值月间差异显著,最大变化幅度分别为最大值的61%和27%.不同湖区计算的月均有效波高和波周期较大值分布范围所占湖区的比例不同,中巢湖与东巢湖较大,西巢湖最小.不同月份及湖区较大有效波高出现的时间占比是不一致的,9-11月份时间占比较小,将有利于蓝藻水华的出现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号