首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of a 5-year fertilization experiment in a central Long Island Sound salt marsh, aimed at understanding the impacts of high nutrient loads on marsh elevational processes. Fertilization with nitrogen led to some significant changes in marsh processes, specifically increases in aboveground primary production and in CO2 fluxes from the soil. However, neither nitrogen nor phosphorus fertilization led to elevation loss (relative to controls), reduced soil carbon, or a decrease in belowground primary production, all of which have been proposed as links between elevated nutrient loads and marsh drowning. Our data suggest that high nutrient levels increase gross carbon loss from the sediment, but that this is compensated for by other processes, leading to no net deleterious effect of nutrient loading on carbon storage or on marsh stability with respect to sea level rise.  相似文献   

2.
Increased freshwater and nutrient runoff associated with coastal development is implicated in dramatically altering estuarine communities along eastern US shorelines. We examined effects of three categories of shoreline development on high-marsh environments within Murrells Inlet, South Carolina, USA by measuring sediment nutrients, porewater salinity, plant species diversity, and above- and belowground plant biomass. Effects on new plant growth also were examined in plot clearing and transplantation experiments. Greater nutrient availability in sediments along developed shorelines was reflected in greater aboveground biomass and nitrogen storage in Juncus roemerianus plant tissue. Plant species composition was not significantly different among levels of shoreline development. Zinc concentrations were greater in sediments from developed shorelines and may represent an easily measured indicator of shoreline development. Recently accelerating shoreline development in the southeastern USA may alter plant production, nitrogen storage, and sediment metal content in salt marshes.  相似文献   

3.
Nutrient fluxes and primary production were examined in Lake Illawarra (New South Wales, Australia), a shallow (Zmean=1.9 m) coastal lagoon with a surface area of 35 km2, by intensive measurement of dissolved nutrients and oxygen profiles over a 22-h period. Rates of primary production and nutrient uptake were calculated for the microphytobenthos, seagrass beds, macroalgae, and pelagic phytoplankton. Although gross nutrient release rates to the water column and sediment pore waters were potentially high, primary production by microphytobenthos rapidly sequesters the re-mineralized nutrients so that net releases, averaged over times longer than a day, were low. Production in the water column was closely coupled with the relatively low sediment net nutrient release rates and detrital decomposition in the water column. Dissolved inorganic nitrogen and silica concentrations in the water column are drawn down at the beginning of the day. The system did not appear to be light limited so photosynthesis occurs as fast as the nutrients become available to the phytoplankton and microphytobenthos. We conjecture that microphytobenthos are the dominant primary producers and, as has been shown previously, that the nutrient uptake occurs in phase with the various stages of the diatom growth.  相似文献   

4.
The effects of light reduction on community metabolism and sediment sulfate reduction rates (SRR) were assessed experimentally in a shallow (<2.0 m) seagrass (Thalassia testudinum) meadow along Florida's north-central Gulf coast. Nine experimental plots (1.5 m×1.5 m) were shaded differentially to achieve a 0–90% gradient in light reduction within the seagrass meadow. Gross primary production and net community production (NCP), estimated with in situ benthic chamber incubations, decreased with increasing light reduction. The compensation irradiance for community metabolism, i.e., the shading level at which NCP shifted from net autotrophic to net heterotrophic, was determined to be 52.5% of the incoming irradiance at canopy height in the seagrass bed (308.7 μE m−2 s−1 PAR at noon). Sediment SRR, determined with the use of a35S−SO4 2− radiotracer technique, increased quickly (within 5 d) and markedly with increased shade, i.e., simulated light reduction. SRR increased 50-fold when shading exceeded the light compensation point for the seagrass community, rendering the community net heterotrophic. Five days after restoring ambient light conditions, SRR had decreased sharply for all shading treatments. The observed decrease in NCP, coincident with the increase in the SRR with light reduction, suggests that light reduction has an indirect influence on sediment SRR mediated through its effect on seagrass metabolism.  相似文献   

5.
Estuarine and coastal marine sediment-water fluxes are considered to be important ecological features, but a global-scale assessment has yet to be developed. Goals of this work were to assemble a global-scale database of net sediment-water flux measurements, examine measurement techniques, characterize the geographic distribution and magnitude of sediment fluxes, explore the data for controls on sediment flux magnitude, and assess the importance of sediment fluxes in ecosystem-level metabolism and primary production. We examined 480 peer-reviewed sources and found sediment flux data for 167 estuarine and coastal systems. Most measurements were made in North America, Europe, and Australia. Fluxes varied widely among systems, some by several orders of magnitude. Inter-annual variability within sites was less than an order of magnitude but time series flux data to evaluate this were rare. However, limited time series data exhibited large and rapid responses to decreased external nutrient loading rates, climate change effects (possible temperature effects), and variability in trophic conditions. Comparative analyses indicated organic matter supply to sediments set the upper limits of flux magnitude, with other factors playing secondary roles. Two metrics were developed to assess ecosystem-level importance of sediment-water fluxes. Sediments represented 30% or more of depth-integrated rates of aerobic system respiration at depths of <10 m. An annual phytoplankton production data set was used to estimate N and P demand; sediments supplied an average of 15–32% of N and 17–100% of P demand and, in some cases, was as large or larger than external nutrient inputs. The percent of demand supplied by sediments was highest in temperate latitudes and lower in high and tropical latitudes.  相似文献   

6.
Water quality and criculation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate densityThalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to −0.410 g CaCO3 m−2d−1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to −1.900 g CaCO3 m−2 night−1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average accumulation rate for Florida Bay of 8.7 cm 1000 yr−1 and suggests that sediment dissolution plays a more important role than sediment transport in loss of sediment from Florida Bay.  相似文献   

7.
The functioning of the German Bight ecosystem is determined largely by nutrient fluxes in and out of the system, namely by the advection of nutrients from the central and southern North Sea, including the influence of the Rhine River; by nutrient inputs through direct continental river runoff into the German Bight (Elbe, Weser, and Ems rivers); and by atmospheric nutrient inputs originating from land. The nutrient situation in the German Bight and the entire North Sea is assessed by estimating these fluxes from available nutrient data. The advective inflowes are based also on simulated water transports. The circulation system in the North Sea is divided into a northern and a southern cell, with only little net water exchange. The nutrient inflow into the southern North Sea from the north is also small, with no effect on the continental coastal areas. For the entire North Sea, the total input of phosphorus increased by 7.7% an nitrogen by about 11.4% from 1950 to 1980. The percentage of Atlantic input of phosphorus into the entire North Sea decreased from 91% to 85%, while river input increased from 2% to 13%. In the continental coastal strip the total inputs increased by 80%. The share of river input increased to 52%, both for phosphorus (1950: 14%) and nitrogen (1950: 20%). Of the winter nutrient content of the upper 30 m of the entire North Sea 33.5% of phosphate and 16.1% of nitrate are taken up by algae until summer. About 50% of total new production is generated in the coastal areas, with 32.8% of the volume and 34.4% of the area of the North Sea. The ratio of new to regenerated production ranges from 2.8 to 12, depending on the method of derivation. In the German Bight, phosphate and nitrate concentrations increased during the last four decades. At Helgoland the five-year-medians of phosphate and nitrate increased by a factor of 1.7 and 2.5, respectively. As the nutrient inputs by river discharges are only slightly larger than advective contributions, the nutrient concentrations rose comparatively slowly. Diatoms stagnated, while flagellates increased 10-fold. Common winter values in the early 1980s resemble those during summer blooms in the early 1960’s. The German Bight ecosystem has changed drastically on all time scales under the anthropogenic nutrient inputs during the last 40 years; the plankton system is no longer in an annual quasiperiodic state.  相似文献   

8.
堆场疏浚淤泥含水率分布规律调查研究   总被引:1,自引:0,他引:1  
堆场淤泥的沉积、固结过程直接影响到后续淤泥的处理方法和经济成本。通过在南水北调东线白马湖现场使用绞吸式挖泥船疏挖白马湖底泥,吹淤进入堆场,研究了堆场内淤泥含水率随时间、沿程和堆场深度上的变化规律。结果表明,堆场内疏浚淤泥含水率随时间逐渐降低,随沿程逐渐升高,130 d后吹淤口处含水率降低到20%~50%之间;160 d后,距离吹淤口100 m距离吹淤口200 m处和处含水率维持在100%~150%和100%~170%之间;随深度逐渐降低,到40 cm深时,含水率降低减缓,维持在140%左右;疏浚泥中黏粒含量随着距离吹淤口距离的增大而增多,随着深度的加深而减小,疏浚泥的渗透系数随着距离吹淤口距离的增大而减小,随深度的加深而增大。  相似文献   

9.
A year-long analysis of the characteristics of the seagrassSyringodium filiforme and the associated dynamics of the nutrient pool in the sediment pore water was done to assess co-variation. Changes in seagrass growth rate and standing stock throughout the year were accompanied by seasonal changes in the nutrient pools. The link between plant production and morphometrics and the sediment nutrient pool was found to be predominantly physiological, with the plant balancing the ability to photosynthesize with the nutrients needed for maintaining production. Measurements of whole plant growth for this seagrass, rather than the more typical leaf growth measurements, show that the production of new shoots and rhizome elongation for these plants represents as substantial amount of growth that usually goes unmeasured. Further, these whole plant growth measures demonstrate the rapid lateral rhizome spread of this species, exceeding one meter per plant per year. The primary cause of seasonal variation in the yearly seagrass cycle was investigated. Correlation analysis supported the hypothesis that the major factor controlling seasonal variation in this seagrass was light. During the peak growing season, however, growth was not regulated by light but by nitrogen. Depletion of the sediment ammonium pool and reduction in pore water ammonium relative to adsorbed ammonium, as well as changes in N content of seagrass leaves, support our hypothesis of peak growing season nitrogen limitation. Our results forSyringodium filiforme in terrigenous sediments are in contrast to our recent findings of phosphorus limitation in this same species occurring in carbonate sediments.  相似文献   

10.
The rapid rates of sediment accumulation (~ 10–20 cm/yr) in the recently formed Cape Lookout Bight, North Carolina, have resulted in the deposition of approximately 157 moles of carbon, 14 moles of nitrogen and 1.3 moles of phosphorus, per square meter annually. The metabolism of the organic matter in these anoxic sediments is dominated by sulfate reduction and fermentation reactions. Sedimentary nitrogen and phosphorus budgets are estimated using 3 related approaches: 1) a kinetic model of solid phase diagenesis; 2) direct measurements of nutrient burial and regeneration; and 3) nutrient recycling rates estimated from annual rates of sulfate reduction and the SO4:NH4 and SO4:PO4 stoichiometry of nutrient regeneration. The mass balances derived agree reasonably well and indicate that approximately 30% of the total nitrogen and 15% of the total phosphorus deposited in these sediments are recycled. The kinetics of nutrient regeneration are rapid. The mean residence time for recycled nutrients within the sediment is 4 to 6 months for nitrogen and 1.5 to 2 years for phosphorus. Nearly 60% of the total nitrogen regeneration and 90% of the total phosphorus regeneration occur during the 4 month summer period of June through September. Nitrogen regeneration, like carbon, appears to be controlled by the microbially-mediated metabolism of labile organic matter. The greater asymmetry and lower percent turnover in phosphorus cycling is apparently due to changes in its solubility under oxidized and reduced conditions and selective regeneration prior to deposition.  相似文献   

11.
Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts   总被引:1,自引:0,他引:1  
To gain insight into the importance of the benthos in carbon and nutrient budgets of Boston Harbor and surrounding bays, we measured sediment-water exchanges of oxygen, total carbon dioxide (DIC), nitrogen (ammonium, nitrate+nitrite, urea, N2O), silicate, and phosphorus at several stations in different sedimentary environments just prior to and subsequent to cessation of sewage sludge disposal in the harbor. The ratio of the average annual DIC release to O2 uptake at three primary stations ranged from 0.84 to 1.99. Annual average DIC:DIN flux ratios were consistently greater than predicted from the Redfield ratio, suggesting substantial losses of mineralized N. The pattern was less clear for P: some stations showed evidence that the sediments were a sink for P while others appeared to be a net source to the water column over the study period. In general, temporal and spatial patterns of respiration, nutrient fluxes, and flux ratios were not consistently related to measures of sediment oxidation-reduction status such as Eh or dissolved sulfide. Sediments from Boston Harbor metabolize a relatively high percentage (46%) of the organic matter inputs from phytoplankton production and allochthonous inputs when compared to most estuarine systems. Nutrient regeneration from the benthos is equivalent to 40% of the N, 29% of the P, and more than 60% of the Si demand of the phytoplankton. However, the role of the benthos in supporting primary production at the present time may be minor as nutrient inputs from sewage and other sources exceed benthic fluxes of N and P by 10-fold and Si by 4-fold. Our estimates of denitrification from DIC:DIN fluxes suggests that about 45% of the N mineralized in the sediments is denitrified, which accounts for about 17% of the N inputs from land.  相似文献   

12.
为有效控制湖泊内源营养盐的释放,探讨了不同物理改良措施(覆沙、底质疏松)对沉积物-水界面营养盐的释放通量控制效果。利用原位孔隙水采样技术(Peeper)来获得沉积物孔隙水剖面,对改良后湿地沉积物孔隙水营养盐的垂向分布及其扩散通量进行了研究。结果发现,改良后沉积含水率、孔隙率分别提高了91%和54%。水土界面附近,随剖面深度增加,孔隙水中PO43-、NH4+、NO3-及NO2-浓度分布符合指数关系,PO43-、NH4+在8 cm左右达到最大值。种植芦苇后沉积物孔隙水中PO43-、NH4+均有不同程度的下降,改良措施能有效降低表层弱结合态磷在总磷中比例但增加铁磷的比例,种植芦苇可强化这一效应。运用Fick第一定律对剖面孔隙水营养盐的扩散通量进行估算,发现沉积物经疏松后,NH4+、PO43-的扩散通量由57.47~72.19μg/(m2·d)和2.55~3.21μg/(m2·d)变为-95.54~-130.94μg/(m2·d)和1.50~2.05μg/(m2·d),可考虑疏松沉积物-水界面附近沉积物来作为控制湖泊内源污染的有效手段之一。  相似文献   

13.
Concentrations of dissolved nitrate, silicate, and phosphate in water flooding intertidal sediments at Pecks Cove and along the axis of Cumberland Basin, Bay of Fundy were measured throughout the year. Exchanges of dissolved nutrients between intertidal sediments and overlying water were measured by enclosing water in chambers over undisturbed sediment. Nitrate concentrations in the water usually decreased during incubations while silicate was released by sediments during summer and consumed during fall. Particles which settled in sediment traps exposed during periods of high tide were stirred in filtered seawater to measure nutrient exchange. The flux of nutrients between the intertidal sediments and settled particles and seawater was estimated from incubation experiments and the observed nitrogen content in surface sediments and suspended particulate material. There was a net import of dissolved nitrate and silicate into Cumberland Basin from Chignecto Bay during early summer, at all other times there was a net export. Despite the low primary productivity and rigorous physical environment, biological activity has a measurable impact on dissolved nutrient concentrations in the waters of Cumberland Basin.  相似文献   

14.
Strong benthic–pelagic coupling is an important characteristic of shallow coastal marine ecosystems. Building upon a rich history of benthic metabolism data, we measured oxygen uptake and nutrient fluxes across the sediment–water interface along a gradient of water column primary production in Narragansett Bay, RI (USA). Despite the strong gradients seen in water column production, sediment oxygen demand (SOD) and benthic nutrient fluxes did not exhibit a clear spatial pattern. Some of our sites had been studied in the 1970s and 1980s and thus allowed historical comparison. At these sites, we found that SOD and benthic fluxes have not changed uniformly throughout Narragansett Bay. In the uppermost portion of the bay, the Providence River Estuary, we observed a significant decrease in dissolved inorganic phosphorus fluxes which we attribute to management interventions. At another upper bay site, we observed significant declines in SOD and dissolved inorganic nitrogen fluxes which may be linked to climate-induced decreases in water column primary production and shifts in bloom phenology. In the 1970s, benthic nutrient regeneration supplied 50% to over 200% of the N and P needed to support primary production by phytoplankton. Summer nutrient regeneration in the Providence River Estuary and Upper bay now may only supply some 5–30% of the N and 3–20% of the P phytoplankton demand.  相似文献   

15.
We used enclosures to quantify wetland-water column nutrient exchanges in a dwarf red mangrove, (Rhizophora mangle L.) system near Taylor River, an important hydraulic linkage between the southern Everglades and eastern Florida Bay, Florida, USA. Circular enclosures were constructed around small (2.5–4 m diam) mangrove islands (n=3) and sampled quarterly from August 1996 to May 1998 to quantify net exchanges of carbon, nitrogen, and phosphorus. The dwarf mangrove wetland was a net nitrifying environment with consistent uptake of ammonium (6.6–31.4 μmol m−2 h−1) and release of nitrite +nitrate (7.1–139.5 μmol m−2 h−1) to the water column. Significant flux of soluble reactive phosphorus was rarely detected in this nutrient-poor, P-limited environment. We did observe recurrent uptake of total phosphorus and nitrogen (2.1–8.3 and 98–502 μmol m−2 h−1, respectively), as well as dissolved organic carbon (1.8–6.9 μmol m−2 h−1) from the water column. Total organic carbon flux shifted unexplainably from uptake, during Year 1, to export, during Year 2. The use of unvegetated (control) enclosures during the second year allowed us to distinguish the influence of mangrove vegetation from soil-water column processes on these fluxes. Nutrient fluxes in control chambers typically paralleled the direction (uptake or release) of mangrove enclosure fluxes, but not the magnitude. In several instances, nutrient fluxes were more than twofold greater in the absence of mangroves, suggesting an influence of the vegetation on wetland-water column processes. Our findings characterize wetland nutrient exchanges, in a mangrove forest type that has received such little attention in the past, and serve as baseline data for a system undergoing hydrologic restoration.  相似文献   

16.
Net rates of biogeochemical reactions in subseafloor sediments can be quantified from concentration profiles of dissolved reactants or products and physical properties of the sediment. To study net rates of microbial activities in deep sediments, we developed a robust approach that is well suited to use over a broad range of sediment depths. Our approach is based on a finite-difference solution to a continuity equation that considers molecular diffusion, sediment burial, fluid advection, and reaction under the assumption of steady state. Numerical procedures are adopted to identify the maximum number of depth intervals with statistically different reaction rates. The approach explicitly considers downcore variation in physical properties and sample spacing. Uncertainties in the rate estimates are quantified using a Monte Carlo technique. We tested our approach using synthetic concentration profiles generated from analytical solutions to the continuity equation. We then applied the approach to concentration profiles of dissolved sulfate, sulfide, methane, and manganese in the 420-m thick sediment column of eastern equatorial Pacific Ocean Drilling Program Site 1226. Our results indicate that (i) sulfate reduction and iron reduction occur at most sediment depths, (ii) net methane production occurs in discrete depth intervals and (iii) manganese reduction occurs near the seafloor and deep in the sediments. These results provide quantitative evidence that multiple respiration pathways co-exist in the same depth intervals of these deep subseafloor sediments.  相似文献   

17.
花江喀斯特峡谷区顶坛花椒林生态系统服务功能价值评估   总被引:6,自引:4,他引:2  
李苇洁  汪廷梅  王桂萍  陈训 《中国岩溶》2010,29(2):152-154,161
运用生态系统服务功能的价值评价理论和方法对花江喀斯特峡谷区顶坛花椒林生态系统的林产品、水源涵养、固土保肥等服务功能进行了初步的量化评估。结果表明:花江喀斯特典型峡谷区顶坛花椒林服务功能总价值为9.69×14万元,其中直接经济价值1.4 1×104万元,间接经济价值8.28×104万元,间接经济价值是直接经济价值的5.87倍。在间接经济价值构成中,以年固土保肥的经济价值最大,达到8.09×104万元;其次是年固碳释氧总价值为1.7×103万元。评估结果说明顶坛花椒林生态系统在维系和促进当地社会经济发展及改善喀斯特峡谷生态环境中具有巨大的作用。   相似文献   

18.
This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export of water and its constituents (sediments, nutrients, pollutants) to or from tidal marshes has been traditionally estimated based on discharge measurements through a tidal creek. Complementary to this traditional calculation of water and sediment balances based on creek fluxes, we present novel methods to calculate water balances based on digital elevation modeling and sediment balances based on spatial modeling of surface sedimentation measurements. In contrast with spatial interpolation, the presented approach of spatial modeling accounts for the spatial scales at which sedimentation rates vary within tidal marshes. This study shows that for an old, high marsh platform, dissected by a well-developed creek network with adjoining levees and basins, flow paths are different for tidal inundation cycles with different high water levels: during shallow inundation cycles (high water level <0.2 m above the creek banks) almost all water is supplied via the creek system, while during higher inundation cycles (high water level >0.2 m) the percentage of water directly supplied via the marsh edge increases with increasing high water level. This flow pattern is in accordance with the observed decrease in sedimentation rates with increasing distance from creeks and from the marsh edge. On a young, low marsh, characterized by a gently seaward sloping topography, material exchange does not take place predominantly via creeks but the marsh is progressively flooded starting from the marsh edge. As a consequence, the spatial sedimentation pattern is most related to elevation differences and distance from the marsh edge. Our results imply that the traditional measurement of tidal creek fluxes may lead in many cases to incorrect estimations of net sediment or nutrient budgets.  相似文献   

19.
20.
Using high-resolution measures of aquatic ecosystem metabolism and water quality, we investigated the importance of hydrological inputs of phosphorus (P) on ecosystem dynamics in the oligotrophic, P-limited coastal Everglades. Due to low nutrient status and relatively large inputs of terrestrial organic matter, we hypothesized that the ponds in this region would be strongly net heterotrophic and that pond gross primary production (GPP) and respiration (R) would be the greatest during the “dry,” euhaline estuarine season that coincides with increased P availability. Results indicated that metabolism rates were consistently associated with elevated upstream total phosphorus and salinity concentrations. Pulses in aquatic metabolism rates were coupled to the timing of P supply from groundwater upwelling as well as a potential suite of hydrobiogeochemical interactions. We provide evidence that freshwater discharge has observable impacts on aquatic ecosystem function in the oligotrophic estuaries of the Florida Everglades by controlling the availability of P to the ecosystem. Future water management decisions in South Florida must include the impact of changes in water delivery on downstream estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号