首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The natural heterogeneity of water and solute movement in hillslope soils makes it difficult to accurately characterize the transport of surface‐applied pollutants without first gathering spatially distributed hydrological data. This study examined the application of time‐domain reflectometry (TDR) to measure solute transport in hillslopes. Three different plot designs were used to examine the transport of a conservative tracer in the first 50 cm of a moderately sloping soil. In the first plot, which was designed to examine spatial variability in vertical transport in a 1·2 m2 plot, a single probe per meter was found to adequately characterize vertical solute travel times. In addition, a dye and excavation study in this plot revealed lateral preferential flow in small macropores and a transport pattern where solute is focused vertically into preferential flow pathways. The bypass flow delivers solute deeper in the soil, where lateral flow occurs. The second plot, designed to capture both vertical and lateral flow, provided additional evidence confirming the flow patterns identified in the excavation of the first plot. The third plot was designed to examine lateral flow and once again preferential flow of the tracer was observed. In one instance rapid solute transport in this plot was estimated to occur in as little as 3% of the available pore space. Finally, it was demonstrated that the soil anisotropy, although partially responsible for lateral subsurface transport, may also homogenize the transport response across the hillslope by decreasing vertical solute spreading. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The occurrence of preferential flow in the subsurface has often been shown in field experiments. However, preferential flow is rarely included in models simulating the hydrological response at the catchment scale. If it is considered, preferential flow parameters are typically determined at the plot scale and then transferred to larger-scale simulations. Here, we successfully used the optimization algorithm DiffeRential Evolution Adaptive Metropolis (DREAM) to calibrate a 3D physics-based dual-permeability model directly at the catchment scale. In order to keep computational costs of the optimization routine at a reasonable level, we limited the number of parameters to be calibrated to the ones that had been shown before to be most influential for the simulation of discharge. We also calibrated parameters of the matrix domain and the macropore domain with a fixed parameter ratio between soil layers instead of calibrating every layer separately. These ratios reflected observed depth profiles of soil hydraulic properties at our study site. The dual-permeability parameter sets identified during calibration were able to simulate observed discharge time series satisfactorily but did not outperform a calibrated single-domain reference model scenario. Saturated hydraulic conductivities of the macropore domain were calibrated such that they became very similar to matrix saturated hydraulic conductivities, thereby effectively removing the effect of macropores. This suggests that the incorporation of vertical preferential flow as represented by the dual-permeability approach was not relevant for reproducing the hydrometric response reasonably well in the studied catchment. We also tested the scale-invariance of the calibrated dual-permeability parameter sets by using the parameter sets performing best at catchment scale to simulate plot-scale bromide depth profiles obtained from tracer irrigation experiments. This parameter transfer proved to be not successful, indicating that soil hydraulic parameters are scale-variant, independent of the direction of parameter transfer.  相似文献   

3.
Traditional analysis methods used to determine hydraulic properties from pumping tests work well in many porous media aquifers, but they often do not work in heterogeneous and fractured‐rock aquifers, producing non‐plausible and erroneous results. The generalized radial flow model developed by Barker (1988) can reveal information about heterogeneity characteristics and aquifer geometry from pumping test data by way of a flow dimension parameter. The physical meaning of non‐integer flow dimensions has long been a subject of debate and research. We focus on understanding and interpreting non‐radial flow through high permeability conduits within fractured aquifers. We develop and simulate flow within idealized non‐radial flow conduits and expand on this concept by simulating pumping in non‐fractal random fields with specific properties that mimic persistent sub‐radial flow responses. Our results demonstrate that non‐integer flow dimensions can arise from non‐fractal geometries within aquifers. We expand on these geometric concepts and successfully simulate pumping in random fields that mimic well‐test responses seen in the Culebra Dolomite above the Waste Isolation Pilot Plant.  相似文献   

4.
Jos C. van Dam 《水文研究》2000,14(6):1101-1117
Single domain models may seriously underestimate leaching of nutrients and pesticides to groundwater in clay soils with shrinkage cracks. Various two‐domain models have been developed, either empirical or physically based, which take into account the effects of cracks on water flow and solute transport. This paper presents a model concept that uses the clay shrinkage characteristics to derive crack volume and crack depth under transient field conditions. The concept has been developed to simulate field average behaviour of a field with cracks, rather than flow and transport at a small plot. Water flow and solute transport are described with basic physics, which allow process and scenario analysis. The model concept is part of the more general agrohydrological model SWAP, and is applied to a field experiment on a cracked clay soil, at which water flow and bromide transport were measured during 572 days. A single domain model was not able to mimic the field‐average water flow and solute transport. Incorporation of the crack concept considerably improved the simulation of water content and bromide leaching to the groundwater. Still deviations existed between the measured and simulated bromide concentration profiles. The model did not reproduce the observed bromide retardation in the top layer and the high bromide dispersion resulting from water infiltration at various soil depths. A sensitivity analysis showed that the amounts of bromide leached were especially sensitive to the saturated hydraulic conductivity of the top layer, the solute transfer from the soil matrix to crack water flow and the mean residence time of rapid drainage. The shrinkage characteristic and the soil hydraulic properties of the clay matrix showed a low sensitivity. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Modeling flow and transport using both temperature and dye tracing provides constraints that can improve understanding of karst networks. A laminar flow and transport model using the finite element subsurface flow model simulated the conduit connection between a sinking stream and spring in central Pennsylvania to evaluate how conduit morphology might affect dye transport. Single and overly tortuous conduit models resulted in high concentrations as dye flowed back into the conduit from the matrix after dye injections ceased. A forked conduit model diverted flow from the main conduit, reducing falling limb dye concentration. Latin hypercube sampling was performed to evaluate the sensitivity of 52 parameter combinations (conduit hydraulic conductivity, conduit cross-sectional area, matrix transmissivity, matrix porosity, and dispersivity) for four conduit geometry scenarios. Sensitivity of arrival time for 50% of the dye indicated no parameter combinations which simulate falling limb dye concentrations for tortuous geometries, confirming the importance of the forked geometry regardless of other parameters. Temperature data from high-resolution loggers were then incorporated into the forked conduit model to reproduce seasonal spring temperature using variable sink inflow. Unlike the dye trace models, the thermal models were sensitive to other model parameters, such as conduit cross-sectional area and matrix transmissivity. These results showed this dual approach (dye and temperature) to karst network modeling is useful for (1) exploring the role of conduit and matrix interaction for contaminant storage, (2) constraining karst conduit geometries, which are often poorly understood, and (3) quantifying the effect of seasonal trends on karst aquifers.  相似文献   

6.
The three-dimensional groundwater flow patterns in a gravel bar at the Danube east of Vienna were investigated and are discussed in this paper. The observed groundwater level gradients are highly dynamic and respond very quickly to changes in the river water levels. A variably saturated groundwater model was calibrated to the data to describe the complex dynamics of flow in the gravel bar. The model results suggest that short-term (6–48 h) fluctuations of river water levels cause variations in the exchange flow rates from − 35 l/s to 82 l/s. The highest rates occur during brief infiltration after rapidly rising river water levels. Simulations of different scenarios indicate that riverbank clogging will decrease the exchange fluxes by up to 80%, while clogging of both riverbank and riverbed essentially stops the flow exchange. The groundwater model is also used to simulate the transport of a conservative tracer. The variation of river water levels over time is shown to increase the extent of the active river–aquifer mixing zone in the gravel bar. These dynamic factors significantly enhance the dilution of conservative tracer concentrations in this zone.  相似文献   

7.
A series of large rainfall simulator experiments was conducted in 2002 and 2003 on a small plot located in an experimental catchment in the North Island of New Zealand. These experiments measured both runoff and sediment transport under carefully controlled conditions. A physically based hydrological modelling system (SHETRAN) was then applied to reproduce the observed hydrographs and sedigraphs. SHETRAN uses physically based equations to represent flow and sediment transport, and two erodibility coefficients to model detachment of soil particles by raindrop erosion and overland flow erosion. The rate of raindrop erosion also depended on the amount of bare ground under the simulator; this was estimated before each experiment. These erodibility coefficients were calibrated systematically for summer and winter experiments separately, and lower values were obtained for the summer experiments. Earlier studies using small rainfall simulators in the vicinity of the plot also found the soil to be less erodible in summer and autumn. Limited validation of model parameters was carried out using results from a series of autumn experiments. The modelled suspended sediment load was also sensitive to parameters controlling the generation of runoff from the rainfall simulator plot; therefore, we found that accurate runoff predictions were important for the sediment predictions, especially from the experiments where the pasture cover was good and overland flow erosion was the dominant mechanism. The rainfall simulator experiments showed that the mass of suspended sediment increased post‐grazing, and according to the model this was due to raindrop detachment. The results indicated that grazing cattle or sheep on steeply sloping hill‐country paddocks should be carefully managed, especially in winter, to limit the transport of suspended sediment into watercourses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a numerical model for sedimentation in Fenhe Reservoir and the adjoining reaches has been presented on the basis of the theory of non-equilibrium sediment transport. The model is calibrated by using a part of the sediment data collected for Fenhe Reservoir and checked by simulating the remaining data. Moreover, the method of optimization in nonlinear programming has been applied to determine the basic parameters of the model applying a concept of fuzzy mathematics to formulate the objective functions. The computed amounts of reservoir deposition and channel deformation arc found to be substantially in agreement with the values observed.  相似文献   

9.
The distributions of contact areas in single, natural fractures in quartz monzonite (Stripa granite) are found to have fractal dimensions which decrease fromD=2.00 to values nearD=1.96 as stress normal to the fractures is increased from 3 MPa up to 85 MPa. The effect of stress on fluid flow is studied in the same samples. Fluid transport through a fracture depends on two properties of the fracture void space geometry. the void aperture; and the tortuosity of the flow paths, determined through the distribution of contact area. Each of these quantities change under stress and contribute to changes observed in the flow rate. A general flow law is presented which separates these different effects. The effects of tortuosity on flow are largely governed by the proximity of the flow path distribution to a percolation threshold. A fractal model of correlated continuum percolation is presented which quantitatively reproduces the flow path geometries. The fractal dimension in this model is fit to the measured fractal dimensions of the flow systems to determine how far the flow systems are above the percolation threshold.  相似文献   

10.
Based on the common approach,the adaptation length in sediment transport is normally estimated astemporally independent.However,this approach might not be theoretically justified as the process of reaching the sediment transport equilibrium stage is affected by the flow conditions in time,especially for fast moving flows,such as scour-hole developing flows.In this study,the two-dimensional(2D) shallow water formulation together with a sediment continuity-concentration(SCC) model were applied to flow with mobile sediment boundary.A timevarying approach was proposed to determine the sediment transport adaptation length to simulate the sediment erosion-deposition rate.The proposed computational model was based on the Finite Volume(FV) method.The Monotone Upwind Scheme of Conservative Laws(MUSCL)-Hancock scheme was used with the Harten Lax van Leer-contact(HLLC) approximate Riemann solver to discretize the FV model.In the flow applications of this paper,a highly discontinuous dam-break,fast sediment transport flow was used to calibrate the proposed timevarying sediment adaptation length model.Then the calibrated model was further applied to two separate experimental sediment transport flow applications documented in the literature,i.e.a highly concentrated sediment transport flow in a wide alluvial channel and a sediment aggradation flow.Good agreement with the experimental data were obtained with the proposed model simulations.The tests prove that the proposed model,which was calibrated by the discontinuous dam-break bed scouring flow,also performed well to represent rapid bed change and steady sediment mobility conditions.  相似文献   

11.
 A stochastic simulation is performed to study multiphase flow and contaminant transport in fractal porous media with evolving scales of heterogeneity. Numerical simulations of residual NAPL mass transfer and subsequent transport of dissolved and/or volatilized NAPL mass in variably saturated media are carried out in conjunction with Monte Carlo techniques. The impact of fractal dimension, plume scale and anisotropy (stratification) of fractal media on relative dispersivities is investigated and discussed. The results indicate the significance of evolving scale of porous media heterogeneity to the NAPL transport in the subsurface. In general, the fractal porous media enhance the dispersivities of NAPL mass plume transport in both the water phase and the gas phase while the influence on the water phase is more significant. The porous media with larger fractal dimension have larger relative dispersivities. The aqueous horizontal dispersivity exhibits a most significant increase against the plume scale.  相似文献   

12.
Abstract

A three-dimensional Environmental Fluid Dynamics Code model was developed for a 17-km segment of the Mobile River, Alabama, USA. The model external forcing factors include river inflows from upstream, tides from downstream, and atmospheric conditions. The model was calibrated against measured water levels, velocities, and temperatures from 26 April to 29 August 2011. The Nash-Sutcliffe coefficients for water levels were greater than 0.94 and for water temperatures ranged from 0.88 to 0.99. The calibrated model was extended approximately 13 km upstream for simulating unsteady flow, dye, and temperature distributions in the Mobile River under different upstream inflows and downstream harmonic tides. Velocity profiles and distributions of flow, dye, and temperature at various locations were analyzed and show that flow recirculation could only occur under small inflow (50 m3 s-1) when downstream tides control the flow pattern in the Mobile River. The model results reveal complex interactions among discharges from a power plant, inflows, and tides.
Editor D. Koutsoyiannis; Associate editor D. Yang  相似文献   

13.
Stormwater infiltration systems are a popular method for urban stormwater control. They are often designed using an assumption of one‐dimensional saturated outflow, although this is not very accurate for many typical designs where two‐dimensional (2D) flows into unsaturated soils occur. Available 2D variably saturated flow models are not commonly used for design because of their complexity and difficulties with the required boundary conditions. A purpose‐built stormwater infiltration system model was thus developed for the simulation of 2D flow from a porous storage. The model combines a soil moisture–based model for unsaturated soils with a ponded storage model and uses a wetting front‐tracking approach for saturated flows. The model represents the main physical processes while minimizing input data requirements. The model was calibrated and validated using data from laboratory 2D stormwater infiltration trench experiments. Calibrations were undertaken using five different combinations of calibration data to examine calibration data requirements. It was found that storage water levels could be satisfactorily predicted using parameters calibrated with either data from laboratory soils tests or observed water level data, whereas the prediction of soil moistures was improved through the addition of observed soil moisture data to the calibration data set. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
郑懿  曹俊兴  何晓燕 《地球物理学报》2018,61(10):4126-4135
天然地震发生后,地震波及区域内的地下岩层渗透率常常会发生显著改变,其变化曲线显示出独有的特征,造成这一现象的机理较为复杂,传统渗流理论尚不能给出合理解释.针对这一问题,从震后渗透率变化规律入手,深入分析了地下岩层裂缝体系对渗透率的影响,给出了裂缝结构参数与渗透率之间的定量关系.结合岩层黏弹特性以及天然地震所产生的地下岩层体应变特征,基于裂缝体系分维度正比于外部应力的实验事实,将黏弹体应力松弛机制引入该体系,对裂缝分形渗透率模型进行了含时推广,建立起震后地下岩层渗透率的时间演化模型,理论预测曲线与实验曲线吻合较好.在此基础上提出‘分形裂缝渗透率松弛效应’这一全新概念.本研究为震控流体运移研究提供了新思路,对于揭示震后断层恢复机制,探讨断层活动与孕震的关联有一定的理论价值和现实意义.  相似文献   

15.
16.
An important quantity in groundwater protection is the residence time of water in an aquifer. It relates to both the travel time of a pollutant to arrive at a well and the time span required for self-purification of a polluted aquifer after removal of pollutant inputs. Time scales for aquifers can be gained from artificial tracer experiments or from environmental tracer data, the latter offering the only realistic alternative if time scales of years or decades have to be taken into account.

Different tracers show different time scales due to their different transport mechanisms especially in the unsaturated zone. While solute tracers are moved advectively with the seepage water, gas tracers pass the unsaturated zone diffusively through the air phase. Depending on the properties of the unsaturated zone (hydraulic properties, thickness) this difference in behavior can be used to separate the subsurface transport process into the unsaturated and the saturated parts.

In a field study in Germany, SF6 and 3H were used as environmental tracers. Both have a relatively well-known input function. Interpretation of data from observation wells by a box model approach led to spatially and temporally varying residence times. This was an indication that the influence of the unsaturated zone could not be neglected. While the gas tracer SF6 shows only residence times in the saturated zone, the tracer 3H reflects the whole travel time of water including both the unsaturated and saturated zones. Using a one-dimensional plug-flow model for the unsaturated zone combined with a detailed two-dimensional flow and transport model for the saturated zone leads to a holistic and consistent interpretation of the measured tracer concentrations. The observed pattern of old water under thick loess cover and younger water under areas where the fractured basalt aquifer crops out is reproduced after adjusting only two parameters: the effective porosity of the saturated aquifer and the product of field capacity and thickness of the unsaturated zone. While the effective porosity of the saturated zone is adjusted by means of the SF6 data, the field capacity of the loess layer is adjusted by means of the 3H observations. The thickness of the unsaturated zone is deduced from geological and pedological maps. All flow data are obtained from a calibrated flow model, which is based on geological data, observed heads and pumping tests only.

The transport model for the saturated zone was calibrated by fitting the porosity by means of gaseous tracer concentrations (SF6). The combined saturated–unsaturated zone model was then calibrated by fitting the field capacity of the unsaturated zone by means of 3H concentrations. With this model it was possible to verify the observed NO3 concentrations at the drinking water wells and to develop predictions for their future development under various scenarios of fertilizer input reduction in specific areas.  相似文献   


17.
Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory‐scale Geo‐HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow‐dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit‐like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study.  相似文献   

18.
STOMP, a subsurface flow and transport simulator for investigating remediation technologies, described in the preceding paper, is tested against simulation results from a published numerical code, MOFAT-2D, and against nonhysteretic and hysteretic data from three-phase flow experiments. There is good agreement between the STOMP and MOFAT-2D simulations and between measured data and numerical results when STOMP is used to simulate the experiments. However, there are some discrepancies between measured and predicted fluid contents. Discrepancies at low fluid contents are assumed to be a function of relative permeability-saturation relations, and discrepancies near complete wetting-fluid saturation are relations, and discrepancies near complete nonwetting-fluid entry pressure in the fluid saturation-pressure relations. Despite the discrepancies, overall predictions of subsurface fluid behavior are good. These results suggest that STOMP may accurately forecast multiphase-flow behavior at a site when the site is adequately characterized and the model parameters are correctly calibrated to the site.  相似文献   

19.
Abstract

Based on the water balance model LARSIM (Large Area Simulation Model), a model for the simulation of nitrogen transport was developed in a mesoscale catchment in southwest Germany. To meet the needs and constraints in river basin management, the nitrogen model was developed following the concept of minimum information requirement (MIR). The modelling concept uses only few calibration parameters and only easily accessible input data. Water balance, runoff generation and nitrogen transport were simulated on a 1-km2 grid of sub-areas in which different land-use classes and soil characteristics were accounted. Temporal variability of the storage of mobile nitrogen were described using a monthly based mass balance. Nitrogen mobilization and transport was simulated using monthly values of different runoff components and data for soil properties, topography, hydrogeology and river network. The simulation was calibrated and validated using streamflow from two gauging stations and observed nitrogen concentrations at the catchment outlet, showing reasonable results for both streamflow and nitrogen dynamics. The results of the model application are discussed in the context of uncertainty problems and their implications for water management.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号