首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solar wind velocity near Earth shows systematic structure in and around the heliospheric current sheet. The solar wind velocity measurements at IMF sector boundary crossings at 1 AU during 1972–1977 have been used to infer the azimuthal structure of the solar wind velocity in the current sheet. We found that the solar wind velocity in the in-ecliptic portion of the current sheet varies from longitude to longitude, where it originates from the corona. Also, the yearly average value of solar wind velocity in the HCS is found to vary with the phase of the solar cycle; with a maximum value around 1974. TheK-corona brightness on the source surface corresponding to the IMF sector boundary crossings during the period of study also shows a similar but opposite pattern of variation when the data are averaged over a long period. However, this relation is not observed when we considered them individually. So, we conclude that there exists a longitudinal variation of solar wind velocity in the heliospheric current sheet.  相似文献   

2.
It has been realized for some time that the slow solar wind with its embedded heliospheric current sheet often exhibits complex features suggesting at least partially transient origin. In this paper we investigate the structure of the slow solar wind using the observations by the Wind and STEREO spacecraft during two Carrington rotations (2054 and 2055). These occur at the time of minimum solar activity when the interplanetary medium is dominated by recurrent high-speed streams and large-scale interplanetary coronal mass ejections (ICMEs) are rare. However, the signatures of transients with small scale-sizes and/or low magnetic field strength (comparable with the typical solar wind value, ~?5 nT) are frequently found in the slow solar wind at these times. These events do not exhibit significant speed gradients across the structure, but instead appear to move with the surrounding flow. Source mapping using models based on GONG magnetograms suggests that these transients come from the vicinity of coronal source surface sector boundaries. In situ they are correspondingly observed in the vicinity of high density structures where the dominant electron heat flux reverses its flow polarity. These weak transients might be indications of dynamical changes at the coronal hole boundaries or at the edges of the helmet streamer belt previously reported in coronagraph observations. Our analysis supports the idea that even at solar minimum, a considerable fraction of the slow solar wind is transient in nature.  相似文献   

3.
The observations both near the Sun and in the heliosphere during the activity minimum between solar cycles 23 and 24 exhibit different phenomena from those typical of the previous solar minima. In this paper, we have chosen Carrington rotation 2070 in 2008 to investigate the properties of the background solar wind by using the three-dimensional (3D) Solar?CInterPlanetary Conservation Element/Solution Element Magnetohydrodynamic (MHD) model. We also study the effects of polar magnetic fields on the characteristics of the solar corona and the solar wind by conducting simulations with an axisymmetric polar flux added to the observed magnetic field. The numerical results are compared with the observations from multiple satellites, such as the Solar and Heliospheric Observatory (SOHO), Ulysses, Solar Terrestrial Relations Observatory (STEREO), Wind and the Advanced Composition Explorer (ACE). The comparison demonstrates that the first simulation with the observed magnetic fields reproduces some observed peculiarities near the Sun, such as relatively small polar coronal holes, the presence of mid- and low-latitude holes, a tilted and warped current sheet, and the broad multiple streamers. The numerical results also capture the inconsistency between the locus of the minimum wind speed and the location of the heliospheric current sheet, and predict slightly slower and cooler polar streams with a relatively smaller latitudinal width, broad low-latitude intermediate-speed streams, and globally weak magnetic field and low density in the heliosphere. The second simulation with strengthened polar fields indicates that the weak polar fields in the current minimum play a crucial role in determining the states of the corona and the solar wind.  相似文献   

4.
Calculation of stationary distributions of the most important plasma parameters (particle energy, density, field-aligned and transversal pressure) is performed for a model magnetotail plasma sheet which is formed by convecting plasma mantle particles injected into the closed geomagnetic field line tubes. Computations have been done for two convection models: (i) a model of completely adiabatic particle motion with conservation of the first two invariants and (ii) a model with a strong pitch-angle diffusion which maintains isotropy. It is found that in both cases the heating and compression of the plasma are somewhat more effective than is necessary to account for the observed gradients of magnetic field in the magnetospheric tail. A leakage of accelerated particles through the dawn and dusk edges of the plasma sheet is proposed as a possible mechanism for maintenance of stationary convection in the magnetotail. The question of the dependence of the stationary magnetotail parameters on the solar wind state is discussed briefly.  相似文献   

5.
Current sheets have been suggested as the site for flare energy release because they can convert magnetic energy very rapidly into both heat and directed plasma energy. Also they contain electric fields with the potential of accelerating particles to high energies.The basic properties of current sheets are first reviewed. For instance, magnetic flux may be carried into a current sheet and annihilated. An exact solution for such a process in an infinitely long sheet has been found; it describes the annihilation of fields which are inclined at any angle, not just 180°. Moreover, field lines which are expelled from the ends of a current sheet can be described as having been reconnected. The only workable model for fast reconnection in the solar atmosphere, namely Petschek's mechanism, has recently been put on a firm foundation; it gives a reconnection rate which depends on the electrical conductivity but is typically a tenth or a hundredth of the Alfvén speed. A current sheet may be formed when the sources of an initially potential field start to move; a simple analytic technique for finding the position and shape of such a sheet in two dimensions now exists. Finally, a sheet with no transverse magnetic field component is subject to the tearing-mode instability, which rapidly produces a series of loops in the field.The main ways in which current sheets have been used for solar flare models is described. Syrovatskii's mechanism relies on the increase of the electric current density during the formation of a sheet, to a value in excess of the critical value j * for the onset of microinstabilities. But Anzer has recently demonstrated that the critical value is most unlikely to be reached during the initial formation process. Sturrock, on the other hand, has advocated the occurrence of the tearing-mode instability in an open streamer-like configuration (which may result from the eruption of a force-free field). But recent observations do not point to that as the relevant configuration. Rather, they suggest that flares are triggered by the emergence of new magnetic flux from below the solar photosphere. This has led Heyvaerts, Priest, and Rust (1976) to propose a new emerging flux model, according to which, as more and more flux emerges, so reconnection occurs, producing some preflare heating. When the current sheet reaches such a height (around the transition region) that its current density exceeds j *, then the impulsive phase of the flare is triggered. The main phase is caused by an enhanced level of magnetic energy conversion in a turbulent current sheet. The type of flare depends on the magnetic environment in which the emerging flux finds itself. A surge flare results if the flux appears near a strong unipolar region such as a simple sunspot, whereas a two ribbon flare may be produced by flux emergence near an active region filament, in which case the main phase energy is released from the field that surrounds the filament.  相似文献   

6.
Khabarova  O.  Zastenker  G. 《Solar physics》2011,270(1):311-329
Analysis of the Interball-1 spacecraft data (1995 – 2000) has shown that the solar wind ion flux sometimes increases or decreases abruptly by more than 20% over a time period of several seconds or minutes. Typically, the amplitude of such sharp changes in the solar wind ion flux (SCIFs) is larger than 0.5×108 cm−2 s−1. These sudden changes of the ion flux were also observed by the Solar Wind Experiment (SWE), on board the Wind spacecraft, as the solar wind density increases and decreases with negligible changes in the solar wind velocity. SCIFs occur irregularly at 1 AU, when plasma flows with specific properties come to the Earth’s orbit. SCIFs are usually observed in slow, turbulent solar wind with increased density and interplanetary magnetic field strength. The number of times SCIFs occur during a day is simulated using the solar wind density, magnetic field, and their standard deviations as input parameters for a period of five years. A correlation coefficient of ∼0.7 is obtained between the modelled and the experimental data. It is found that SCIFs are not associated with coronal mass ejections (CMEs), corotating interaction regions (CIRs), or interplanetary shocks; however, 85% of the sector boundaries are surrounded by SCIFs. The properties of the solar wind plasma for days with five or more SCIF observations are the same as those of the solar wind plasma at the sector boundaries. One possible explanation for the occurrence of SCIFs (near sector boundaries) is magnetic reconnection at the heliospheric current sheet or local current sheets. Other probable causes of SCIFs (inside sectors) are turbulent processes in the slow solar wind and at the crossings of flux tubes.  相似文献   

7.
The energy balance equation for the upper chromosphere or lower corona contains a radiative loss term which is destabilizing, because a slight decrease in temperature from the equilibrium value causes more radiation and hence a cooling of the plasma; also a slight increase in temperature has the effect of heating the plasma. In spite of this tendency towards thermal instability, most of the solar atmosphere is remarkably stable, since thermal conduction is very efficient at equalizing any temperature irregularity which may arise. However, the effectiveness of thermal conduction in transporting heat is decreased considerably in a current sheet or a magnetic flux tube, since heat can be conducted quickly only along the magnetic field lines. This paper presents a simple model for the thermal equilibrium and stability of a current sheet. It is found that, when its length exceeds a certain maximum value, no equilibrium is possible and the plasma in the sheet cools. The results may be relevant for the formation of a quiescent prominence.  相似文献   

8.
The structure and dynamics of neutral sheets in the solar wind is examined. The internal magnetic topology of the sheet is argued to be that of thin magnetic tongues greatly distended outward by the expansion inside the sheet. Due to finite conductivity effects, outward flow takes place across field lines but is retarded relative to the ambient solar wind by the reverse J×B force. The sheet thickness as well as the internal transverse magnetic field are found to be proportional to the electrical conductivity to the inverse one third power. Estimating a conductivity appropriate for a current carried largely by the ions perpendicular to the magnetic field, we find sheet dimensions of the order of 500km representative for the inner solar corona. For a radial field of strength 1/2G at 2R , the transverse field there is about 2 × 10–3G and decreases outward rapidly.The energy release in the form of Joulean dissipation inside the sheet is estimated. It is concluded that ohmic heating in current sheets is not a significant source of energy for the overall solar wind expansion, mainly because these structures occupy only a small percentage of the total coronal volume. However, the local energy release through this mechanism is found to be large - in fact, over 7 times that expected to be supplied by thermal conduction. Therefore, ohmic heating is probably a dominant energy source for the dynamical conditions within the sheet itself.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

9.
It is argued that there is a terrestrial loss of hydrogen as ions which includes the polar wind but extends effectively down to a latitude in the range 45–50° invariant. In daytime and for much of the night-time the flux is close to the limiting value for H+ flow through the topside ionosphere. It is argued that the flux decreases rapidly with increasing solar activity, following the decrease in neutral hydrogen concentration. It has been found that as solar activity increases the Jeans escape flux increases, and the charge exchange escape flux increases until moderate solar activity levels are reached. As solar activity increases from moderate to high levels, the charge exchange escape may decrease again. A new budget for terrestrial hydrogen loss over the solar cycle is given. The global flux of hydrogen ions outward from the ionosphere is comparable with estimates of the plasma sheet loss rates, and this flux, together with some solar wind plasma, is an attractive source for the plasma sheet.The energetic neutrals produced from the charge exchange of ring current ions with thermal-energy neutrals in the exosphere produce the optical emission of the equatorial aurora, which can be related to ion production rates near and above the E-region. The ionization production is adequate to explain the enhancements in ion production observed during magnetic storms at Arecibo.  相似文献   

10.
The energy balance of open-field regions of the corona and solar wind and the influence of the flow geometry in the corona upon the density and temperature, are analyzed. It is found that the energy flux arriving at the corona is constant for the corona's open regions with different flow geometries. For the waves heating the corona and solar wind, the dependence of the absorption coefficient on the corona's plasma density is found to be within the range of distances r=1.05–1.5R . It is shown that the wave absorption is more dependent on electron density than the coronal emission. It is this difference that causes lower-density coronal holes to be colder than quiet regions. It is found that the additional energy flux necessary for providing energy balance of the corona and for producing solar wind is a flux of Alfvén waves, which can provide the energy needed for producing quasi-stationary high-speed solar wind streams. Theoretical models of coronal holes and the question of why the high-speed solar wind streams are precisely flowing out of coronal holes, are discussed.  相似文献   

11.
We investigate the effect of viscosity and magnetic diffusivity on the oblique propagation and dissipation of Alfvén waves with respect to the normal outward direction, making use of MHD equations, density, temperature and magnetic field structure in coronal holes and underlying magnetic funnels. We find reduction in the damping length scale, group velocity and energy flux density as the propagation angle of Alfvén waves increases inside the coronal holes. For any propagation angle, the energy flux density and damping length scale also show a decrement in the source region of the solar wind (< 1.05 R) where these may be one of the primary energy sources, which can convert the inflow of the solar wind into the outflow. In the outer region (> 1.21 R), for any propagation angle, the energy flux density peaks match with the peaks of MgX 609.78 Å and 624.78 Å linewidths observed from the Coronal Diagnostic Spectrometer (CDS) on SOHO and the non-thermal velocity derived from these observations, justify the observed spectroscopic signature of the Alfvén wave dissipation.  相似文献   

12.
L. Zhao  L. Fisk 《Solar physics》2011,274(1-2):379-397
The properties of the heliospheric magnetic field and the solar wind were substantially different in the unusual solar minimum between Cycles 23 and 24: the magnetic-field strength was substantially reduced, as were the flow properties of the solar wind, such as the mass flux. Explanations for these changes are offered that do not require any substantial reconsideration of the general understandings of the behavior of the heliospheric magnetic field and the solar wind that were developed in the minimum of Cycle 22?–?23. Solar-wind composition data are used to demonstrate that there are two distinct regions of solar wind: solar wind likely to originate from the stalk of the streamer belt (the highly elongated loops that underlie the heliospheric current sheet), and solar wind from outside this region. The region outside the streamer-stalk region is noticeably larger in the minimum of Cycle 23?–?24; however, the increased area can account for the reduction in the heliospheric magnetic-field strength in this minimum. Thus, the total magnetic flux contained in this region is the same in the two minima. Various correlations among the solar-wind mass flux and coronal electron temperature inferred from solar-wind charge states were developed for the Cycle 22?–?23 solar minimum. The data for the minimum of Cycle 23?–?24 suggest that the correlations still hold, and thus the basic acceleration mechanism is unchanged in this minimum.  相似文献   

13.
Data of hourly interplanetary plasma (field magnitude, solar wind speed, and ion density), solar (sunspot number, solar radio flux), and geomagnetic indices (Kp, Ap) over the period 1970-2010, have been used to examine the asymmetry between the solar field north and south of the heliospheric current sheet (HCS). A persistent yearly north-south asymmetry of the field magnitude is clear over the considered period, and there is no magnetic solar cycle dependence. There is a weak N-S asymmetry in the averaged solar wind speed, exhibited well at times of maximum solar activities. The solar plasma is more dense north of the current sheet than south of it during the second negative solar polarity epoch (qA < 0). Moreover, the N - S asymmetry in solar activity (Rz) can be statistically highly significant. The sign of the average N - S asymmetry depends upon the solar magnetic polarity. The annual magnitudes of N - S asymmetry depend positively on the solar magnetic cycle. Most of the solar radio flux asymmetries occurred during the period of positive IMF polarity.  相似文献   

14.
Images of comet Hyakutake (C/1996 B2) are analyzed in conjunction with solar wind data from spacecraft to determine the relationship between solar wind conditions and plasma tail morphology. The disconnection event (DE) on March 25, 1996 is analyzed with the aid of data from the IMP-8 and WIND Earth-orbiting spacecraft and the DE is found to be correlated with a crossing of the heliospheric current sheet. The comet was within of Earth at the time of the DE and data from IMP-8 and WIND show no high-speed streams, significant density enhancements or shocks.The latitudinal variation in the appearance and orientation of the plasma tail are interpreted based on results from the Ulysses spacecraft. In the polar solar wind region, the comet has a relatively undisturbed appearance, no DEs were observed, and the orientation of the plasma tail was consistent with a higher solar wind speed. In the equatorial solar wind region, the comet's plasma tail had a disturbed appearance, a major DE was observed, and the orientation of the plasma tail was consistent with a lower solar wind speed. The boundary between the equatorial and polar regions crossed by comet Hyakutake in April 1996 was near 30°N (ecliptic) or 24°N (solar) latitude.  相似文献   

15.
The parameters of the magnetic flux distribution inside low-latitude coronal holes (CHs) were analyzed. A statistical study of 44 CHs based on Solar and Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284?Å images showed that the density of the net magnetic flux, B net, does not correlate with the associated solar wind speeds, V x . Both the area and net flux of CHs correlate with the solar wind speed and the corresponding spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A possible explanation for the low correlation between B net and V x is proposed. The observed non-correlation might be rooted in the structural complexity of the magnetic field. As a measure of the complexity of the magnetic field, the filling factor, f(r), was calculated as a function of spatial scales. In CHs, f(r) was found to be nearly constant at scales above 2 Mm, which indicates a monofractal structural organization and smooth temporal evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller than 2 Mm, the filling factor decreases rapidly, which means a multifractal structure and highly intermittent, burst-like energy release regime. The absence of the necessary complexity in CH magnetic fields at scales above 2 Mm seems to be the most plausible reason why the net magnetic flux density does not seem to be related to the solar wind speed: the energy release dynamics, needed for solar wind acceleration, appears to occur at small scales below 1 Mm.  相似文献   

16.
We present a steady-state model for reconnecting current sheets, which relates the central values of temperature, density and pressure within the sheet to the prescribed external values of these parameters as well as the magnetic field strength and inflow velocity (or reconnection rate). The simplifying feature of our model is the assumption of quasi-one-dimensionality so that only variations across the sheet at the centre of symmetry are considered in detail. The dimensions of the sheet, the spatial profiles and their variation with the prescribed dimensionless parameters are obtained from the model. We also obtain the conditions on the dimensionless parameters for the existence of a steady state. A beta-limitation is discovered, such that steady reconnection is impossible when the plasma beta is too small. Also, the sheet dimensions may be an order of magnitude larger than previously thought. Finally, these general results are applied to the emerging flux model for solar flares. A state of thermal nonequilibrium ensues when the current sheet between the emerging and ambient flux reaches a critical height. The effect of the beta-limitation is to make this critical height decrease with increasing magnetic field strength.Now at A.W.R.E., Aldermaston, Berks., England.  相似文献   

17.
Endeve  Eirik  Leer  Egil 《Solar physics》2001,200(1-2):235-250
In coronal holes the electron (proton) density is low, and heating of the proton gas produces a rapidly increasing proton temperature in the inner corona. In models with a reasonable electron density in the upper transition region the proton gas becomes collisionless some 0.2 to 0.3 solar radii into the corona. In the collisionless region the proton heat flux is outwards, along the temperature gradient. The thermal coupling to electrons is weak in coronal holes, so the heat flux into the transition region is too small to supply the energy needed to heat the solar wind plasma to coronal temperatures. Our model studies indicate that in models with proton heating the inward heat conduction may be so inefficient that some of the energy flux must be deposited in the transition region to produce the proton fluxes that are observed in the solar wind. If we allow for coronal electron heating, the energy that is needed in the transition region to heat the solar wind to coronal temperatures, may be supplied by heat conduction from the corona.  相似文献   

18.
We combined simultaneous solar wind observations from five different spacecraft: Helios 1, Helios 2, IMP-8, Voyager 1 and Voyager 2, from November 1977 to February 1978 (Carrington rotations 1661?–?1664, ascending phase of Solar Cycle 21). The concurrence of the five trajectories makes this interval unique for the purpose of studying solar wind dynamics during this phase of the cycle. We analyzed the observations identifying five corotating interaction regions (CIRs) and produced maps of interplanetary large-scale features, unifying and summarizing the data. The maps show the compressive events and the magnetic sectors associated with the solar wind streams causing the CIRs. We analyzed the relative position of the stream interfaces immersed within the CIRs. About 70 % of the stream interfaces in this study were located closer to the forward edge of the CIR. From the analysis of the geometry of the stream interfaces, we found that all the CIRs presented latitudinal tilts, having their fronts pointing towards the ecliptic plane and their tails northwards or southwards. These results are in agreement with the origin of the fast streams coming from mid-latitude coronal holes and the predominance of forward shocks over reverse shocks bounding the CIRs, which characterize this phase of the cycle. From the analysis of the ratio of dynamic pressures between fast and slow solar wind streams associated with the CIRs, we found that in about 60 % of the cases the fast stream was transferring momentum to the slow one ahead, but in the rest of the cases the momentum was flowing sunward. This result indicates significant inhomogeneities in the solar wind streams during the ascending phase of the cycle that affect the local form and evolution of CIR events. We did a limited comparison between a global magneto-hydrodynamic (MHD) model of SW flows and the orientation of the SI from in-situ observations, we found, in general, a qualitative agreement between the pressure profiles at 1 AU predicted by the model and the inclinations of the stream interfaces deduced from the data analysis.  相似文献   

19.
Galactic cosmic rays (GCRs) are modulated by the heliospheric magnetic field (HMF) both over decadal time scales (due to long-term, global HMF variations), and over time scales of a few hours (associated with solar wind structures such as coronal mass ejections or the heliospheric current sheet, HCS). Due to the close association between the HCS, the streamer belt, and the band of slow solar wind, HCS crossings are often associated with corotating interaction regions where fast solar wind catches up and compresses slow solar wind ahead of it. However, not all HCS crossings are associated with strong compressions. In this study we categorize HCS crossings in two ways: Firstly, using the change in magnetic polarity, as either away-to-toward (AT) or toward-to-away (TA) magnetic field directions relative to the Sun and, secondly, using the strength of the associated solar wind compression, determined from the observed plasma density enhancement. For each category, we use superposed epoch analyses to show differences in both solar wind parameters and GCR flux inferred from neutron monitors. For strong-compression HCS crossings, we observe a peak in neutron counts preceding the HCS crossing, followed by a large drop after the crossing, attributable to the so-called ‘snow-plough’ effect. For weak-compression HCS crossings, where magnetic field polarity effects are more readily observable, we instead observe that the neutron counts have a tendency to peak in the away magnetic field sector. By splitting the data by the dominant polarity at each solar polar region, we find that the increase in GCR flux prior to the HCS crossing is primarily from strong compressions in cycles with negative north polar fields due to GCR drift effects. Finally, we report on unexpected differences in GCR behavior between TA weak compressions during opposing polarity cycles.  相似文献   

20.
The magnetic field of Mercury and the structure and dynamics of Mercury's magnetosphere, which will be studied by the spacecraft orbiting Mercury, are strongly influenced by the interaction of the solar wind with Mercury. In order to understand the internal magnetic field, it will be necessary to correct the observations of the external field for the distortions produced by the solar wind. Understanding of the solar wind interaction with Mercury is essential for understanding the structure and dynamics of the magnetosphere and phenomena such as magnetic storms. Helios 1 and 2 made a number of passes in the region traversed by the orbit of Mercury, and each pass provided a sample of the solar wind environment of Mercury. This paper reviews the plasma and magnetic field observations from Helios that provide a general basis for interpreting the observations of Mercury that will be made by orbiting spacecraft. The variables that govern the structure and dynamics of the magnetospheres of Mercury and Earth are approximately 5–10 times larger at Mercury than at Earth. Thus, the solar wind interaction with Mercury will be much stronger than the interaction with Earth. Moreover, the solar wind at Mercury is probably more variable than that at Earth. There is a clear need for measurements of the solar wind during the approach of spacecraft to Mercury and while they are in orbit around Mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号