首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catastrophic eruption of large-volume, crystal-rich silicic magmas is often proposed to be a consequence of reheating, melting and overturn of partially molten, buoyant silicic material following repeated injection of dense, hot mafic magma. To test this “rejuvenation hypothesis”, we analyze at high spatial resolution 33 examples of deformed interfaces between intrusive mafic and silicic layers in two plutons of the Coastal Maine Magmatic Province, USA. These deformed interfaces are thought to record the buoyant overturn of silicic crystal mush layers, apparently in response to the injection and cooling of hot, dense mafic magmas. We use spectral analysis and scaling theory along with petrologic and textural data to identify, characterize, and understand periodic deformations from the scale of individual crystals (≈1 cm) to the thicknesses of mafic and silicic layers. Deformations at the largest scale lengths (>100 m) are at wavelengths comparable to, or greater than, silicic layer thicknesses and support a conjecture that mafic recharge can cause large-scale Rayleigh–Taylor-type overturning of silicic mushy layers. By contrast, the smallest scales of individual crystals probably record effects related to production and buoyancy-driven rise of melt from the tops of silicic mushes in contact with overlying hot basalt, whereas intermediate scales are explained by compaction. Our results constrain the evolution of a thermal rejuvenation event and potentially identify a condition for a large-scale overturn of the magma chamber that may lead to eruption. This work provides the first quantitative field-based constraints on some of the key physical processes inherent to the rejuvenation hypothesis.  相似文献   

2.
The Northern Marginal Zone of the Rum Igneous Centre is a remnant of an early caldera and its infill. It is composed of intra-caldera breccias and various small-volume pyroclastic deposits, overlain by prominent rhyodacite ash-flow sheets of up to 100 m thickness. The ash-flows were fed from a feeder system near the caldera ring-fault, and intrusive rhyodacite can locally be seen grading into extrusive deposits. A variety of features suggest that the ash-flows were erupted from a magma chamber that contemporaneously hosted felsic and mafic magmas: (i) chilled basaltic inclusions in rhyodacite; (ii) formerly glassy basaltic to andesitic enclaves with fluid-fluid relationships; (iii) feldspars with thick reaction rims enclosed in the basaltic to andesitic inclusions, yet with cores chemically resembling those of the rhyodacite: (iv) trace element compositions of the rhyodacite and the mafic enclaves form a mixing line between the end-member rhyodacite and basalt compositions. Additionally, textural and chemical features in the rhyodacite feldspar phenocrysts are consistent with magma mixing; (v) feldspars with resorption embayments cutting through internal zonation of the crystals; (vi) complexly zoned crystals with sieve-textured zones that are overgrown with euhedral zones; (vii) oscillatory zonation of feldspar phenocrysts in the rhyodacite, showing sharp increases in anorthite (An 10%) followed by gradual decrease in An-content (An 4%). This evidence points to eruption of ash-flows from a felsic magma chamber that was periodically replenished by injection of mafic magma. Diffusional mixing between the two magmas was permitted by temperature and compositional differences, but was slow due to the contrast in viscosities and densities. The Fe–Ti–P-enriched basic magma that replenished the chamber was degassing on entering the lower temperature environment and soon equilibrated thermally, followed by chemical exchange between the two end-member magmas. This process formed hybrid andesite enclaves enriched in trace elements beyond that caused by simple mixing, implying trace element diffusion in addition to bulk mixing. Eruption was caused by replenishment with, and degassing of, the basic magma and the chamber partially evacuated while the process of hybridisation was underway. The erupted products record magma mixing by chamber replenishment, blending of two magmas and elemental exchange in the magma chamber, and also physical mingling in the eruptive conduit.  相似文献   

3.
The Newark Island layered intrusion is a composite layered intrusion within the Nain anorthosite complex, Labrador. The intrusion comprises a lower layered series (LS) dominated by troctolites, olivine gabbros and oxide-rich cumulates and an upper hybrid series (HS) characterized by a wide range of mafic, granitic and hybrid cumulates and discontinuous layers of chilled mafic rocks (Wiebe 1988). The HS crystallized from a series of replenishments of both silicic and basic magmas. The LS crystallized from periodically replenished basic magmas. The LS has a lower zone that consists mainly of olivine-plagioclase cumulates and contains minor cryptic reversals in mineral compositions that resulted from replenishments of relatively primitive magma. An upper zone is dominated by olivine-plagioclaseaugite-ilmenite cumulates. Cumulus titanomagnetite and pyrrhotite occur within some oxide-rich cumulates, and the stratigraphically highest layers contain cumulus apatite. At intermediate levels in the sequence, cumulus inverted pigeonite occurs in place of olivine. Several prominent regressions in the stratigraphy of the upper zone are marked by fine-grained troctolitic layers with much higher Mg no. [100 MgO/(MgO+FeO)] and anorthite than underlying cumulates. These layers coarsen upward and grade back to oxide-bearing olivine gabbros within thicknesses ranging from 10 cm to 15 m. Dikes that cut the LS have major- and trace-element compositions that strongly suggest that they are feeders for the replenishments. In the lower zone when olivine and plagioclase were the only cumulus phases, replenishments were less dense than the resident magma and rose as plumes and mixed with it. Precipitation of cumulus oxides in the upper zone lowered the density of resident magma so that subsequent replenishments were more dense than resident magma. Replenishments that occurred after oxides began to precipitate had small injection velocities. These post-oxide injections flowed along the interface between resident magma and the cumulate pile and precipitated flow-banded, fine-grained troctolites.  相似文献   

4.
We present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion, Scotland. Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the ‘major wavy horizon’). Higher in the stratigraphy is another, similar, horizon (the ‘minor wavy horizon’) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite to equigranular crystals in gabbro and to oikocrysts in poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt% Cr2O3) anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt% Cr2O3) and REE-poor to -moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A second partial melting event stripped out almost all clinopyroxene from the lowest allivalite to form a troctolite, with the major wavy horizon marking the extent of melting during this episode. The poikilitic gabbro formed from clinopyroxene-saturated melt moving upwards and laterally through the remobilized cumulate pile and precipitating clinopyroxene en route. This process, called reactive liquid flow, is potentially important in open magma chambers.  相似文献   

5.
一个开放的岩浆房系统:攀西新街镁铁-超镁铁质层状岩体   总被引:12,自引:4,他引:8  
新街镁铁-超镁铁岩体是与峨眉山溢流玄武岩同期共生的层状岩体之一,可分为三个火成堆积旋回,包括六个岩相带,各旋回下部主要由超镁铁岩组成,上部主要由辉长岩、橄长岩等组成。对第一旋回和第二旋回下部主量元素、微量元素和同位素分析结果表明,其总体特征与峨眉山玄武岩中的低钛玄武岩特征相似,其^87Sr/^86Sr,εNd(t),^206Pb/^204Pb,^207Pb/^204Pb和^208Ph/^204Pb分别为0.70610-0.70636,1.01-1.75,17.895-18.935,15.563-15.639,38.345-39.037,这种相似性显示了新街岩体与峨眉山玄武岩具有成因联系,并且其同位素比值和高场强元素的原始地幔标准化图解和洋岛玄武岩(OIB)的相似性说明岩浆的源区可能为地幔柱。MgO和其它氧化物的相关性指示了橄榄石、斜方辉石和少量磁铁矿的分离结晶作用。另外,部分样品的(La/Nb)PM和(Th/Ta)PM大于1说明有地壳物质的混染或岩石圈地幔的混染。同时对O同位素值的测定结果表明,第二旋回和第一旋回上部的样品具有高δ^18O的特征(〉6‰),说明岩浆房的上部遭受了地壳物质的混染,而下部则没有受到地壳物质的混染。另外δ^18O与SiO2不存在正相关关系,指示了混染物不是上地壳,而是SiO2较低的下地壳。其Nd同位素和O同位素模拟计算结果表明,其平均混染程度大约为12%-15%。可能正是由于下地壳物质的混染导致了岩浆中FeO含量的降低,从而导致硫化物发生熔离作用,并由此导致铂族元素的富集。  相似文献   

6.
The Tigalak intrusion is a dominantly dioritic layered body, about 80 km2 in area, which ranges in composition from norite to granodiorite. Local areas of the layered rocks display upward fractionation from norite to ferrodiorite. Periodic reversals of mineral composition trends record the emplacement of less fractionated dioritic magma. Heterogeneous mixtures of dioritic and granodioritic rocks occur widely in mappable lenses and layers that alternate up section and along the strike with more uniformly layered rocks. In these mixtures, chilled dioritic pillows occur abundantly in a hybrid cumulate matrix of granodiorite to diorite composition. Cross-cutting granodioritic dikes grade upward into stratigraphically-bound lensoid masses of the hybrid cumulates. It appears that the hybrid rocks formed as a result of the emplacement of the granodioritic magma through lower cumulates into the dioritic magma chamber and that the dioritic pillows represent chilled bodies of Ferich dioritic magma that commingled with cooler granodioritic magma and settled to the floor of the Tigalak magma chamber. The restricted distribution of these mixtures of hybrid cumulates and chilled pillows indicates that mixing between granodioritic and dioritic liquids was limited in time and lateral extent. Periodic injections of granodioritic liquids may have collected as a separate layer below the roof of the magma chamber and above dioritic magma.  相似文献   

7.
The calc-alkaline volcanic magmas,which formed the Mesozoic uraniferous volcanic complex of Xiangshan,resulted from partial melting of the mixture of lower crust and enriched mantle with a high mixing proportion in a specific tectonic setting such as active continental margin or ocean-continent collision zone.The preliminary concentrations of Uand Th occur in low-degree par-tial melts.Only small part of these melts was rapidly extracted and erupted and most intruded into the high-level magma chamber(depth:12-13 km) of the compressed upper lithosphere ,in which occurred a strong differentiation which would resulted in strong preconcentrations of the high-hygromagmaphile elements U and Th associated with strong depletion of the 3-d transition ele-ments Ti,Sc,Co,Zr,etc.At the final stage of subduction of the West-Pacific-Kula plate towards the Asian continental plate,the regional tectonic environment was transformed from a compressive in-to a tensional setting.The strongly differentiated,U(and Th) enriched silicic alkalic magmas in high level magma chamber extensively erupted,extruded and intruded.The hydrothermal fluids released as a result of late volcano-degassing and dewatering during crystallization-solidification of magmas,re-sulted in the remobilization,leaching,migration and reconcentration of uranium ,which had been preconcentrated in volcanic rocks.Therefore,specific regional petrogeochemical criteria are expected for the uraniferous volcanic series.  相似文献   

8.
The appearance in 1997 of the British Geological Survey's memoir on Rum was followed by a period of intense research, leading to upwards of 35 papers, books and other articles. The scope of these publications, and the research progress over the last 15 years since publication of the memoir, is reviewed here. Igneous activity on Rum was short lived, possibly only ca. 500 ka, and, at about 60.5 Ma. The Rum central complex thus pre‐dates the nearby Skye central complex. The earliest, acidic and mixed acidic/basic magmatism on Rum involved both shallow intrusions and ignimbrite eruptions into a collapsing caldera bound by the Main Ring Fault, a structure which probably also exercised a structural influence on subsequent mafic and ultrabasic magmatism. Subsequent emplacement of gabbros and ultrabasic rocks caused only limited thermal metamorphism of the surrounding Torridonian sandstones, contrasting markedly with the intense alteration of uplifted masses of Lewisian gneiss within the ring fault. Detailed textural studies on the gabbroic and ultrabasic rocks allow distinction between intrusive peridotites and peridotite that formed as part of the classic layered units of Rum and, furthermore, this work and that on the chromite seams and veins in these rocks shows that movements of trapped magma and magma derived from later intrusions, may produce textures and structures hitherto regarded as primary features of cumulate rocks. Rare picritic dykes provide an indication of likely parent magma for the mafic and ultrabasic rocks, but these and other magmatic rocks on Rum have all undergone varying degrees of crustal contamination, involving both Lewisian granulite and amphibolite crust but, notably, not Moine rocks as at Ardnamurchan. Sulphides in the chromite seams and ultrabasic rocks show possible influences from assimilated Jurassic sediments. From recent apatite fission track studies it seems likely that Rum, in common with other Palaeogene centres, underwent a brief, but significantly younger (Mesozoic) heating event.  相似文献   

9.
The 176Lu–176Hf and 147Sm–143Nd decay systems are routinely used to determine garnet (Grt)–whole-rock (WR) ages; however, the 176Lu–176Hf age of garnet is typically older than the 147Sm–143Nd age determined from the same aliquots. Here we present experimental data for Lu3+ and Hf4+ diffusion in garnet as functions of temperature, pressure and oxygen fugacity and show that the diffusivity of Hf4+ in almandine/spessartine garnet is significantly slower than that of Lu3+. The diffusive closure temperature (T C) of Hf4+ is significantly higher than that of Nd3+, and although this property is partly responsible for the observed 176Lu–176Hf and 147Sm–143Nd Grt–WR age discrepancies, the difference between the T C-s of Lu3+ and Hf4+ could lead to apparent Grt–WR 176Lu–176Hf ages that are skewed from the age of Hf4+ closure in garnet. In addition, the slow diffusivity of Hf4+ indicates that the bulk of metamorphic garnets retain a substantial fraction of prograde radiogenic 176Hf throughout peak metamorphic conditions, a phenomenon that further complicates the interpretation of 176Lu–176Hf garnet ages and invalidates the use of analytical T C expressions. We argue that the diffusion of trivalent rare earth elements in garnet becomes much faster when their concentration level falls below a few hundred ppm, as in the experiments of Tirone et al. (Geochim Cosmochim Acta 69: 2385–2398, 2005), and further argue that this low-concentration mechanism is appropriate for modeling the susceptibility of 147Sm–143Nd garnet ages to diffusive resetting.  相似文献   

10.

毕机沟层状岩体是扬子地块北缘汉南杂岩中最重要的镁铁-超镁铁质侵入体之一, 主要由下部带超镁铁质岩、中部带辉长岩和上部带闪长岩组成。本文对该岩体下部带橄长岩、橄榄辉长岩和橄榄辉长苏长岩以及中部带粗粒辉长岩、磁铁辉长岩和角闪辉长岩进行全岩主微量元素及亲铜元素分析, 全岩(La/Sm)N(0.43~2.89)和(Tb/Yb)N (1.08~1.52)比值以及La/Yb-Sm/Yb图解均表明毕机沟层状岩体源区属于尖晶石二辉橄榄岩。Ni/Cu-Pd/Ir图解显示毕机沟层状岩体母岩浆主要为高镁玄武岩, 模拟计算及高的S/Se比值显示其母岩浆经历了~5%的地壳混染并引进了外界硫, 导致毕机沟母岩浆在深部发生早期硫化物熔离, 造成其极高的Cu/Pd比值(5.21×103~1.67×106)和低的PGE含量。毕机沟母岩浆侵位到浅部岩浆房后, 下部带极少量的硫化物熔离进一步导致残余岩浆亏损PGE, 但S和Cu含量相对升高; 中部带从下部带残余岩浆中结晶分异, 具有更低的PGE含量和相对较高的S以及Cu含量。根据毕机沟层状岩体岩浆演化及硫化物熔离过程, 推测岩体深部及附近具有寻找Cu-Ni-PGE矿床的潜力, 查明其岩浆通道系统及岩浆运移方向对找矿勘查具有重要意义。

  相似文献   

11.
This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate layer. The model provides an explanation for large-scale cyclic layering in basic and ultrabasic intrusions. The model also suggests reasons for the restriction of erupted basaltic liquids to compositions with MgO<10% and the formation of some quench textures in layered igneous rocks.  相似文献   

12.
A characteristic feature of the Partridge River intrusion of the Keweenawan Duluth Complex is the approximately fivefold to ninefold increase in the concentrations of incompatible elements in the lower zone compared with cumulates stratigraphically higher. The concentrations of incompatible elements decrease from the lower zone upward to steady state values, which is ascribed to variations in the proportions of trapped liquid rather than variable degrees of fractional crystallization of a single parental magma. The calculated average composition of trapped liquid using our algorithm is similar to typical Keweenawan low-alumina, high Ti---P basalts associated with the Duluth Complex but is different from the leading edge ferrodioritic liquid quenched in the chilled margin of the intrusion. This difference suggests that the chilled margin does not represent the original (parental) magma composition from which the whole intrusion solidified, and that the enrichment of incompatible elements may be related to the local flotation of magmatic suspensions. To test the latter hypothesis numerically, we have used heat-mass transfer models, assuming a sheet-like magma chamber, to calculate the parameters of the model that best reproduce the observed distribution of incompatible elements in a mush zone at the base of the Partridge River intrusion. The results indicate that a mush zone enriched in the incompatible elements is produced if the velocity of movement of the lower solidification front into the magma body was less than the floating velocity of the bulk crystal mush. The dynamic parameters that best reproduce the observed distribution of incompatible elements include a magma emplacement pressure of 2 kbar, critical crystallinities of 50–68% in the mush zone from which the liquid is being expelled, and an emplacement temperature of 1160°C for the initial magma.  相似文献   

13.
This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate layer. The model provides an explanation for large-scale cyclic layering in basic and ultrabasic intrusions. The model also suggests reasons for the restriction of erupted basaltic liquids to compositions with MgO<10% and the formation of some quench textures in layered igneous rocks.  相似文献   

14.
15.
The Rum Layered Suite (NW Scotland) is generally regarded as one of a handful of classic examples of open‐system layered mafic‐ultramafic intrusions, or ‘fossilized’ basaltic magma chambers, world‐wide. The eastern portion of the Rum intrusion is constructed of sixteen repeated, coupled, peridotite–troctolite units. Each major cyclic unit has been linked to a major magma replenishment event, with repeated settling out of ‘crops’ of olivine and plagioclase crystals to form the cumulate rocks. However, there are variations in the lithological succession that complicate this oversimplified model, including the presence of chromitite (>60 vol. percent Cr‐spinel) seams. The ~2 mm thick chromitite seams host significant platinum‐group element (PGE) enrichment (e.g. ~2 ppm Pt) and likely formed in situ, i.e. at the crystal mush–magma interface. Given that the bulk of the world's exploited PGE come from a layered intrusion that bears remarkable structural and lithological similarities to Rum, the Bushveld Complex (South Africa), comparisons between these intrusions raise intriguing implications for precious metal mineralization in layered intrusions.  相似文献   

16.
Phase relations of three samples of the Laacher See Tephra (LST) have been determined experimentally as a function of temperature (760 to 880 °C), pressure (200, 300 and 400 MPa), water content of the melt and oxygen fugacity (ƒO2). The crystallization experiments were carried out at ƒO2=NNO buffer and at NNO=+ 2.3 log units. The melt water contents varied between 6 and more than 8 wt% H2O, corresponding to water-undersaturated and water saturated conditions respectively. The synthetic products are compared to the natural phases to constrain pre-eruptive conditions in the Laacher See magma chamber. The major phases occurring in the LST have been reproduced. The stability of hauyne is favoured at high ƒO2 (≈NNO + 2.3). The CaO contents in melt and plagioclase synthesized under water-saturated conditions are significantly higher than in the natural phases, implying that most of the differentiation of the phonolites took place under water-undersaturated conditions. However, this does not exclude the presence of a S-, Cl- and CO2-rich fluid phase in the upper parts of the magma chamber. The phase relationships and the TiO2 contents of melts show that the temperature was lower than 760 °C in the upper part of the magma column (probably down to 720 °C in the most differentiated levels) and that temperatures above 840–860 °C prevailed in the lower part. The variation of the X Mg of ferromagnesian minerals observed in both natural and experimental phases reflects the strong variations in ƒO2 in the lower magma chamber just prior to eruption (probably variation of about 2 log units). The most probable explanation for these ƒO2 variations is the injection of an oxidized alkali-rich magma, containing Mg-rich phenocrysts, at the base of a chemically zoned and more reduced magma column prior to eruption. Although the amount of injected magma may not have been very important, it was sufficient to change the ƒO2 conditions locally, explaining the heterogeneous X Mg of ferromagnesian minerals and the formation of hauyne at the base of the chamber. Received: 30 May 2000 / Accepted: 12 August 2000  相似文献   

17.
The Nimchak granite pluton (NGP) of Chotanagpur Granite Gneiss Complex (CGGC), Eastern India, provides ample evidence of magma interaction in a plutonic regime for the first time in this part of the Indian shield. A number of outcrop level magmatic structures reported from many mafic-felsic mixing and mingling zones worldwide, such as synplutonic dykes, mafic magmatic enclaves and hybrid rocks extensively occur in our study domain. From field observations it appears that the Nimchak pluton was a vertically zoned magma chamber that was intruded by a number of mafic dykes during the whole crystallization history of the magma chamber leading to magma mixing and mingling scenario. The lower part of the pluton is occupied by coarse-grained granodiorite (64.84–66.61?wt.% SiO2), while the upper part is occupied by fine-grained granite (69.80–70.57?wt.% SiO2). Field relationships along with textural and geochemical signatures of the pluton suggest that it is a well-exposed felsic magma chamber that was zoned due to fractional crystallization. The intruding mafic magma interacted differently with the upper and lower granitoids. The lower granodiorite is characterized by mafic feeder dykes and larger mafic magmatic enclaves, whereas the enclaves occurring in the upper granite are comparatively smaller and the feeder dykes could not be traced here, except two late-stage mafic dykes. The mafic enclaves occurring in the upper granite show higher degrees of hybridization with respect to those occurring in the lower granite. Furthermore, enclaves are widely distributed in the upper granite, whereas enclaves in the lower granite occur adjacent to the main feeder dykes.Geochemical signatures confirm that the intermediate rocks occurring in the Nimchak pluton are mixing products formed due to the mixing of mafic and felsic magmas. A number of important physical properties of magmas like temperature, viscosity, glass transition temperature and fragility have been used in magma mixing models to evaluate the process of magma mixing. A geodynamic model of pluton construction and evolution is presented that shows episodic replenishments of mafic magma into the crystallizing felsic magma chamber from below. Data are consistent with a model whereby mafic magma ponded at the crust-mantle boundary and melted the overlying crust to form felsic (granitic) magma. The mafic magma episodically rose, injected and interacted with an overlying felsic magma chamber that was undergoing fractional crystallization forming hybrid intermediate rocks. The intrusion of mafic magma continued after complete solidification of the magma chamber as indicated by the presence of two late-stage mafic dykes.  相似文献   

18.
The climactic eruption of Mount Mazama has long been recognized as a classic example of rapid eruption of a substantial fraction of a zoned magma body. Increased knowledge of eruptive history and new chemical analyses of 350 wholerock and glass samples of the climactic ejecta, preclimactic rhyodacite flows and their inclusions, postcaldera lavas, and lavas of nearby monogenetic vents are used here to infer processes of chemical evolution of this late Pleistocene — Holocene magmatic system. The 6845±50 BP climactic eruption vented 50 km3 of magma to form: (1) rhyodacite fall deposit; (2) welded rhyodacite ignimbrite; and (3) lithic breccia and zoned ignimbrite, these during collapse of Crater Lake caldera. Climactic ejecta were dominantly homogeneous rhyodacite (70.4±0.3% SiO2), followed by subordinate andesite and cumulate scoriae (48–61% SiO2). The gap in wholerock composition reflects mainly a step in crystal content because glass compositions are virtually continuous. Two types of scoriae are distinguished by different LREE, Rb, Th, and Zr, but principally by a twofold contrast in Sr content: High-Sr (HSr) and low-Sr (LSr) scoriae. HSr scoriae were erupted first. Trace element abundances indicate that HSr and LSr scoriae had different calcalkaline andesite parents; basalt was parental to some mafic cumulate scoriae. Parental magma compositions reconstructed from scoria wholerock and glass data are similar to those of inclusions in preclimactic rhyodacites and of aphyric lavas of nearby monogenetic vents.Preclimactic rhyodacite flows and their magmatic inclusions give insight into evolution of the climactic chamber. Evolved rhyodacite flows containing LSr andesite inclusions were emplaced between 30000 and 25000 BP. At 7015±45 BP, the Llao Rock vent produced a zoned rhyodacite pumice fall, then rhyodacite lava with HSr andesite inclusions. The Cleetwood rhyodacite flow, emplaced immediately before the climactic eruption and compositionally identical to climactic rhyodacite (volatile-free), contains different HSr inclusions from Llao Rock. The change from LSr to HSr inclusions indicates replenishment of the chamber with andesite magma, perhaps several times, in the latest Pleistocene to early Holocene.Modeling calculations and wholerock-glass relations suggest than: (1) magmas were derived mainly by crystallization differentiation of andesite liquid; (2) evolved preclimactic rhyodacite probably was derived from LSr andesite; (3) rhyodacites contain a minor component of partial melt from wall rocks, and (4) climactic and compositionally similar rhyodacites probably formed by mixing of evolved rhyodacite with HSr derivative liquid(s) after replenishment of the chamber with HSr andesite magma. Density considerations permit a model for growth and evolution of the chamber in which andesite recharge magma ponded repeatedly between cumulates and rhyodacite magma. Convective cooling of this andesite resulted in rapid crystallization and upward escape of buoyant derivative liquid which mixed with overlying, convecting rhyodacite. The evolved rhyodacites were erupted early in the chamber's history and(or) near its margins. Postcaldera andesite lavas may be hybrids composed of LSr cumulates mixed with remnant climactic rhyodacite. Younger postcaldera rhyodacite probably formed by fractionation of similar andesite and assimilation of partial melts of wallrocks.Uniformity of climactic rhyodacite suggests homogeneous silicic ejecta from other volcanoes resulted from similar replenishment-driven convective mixing. Calcalkaline pluton compositions and their internal zonation can be interpreted in terms of the Mazama system frozen at various times in its history.  相似文献   

19.
新疆阿尔泰元古代基性岩浆侵入事件   总被引:9,自引:2,他引:9       下载免费PDF全文
新疆阿尔泰山南缘深变质岩地层中零星出露有一些变质辉长岩,原被认为是晚古生代基性侵入体。对富蕴县乌恰沟基性岩的研究表明,乌恰沟变质基性岩是未受陆壳物质混染的上地幔部分熔融的产物,其Nd模式年龄TDM为945~977Ma,Sm-Nd等时线年龄为(974±63.4)Ma,反映了阿尔泰南缘在青白口纪初期的一次基性岩浆侵入事件。深变质围岩的Nd模式年龄为1435~1580Ma,相当于中元古代长城纪,代表了阿尔泰地区下—中元古界克木齐群形成的时代。  相似文献   

20.
Abundant and diverse platinum-group minerals (PGM) occur throughout the Tertiary layered intrusion on Rum, Scotland. In this paper we document the distribution of PGM within the Eastern Layered Series (ELS) on Rum, which comprises 16 alternating units of olivine-dominant feldspathic peridotite grading to plagioclase-dominant allivalite. The PGM occur in six main chrome-spinel layers in the Eastern Layered Series and are clearly associated with minor concentrations of interstitial sulphides. Common PGM phases include: Pd–Cu alloys, Pt–Fe alloys, native Pt, laurite, moncheite, sperrylite, isomertiete, cooperite and braggite along with a large number of other less common arsenide, bismuthotelluride and sulphide phases. Analyses of the discrete chromitite layers yield up to ΣPGE + Au 2618 ppb. Although present throughout the 750-m-thick ELS, there are clear stratigraphical changes in the PGM assemblage. The presence of PGM in the ELS on Rum are interpreted as being caused by mantle melting associated with the proto-Icelandic `hot spot', followed by localised concentration because of the combined effects of magma mixing, sulphide-silicate liquid immiscibility and fractional crystallisation. Most of the PGM are magmatic in origin but some grains show evidence of hydrothermal alteration. Received: 27 November 1999 / Accepted: 27 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号