首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国东部主要入海河流As元素分布、来源及影响因素分析   总被引:4,自引:2,他引:2  
为查明中国河流中As等重金属元素的分布规律,于2007—2008年分丰水期和枯水期对中国东部30余条入海河流水体、悬浮物统一进行采样分析。结果表明:东部河流中As元素溶解态含量均值为3.1μg/L,同世界河流相比,明显偏高;且频率分布直方图具有多个峰值,反映出明显的人为污染。利用富集系数的研究表明,悬浮物同样受到较明显的人为污染。As在河水中的迁移形式以溶解态为主,pH值和温度对As的迁移形式有明显影响。流域内岩石类型对河流中As含量影响显著,火山岩、火山碎屑岩类广泛分布的流域河水中As含量明显偏高,花岗岩及中、深变质岩广泛分布的流域河流中As含量则偏小。利用生活、工业污水作为As元素人为来源端元,对海河、黄河、长江、珠江等河流人为源进行了估算,分别为46.7%、18.7%、13.5%、8.3%。  相似文献   

2.
Recent studies have suggested that large rivers play important roles in mobilizing and transporting black carbon (BC) from land to the ocean. However, the influence of the Changjiang and Huanghe, the two largest rivers in China, on the fate of BC has not been determined. In this paper, we present measurements of BC in both the dissolved and particulate phases in the Changjiang and Huanghe Rivers and in the coastal waters of the East China Sea (ECS). Our results show that dissolved black carbon (DBC) accounted for 3.0 ± 0.4 % and 4.8 ± 3.6 % of the total DOC pool in the Changjiang and Huanghe Rivers and 3.4 ± 0.6 % of the DOC pool in the coast of the ECS. In addition, particulate black carbon (PBC) accounted for 13 ± 0.9 % and 22 ± 11 % of the POC pool in the Changjiang and Huanghe Rivers, respectively. We calculate that the Changjiang and Huanghe transported 4.7 × 1010 gC and 1.7 × 109 gC of DBC, and 2.0 × 1011 gC and 1.2 × 1010 gC of PBC to the ECS and Bohai Sea in 2015. The large amounts of BC transported by the two rivers represent a major sink of anthropogenically derived organic carbon and could have a significant impact on the ecosystem and carbon cycling in China’s marginal seas.  相似文献   

3.
The silicon isotopic composition of dissolved silicon and suspended particulate matter (SPM) were systematically investigated in water samples from the mainstem of the Yellow River and 4 major tributaries. The SPM content of the Yellow River varied from 1.4 to 38,560 mg/L, averaging 3568 mg/L, and the δ30Si of suspended particulate matter (δ30SiSPM) varied from 0.3‰ to −0.4‰, averaging −0.02‰. The major factors affecting the SPM content and the δ30SiSPM values in the Yellow River were inferred to be the mineralogical, chemical and isotopic characteristics of the sediments from the Loess Plateau and a combination of the climate and the flow discharge of the river.The major ions in the Yellow River water were Na+, Ca2+, Mg2+, HCO3, SO42− and Cl. High salt concentration was observed in samples from the middle and lower reaches, likely reflecting the effects of evaporation and irrigation because the Na+, Mg2+, SO42− and K+ concentrations were correlated with the Cl concentration. The dissolved Si concentration (DSi) increased downstream, varying from 0.016 to 0.323 mM. The δ30Si of dissolved Si (δ30SiDiss) varied from 0.4‰ to 2.5‰, averaging 1.28‰. The major processes controlling the DSi and δ30SiDiss of the Yellow River are (a) the weathering of silicate rocks, (b) the formation of phytoliths in plants, (c) the evaporation of water from and the addition of meteoric water to the river system, which only affects concentrations, (d) the adsorption and desorption of aqueous monosilicic acid on iron oxide, and (e) the dissolution of phytoliths in soils.The DSi and δ30SiDiss values of global rivers vary spatially and temporally in response to changes in climate, chemical weathering intensity and biological activity. The moderately positive δ30SiDiss values observed in the Yellow River may be attributed to the higher rates of chemical weathering and biological activities that have been observed in this catchment in comparison with those of other previously studied catchments, excluding the Yangtze River. Human activities may also potentially influence chemical weathering and biological activities and affect the DSi and δ30SiDiss values of the major rivers of the world. Further river studies should be performed to gain a better understanding of the global Si isotope budget.  相似文献   

4.
Dissolved (<1 kDa), colloidal (1 kDa–0.45 μm) and particulate (>0.45 μm) size fractions of 30 elements were determined for four rivers (Sirppujoki, Laajoki, Mynäjoki and Paimionjoki), including 12 low-order inflow streams, largely affected by soil erosion and acidity in SW Finland. In addition, geochemical modelling was used to predict the formation of free ions and complexes in these rivers. Total metal concentrations were relatively high but most of the elements occurred mainly in a colloidal or particulate form and even elements expected to be very soluble occurred to a large extent in colloidal form. According to geochemical modelling these patterns could be explained by in-stream metal complexation/adsorption only to a limited extent. Instead there were strong indications that the high metal concentrations and dominant solid fractions were largely caused by erosion of metal bearing phyllosilicates. A strong influence of acid sulphate (AS) soils, known to exist in the catchment, could be clearly distinguished in Sirppujoki river as it had very high concentrations of dissolved metals, while in the two nearby rivers (Laajoki and Mynäjoki) the influence of AS soils was largely masked by eroded phyllosilicates. In Paimionjoki river the colloidal and particulate fractions dominated very strongly, indicating that total metal concentrations are almost solely controlled by erosion of phyllosilicates. Consequently, rivers draining clay plains sensitive to erosion, like those in SW Finland, have generally high “background” metal concentrations due to erosion of relatively non-toxic colloidal/particulate phyllosilicates. Thus, relying on only semi-dissolved (<0.45 μm) concentrations obtained in routine monitoring and/or speciation modelling can lead to a great overestimation of the water toxicity in this environment.  相似文献   

5.
The watershed in the central Guizhou Province (Guizhou Province is called simply Qian) (CQW) is a karstic area. Rare earth elements (REEs) of dissolved loads, suspended particulate material (SPM) and sediments of riverbed are first synthetically reported to investigate REE geochemistry in the three phases in karstic watershed during the high-flow season. Results show that the low dissolved REE concentrations in the CQW are attributed to these rivers draining carbonate rocks. The dissolved REE have significant negative Eu anomaly and coexistence of middle and light REE (MREE??PAAS-normalized La N /Sm N and Gd N /Yb N ; LREE??PAAS-normalized La N /Yb N )-enrichment, which are due to the dissolution of impure Triassic carbonates. REE concentrations in most of SPM exceed that of sediments in the CQW and the average continental crust (UCC). The SPM and the sediments show some common features: positive Eu, Ce anomalies, and MREE enrichment. The controls on the patterns seem to be from weathering profiles: the oxidation state, the REE-bearing secondary minerals (cerianite, potassium feldspar and plagioclase), which are also supported by the evidence of Y/Ho fractionations in the three phases.  相似文献   

6.
Chen  Jingsheng  Wang  Feiyue 《GeoJournal》1996,40(1-2):31-37
A total of 42 aquatic particulate sample:, (suspended matter and < 63 m surficial sediments) was collected from 11 large rivers in eastern China. Contents of both major elements (Al, Si, Ca, Mg, K, Na, Ti, Fe, Mn) and trace elements (Cu, Pb, Zn, Cd, Cr, Co, Ni, V) in the particulate samples were analyzed. The geographic variations of river particulate compositions were studied. The results showed that the Yellow River particulates contained a notably high content of Ca and a low content of Al. Except for the Yellow River, A1 contents in particulates increased from the northern rivers to the southern rivers, while K and Na decreased. Trace elements were relatively enriched in the southern river particulates. The geographic variations seemed to be related to the weathering types and geological background within the river basins. The average composition of river particulates in China was then estimated. Based on the Chinese river data from this paper, as well as on the literature data for other main world rivers, a new estimation of the global average particulate composition was reported. Since the earlier estimations in the literature were not concerned with or at best concerned only with few of the Chinese rivers which contribute a major proportion to the global load of river particulates, this new estimation may be more reasonable.  相似文献   

7.
The concentrations of dissolved and suspended particulate rare-earth elements (REE) are reported in acid-sulphate waters from the Odiel and Tinto rivers. Shale normalized patterns are typically convex and high REE concentrations (e.g., Ce=0.43–65 μg.l−1) are present in the waters. The REE content of the suspended load is greater by a factor of up to 3000. In the Odiel river, REE patterns of the particulates are essentially convex and sub-parallel to those of the waters; speciation calculations indicate that SO4 complexes play a dominant role in controlling the REE distributions. In the Tinto river, the REE patterns of the suspended load are slightly fractionated and a negative Ce anomaly is apparent in several samples, reflecting the local influence of phosphogypsum deposits.Contrasting with normal estuaries, REE are not intensely removed in the low chlorinity zone. A remobilization in relation to Fe reduction is observed in the Tinto river.  相似文献   

8.
亚洲主要河流的沉积地球化学示踪研究进展   总被引:5,自引:0,他引:5  
发源于喜马拉雅—青藏高原的亚洲几条大河的河流地球化学研究揭示了高原隆升、流域风化剥蚀、大气CO2消耗和亚洲季风气候变化之间的耦合关系。研究认为南亚主要河流流域的化学风化对全球大气CO2消耗和海洋化学通量变化贡献较大,河流沉积地球化学研究反映的高原阶段性隆升过程、流域剥蚀速率以及亚洲季风演化信息也明显比东亚主要河流的记录清晰;尤其是最近几年运用河流碎屑单矿物化学和年代学方法来示踪流域构造演化、沉积物从源到汇过程以及河流演化历史等,取得了许多重要的研究成果。比较而言,我国的河流在元素地球化学和水化学组成方面虽然开展了大量基础研究工作,但目前急需进一步提炼科学目标,与国际性的研究计划结合,综合多学科的研究力量,在研究思路和关键方法上需要突破和深入,加强研究的广度和深度。长江更可以作为一个突破口和研究平台,来开展深入的沉积地球化学示踪研究。  相似文献   

9.
桂林郑钼矿床位于江南隆起带与下扬子坳陷带之间的过渡带内,是皖南地区首次发现的大型钼矿床。本次工作对桂林郑钼矿床与成矿有关的花岗斑岩体进行了地质特征和岩相学观察、锆石LA-ICP-MS U-Pb定年和全岩地球化学分析。研究结果显示,桂林郑花岗斑岩的成岩年龄为127.6±1.5Ma,为早白垩世,对应于江南过渡带三阶段(149~137Ma、134~119Ma、116~110Ma)成岩成矿作用的第二阶段。桂林郑花岗斑岩富集K、Th、U等大离子亲石元素,具有低Sr高Yb特点,亏损Nb、Ta、Zr、Hf高场强元素,为高钾钙碱性-碱性的A1型花岗岩,岩浆源于中下地壳,上升过程中经历了显著的分离结晶作用。通过成岩年代与地球化学特征对比显示,桂林郑花岗斑岩体形成于陆内伸展环境,是该钼矿床的成矿岩体。  相似文献   

10.
Geochemical and magnetic susceptibility studies of shelf sediments off Mangalore were carried out to understand the influence of rivers on sediment geochemistry, to study the elemental distribution patterns, and to evaluate the importance of the shelf as a source/sink for base metals. The contents of Cu, Pb, Mn, Fe and Al in the surficial sediments are lower by factors of 1.6–5.6, except Ca which is higher by a factor of 3.4 in relation to riverine suspended particulate matter (SPM). This is due to the seaward decrease of terrigenous influx which is reflected in the offshore protrusion of contours of Al, Fe, Cu, Zn, Ni and magnetic susceptibility values, particularly off Netravati and Gurpur rivers. Lower Mn content is also due to its remobilization from the anoxic-sulphidic shelf sediments. In contrast to the elements mentioned above, Ca increases seaward, suggesting that it is biogenic. The enrichment factor (EF) indicates that the surficial sediments are depleted in Cu, Zn and Mn compared to average shale and other anoxic sediments, and marginally enriched with Ni, Co, and Pb in relation to the average shale. However, a comparison between the EF of SPM of Netravati-Gurpur rivers in the hinterland and surficial sediments indicates that the latter are depleted in Mn and Co, but enriched with Ni, Pb, and Fe, thereby suggesting a source and a sink for the former and latter elements, respectively, to the Arabian Sea.  相似文献   

11.
Small rivers draining mountain islands are important in the transfer of terrestrial particulate organic carbon (POC) to the oceans. This input has implications for the geochemical stratigraphic record. We have investigated the stable isotopic composition of POC (δ13Corg) in rivers draining the mountains of Taiwan. In 15 rivers, the suspended load has a mean δ13Corg that ranges from −28.1±0.8 to −22.0±0.2 (on average 37 samples per river) over the interval of our study. To investigate this variability we have supplemented suspended load data with measurements of POC in bedrock and river bed materials, and constraints on the composition of the terrestrial biomass. Fossil POC in bedrock has a range in δ13Corg from −25.4±1.5 to −19.7±2.3 between the major geological formations. Using coupled δ13Corg and N/C we have found evidence in the suspended load for mixing of fossil POC with non-fossil POC from the biosphere. In two rivers outside the Taiwan Central Range anthropogenic land use appears to influence δ13Corg, resulting in more variable and lower values than elsewhere. In all other catchments, we have found that 5 variability in δ13Corg is not controlled by the variable composition of the biomass, but instead by heterogeneous fossil POC.In order to quantify the fraction of suspended load POC derived from non-fossil sources (Fnf) as well as the isotopic composition of fossil POC (δ13Cfossil) carried by rivers, we adapt an end-member mixing model. River suspended sediments and bed sediments indicate that mixing of fossil POC results in a negative trend between N/C and δ13Corg that is distinct from the addition of non-fossil POC, collapsing multiple fossil POC end-members onto a single mixing trend. As an independent test of the model, Fnf reproduces the fraction modern (Fmod) in our samples, determined from 14C measurements, to within 0.09 at the 95% confidence level. Over the sampling period, the mean Fnf of suspended load POC was low (0.29 ± 0.02, n = 459), in agreement with observations from other mountain rivers where physical erosion rates are high and fossil POC enters river channels. The mean δ13Cfossil in suspended POC varied between −25.2±0.5 and −20.2±0.6 from catchment to catchment. This variability is primarily controlled by the distribution of the major geological formations. It also covers entirely the range of δ13Corg found in marine sediments which is commonly thought to derive from mixing between marine and terrigenous POC. If land-sourced POC is preserved in marine sediments, then changes in the bulk δ13Corg observed offshore Taiwan could instead be explained by changes in the onshore provenance of sediment. The range in δ13Corg of fossil organic matter in sedimentary rocks exposed at the surface is large and given the importance of these rocks as a source of clastic sediment to the oceans, care should be taken in accounting for fossil POC in marine deposits supplied by active mountain belts.  相似文献   

12.
Seasonal and spatial variations in water chemistry and contaminant sources were investigated in six major rivers in South Korea that vary widely in drainage area and length. The dissolved-load content of the rivers varied seasonally, and some dissolved ions such as Cl? and NO3 ? showed large spatial differences in all of the rivers. The water type changed from Ca–HCO3 in the upper reaches to Na–Cl–NO3 in the lower reaches, indicating anthropogenic contamination in the lower reaches. Compared with two relatively pristine rivers (the Sumjin and Mankyung rivers), the other four rivers, which flow through agricultural and urban areas, registered much higher Cl? and NO3 ? concentrations. Statistical analysis showed that seasonal and spatial variations in water chemistry occurred in all the rivers. The nitrogen and oxygen isotopes of dissolved nitrate indicated that the rivers flowing through urban and agricultural areas were significantly affected by manure, sewage, or both.  相似文献   

13.
The Western Ghats form a major mountain belt, next to the Himalayas, in controlling the flux of water and carbon to the northern Indian Ocean. This study attempts to understand the water and carbon cycles in two humid tropical river basins with its streams originating at higher altitudes of the Western Ghats, India. Water and suspended particulate matter (SPM) were collected on a monthly scale during summer monsoon season (June-September) from Swarna and Nethravati rivers draining into the Arabian Sea. For the source apportionment, samples have been measured for stable isotopes of oxygen (δ18O) and hydrogen (δ2H) in water and stable isotopes of carbon (δ13CPOC) in particulate organic matter (POM) at spatial scale from tributaries and main channel of rivers, and runoff water from agricultural land (dominant paddy field) and forest in the downstream region. The association between δ18O and deuterium-excess in river water and rain water shows that water in these tropical basins depicts rainout effect of marine source moisture during the onset of summer monsoon. As the monsoon intensifies, the fresher rain water replenishes older water stored previously in sub surface soil layer leading to its flushing into the river during summer monsoon season. Stable carbon isotope ratio and elemental ratio of POM (δ13CPOC = -27.1 ± 0.4 ‰ and C/N = 8.1 ± 1.7) in two humid tropical river water during summer monsoon season is an admixture of suspended particulates from runoff water of forest (δ13CPOC = - 27.82 ± 0.4 ‰) and agricultural land (δ13CPOC = -26.29 ± 0.4 ‰). It is found that δ13CPOC shows minimal variability with SPM content and C/N ratio within the same organic carbon pool. The study emphasizes the need to consider the agricultural runoff contribution to the rivers while establishing the global elemental budget and observing the global climate change.  相似文献   

14.
The bulk of particulate transition metals transported by Patagonian rivers shows an upper crustal composition. Riverine particulate 0.5 N HCl leachable trace metal concentrations are mainly controlled by Fe-oxides. Complexation of Fe by dissolved organic carbon (DOC) appears to be an important determinant of the phases transporting trace metals in Patagonian rivers. In contrast, aeolian trace elements have a combined crustal and anthropogenic origin. Aeolian materials have Fe, Mn, and Al contents similar to that found in regional topsoils. However, seasonal concentrations of some metals (e.g., Co, Pb, Cu, and Zn) are much higher than expected from normal crustal weathering and are likely pollutant derived.We estimate that Patagonian sediments are supplied to the South Atlantic shelf in approximately equivalent amounts from the atmosphere (∼30 × 106 T yr−1) and coastal erosion (∼40 × 106 T yr−1) with much less coming from the rivers (∼2.0 × 106 T yr−1). Low trace metal riverine fluxes are linked to the low suspended particulate load of Patagonian rivers, inasmuch most of it is retained in pro-glacial lakes as well as in downstream reservoirs. Based on our estimation of aeolian dust fluxes at the Patagonian coastline, the high nutrient-low chlorophyll sub Antarctic South Atlantic could receive 1.0 to 4.0 mg m−2 yr−1 of leachable (0.5 N HCl) Fe. Past and present volcanic activity in the southern Andes—through the ejection of tephra—must be highlighted as another important source of Fe to the South Atlantic Ocean. Based on the 1991 Hudson volcano eruption, it appears that volcanic events can contribute several thousand-fold the mass of “leachable” Fe to the ocean as is introduced by annual Patagonian dust fallout.  相似文献   

15.
Alaknanda and Bhagirathi (AB) river basins in the Himalayan region in India expose lithologies comprising mainly of granites, low–high-grade metamorphics, shales and carbonates which, in conjunction with the monsoon rains and glacial melt, control water chemistry and dissolved elemental flux rates. In the present study, we monitored two locations: (a) Srinagar on the Alaknanda river and (b) Maneri on the Bhagirathi river for daily variations in total suspended sediments, major ions and dissolved silica over one complete year (July 2004–June 2005). Based on long-term discharge data, discharge-weighted composition and dissolved elemental flux rates (with respect to Ca, Mg, HCO3, Si) of the river were estimated. The information thus obtained has substantially added up to the existing chemical data of these rivers and has refined the flux rates. Our high-frequency samples provide informations such as (a) water chemical compositions that show a large temporal and spatial variation and (b) carbonate lithology that controls water chemistry predominantly. The dissolution kinetics of various lithologies namely leucogranite, gneiss, quartzite, phyllite and shale of the AB river basins were studied through batch experiments at controlled temperature (25 and 5°C) and pH (8.4) condition. In laboratory, these lithologies undergo slow rates of dissolution (10−13 to 10−15 mol/m2 s), while field weathering rates based on dissolved elemental flux rates in the AB rivers are much higher (10−8 to 10−9 mol/m2 s). Extremely high physical weathering rates in AB rivers, which enhance chemical weathering significantly, mainly attribute this wide discrepancy in laboratory-derived rates of representative basin rocks and dissolved elemental fluxes in the field. However, laboratory-simulated experiments facilitate to quantify elemental release rates, understand the kinetics of the dissolution reactions, and compare their roles at individual level.  相似文献   

16.
Few studies have examined the dynamics of sediments and suspended organic matter and their export from headwater basins in the Andes Mountains to the Amazon River, despite the fact that the Andes are the primary source of sediments to the lower Amazon basin. We measured river discharge as well as the concentration, δ15N, δ13C, %N, and %OC of coarse and fine suspended sediments (CSS and FSS) in the Chorobamba River, located in the central Andean Amazon of Peru. Samples were taken at least weekly over an entire year (July 2004-July 2005), with additional sampling during storms. Concentrations of particulate organic matter (POM) were generally low in the study river, with concentrations increasing by up to several orders of magnitude during episodic rain events. Because both overall flow volumes and POM concentrations increased under stormflow conditions, the export of POM was enhanced multiplicatively during these events. We estimated that a minimum of 80% of annual suspended sediment transfer occurred during only about 10 days of the year, also accounting for 74% of particulate organic carbon and 64% of particulate organic nitrogen transport. Significant differences occurred between seasons (wet and dry) for δ13C of coarse and fine POM in the Chorobamba River, reflecting seasonal changes in organic matter sources. The time series data indicate that this Andean river exports approximately equal amounts of fine and coarse POM to the lower Amazon. The observation that the vast majority of sediments and associated OM exported from Andean rivers is mobilized during short, infrequent storm events and landslides has important implications for our understanding of Amazon geochemistry, especially in the face of incipient global change.  相似文献   

17.
安徽牯牛降A型花岗岩的年代学、地球化学和构造意义   总被引:9,自引:6,他引:3  
谢建成  陈思  荣伟  李全忠  杨晓勇  孙卫东 《岩石学报》2012,28(12):4007-4020
皖南地区牯牛降岩体位于扬子板块东南缘,江南隆起带内。本文报道了牯牛降花岗岩体新的锆石U-Pb年龄和地球化学数据,并对岩体成因及其构造意义进行了探讨。锆石原位LA-ICP-MS U-Pb定年表明牯牛降岩体的形成年龄为130.1±1.3Ma (95% confidence, MSWD=0.55)。结合己发表的其他高质量锆石U-Pb同位素年龄数据表明皖南地区花岗岩的形成年龄主要集中在125~130Ma。牯牛降花岗岩为高钾钙碱性、准铝质岩石,SiO2 含量为72.21%~74.85%,具有高K2O含量(>5.11%)、高铁值(FeOT/(FeOT+MgO)>0.91)和K2O/Na2O比值(>1.61),低MgO和CaO含量的特征。微量元素地球化学性质上表现为强烈亏损Ba、Sr、Eu(Eu*/Eu=0.29~0.30),富集REE(>419×10-6)、Rb、Th 和U,较高的高场强元素Zr、Nb、Y和Ga含量。主量和微量元素均表现为A型花岗岩的特征。非常低的Mg#值(0.14~0.16)和较低Cr含量(Cr=10×10-6),高Yb(7.08×10-6~9.02×10-6)、Y(78.7×10-6~90.8×10-6)含量和较高的Th/U比值(5.17~7.79)说明古老地壳物质的部分熔融可能是牯牛降岩体主要形成机制。牯牛降A2型花岗岩特征代表了拉张的碰撞后构造环境。  相似文献   

18.
The present paper deals with major and trace elements geochemistry of the groundwater from Nalgonda district, Telangana. The study area is very important in terms of anthropogenic activity like rapid industrial, urban development, pesticides, pharmaceutical, granite polishing and agro based industries. Inductively coupled plasma mass spectrometer (ICPMS) was employed to determine the concentration of trace elements in collected groundwater samples (bore well). These probe elements were further categorized as toxic elements (Pb, As, Cd, and V), alkaline earths (Sr and Ba), alkali metals (Li, Rb), transition metals (Cr, Mo and Ni), metallic elements (Cu, Fe, Zn, Al, Co), and other non-metallic elements (Se and Si). The groundwater quality was examined in perspective of Indian as well as World Health Organization drinking water standards. Based on the analytical results, groundwater in the study area is found to be slightly alkaline in nature and very hard, the average abundance of the major cations and anions is in the order of Ca+<Na+<Mg+<K+ and Cl-<HCO3 ?<CO3 ?<SO4 ?<NO3 ?<F respectively. The dominant hydro chemical facies of groundwater is Na+ - HCO 3 – Cl and Na+ - Cl – HCO 3 types.The results of trace elements shows that concentration of Pb, As, Cd, V in collected samples exceeding the desirable limits, and in the case of alkaline, alkali, transition, non-metallic elements, seventy per cent of the samples crossed the desirable limits, but all metallic elements viz. Cu, Fe, Zn, Al, Co is within the limits as per Indian as well as World Health Organizations drinking water standards. Factor analysis results shows that seven factors emerged as a significant contributor to the groundwater contamination is about 65.32 per cent. The spatial variation maps decipher trace elemental concentrations both geogenic and anthropogenic origin, by three zones i.e. ‘low’, ‘moderate’ and ‘high’ of the study area based on environment using Arc-GIS. High concentrations of trace elements are indicative of phenomenal rise in chemical composition and likely to have its origin from silicate weathering reactions and dissolution/precipitation processes supported by rainfall and anthropogenic activities, indiscriminate use of fertilizers/pesticides, and disposal of waste and sewage, release of reactive pollutants into the atmosphere by industries. Hence, this work is of immense societal benefit in terms of prevailing human health hazards in the study area with a direct relevance to such industrially populated regions elsewhere.  相似文献   

19.
Water samples from eight major Texas rivers were collected at different times during 1997–1998 to determine the dissolved and particulate trace metal concentrations, expected to show differences in climate patterns, river discharge and other hydrochemical conditions, and human activities along the different rivers. Specifically, two eastern Texas rivers (Sabine, Neches) lie in a region with high vegetation, flat topography, and high rainfall rates, while four Central Texas rivers (Trinity, Brazos, Colorado, and San Antonio) flow through large population centers. Relatively high dissolved organic carbon (DOC) concentrations in the eastern Texas rivers and lower pH led to higher Fe and Mn concentrations in river waters. The rivers that flow through large population centers showed elevated trace metal (e.g., Cd, Pb, Zn) concentrations partly due to anthropogenically produced organic ligands such as ethylenediaminetetraacetic acid (EDTA) present in these rivers. Trace metal levels were reduced below dams/reservoirs along several Texas rivers. Statistical analysis revealed four major factors (suspended particulate matter [SPM], EDTA, pH, and DOC) that can explain most of the observed variability of trace metal concentrations in these rivers. SPM concentrations directly controlled particulate metal contents. Variation in pH correlated with changes of dissolved Co, Fe, Mn, and Ni, and particulate Mn concentrations, while DOC concentrations were significantly related to dissolved Fe concentrations. Most importantly, it was found that, more than pH, EDTA concentrations exerted a major control on dissolved concentrations of Cd and Zn, and, to a lesser extent, Cu, Ni, and Pb.  相似文献   

20.
Additions of the low occurrence stable isotopes 61Ni, 65Cu, and 68Zn were used as tracers to determine the exchange kinetics of metals between dissolved and particulate forms in laboratory studies of natural water and suspended sediments from South San Francisco Bay, CA. Dissolved metal isotope additions were made so that the isotope ratios (rather than total metal partitioning) were significantly altered from initial ambient conditions. Dissolved metal concentrations were determined using an organic ligand sequential extraction technique followed by analysis with high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS). Exchangeable particulate concentrations were extracted using a 20% acetic acid leach followed by determination using HR-ICPMS. Equilibrium and kinetic sorption parameters were quantified according to a general model for trace metal partitioning assuming pseudo-first-order kinetics. Partition coefficients (KD) were tracked as a function of time over the fortnight experiment. For Ni, Cu, and Zn the initial ambient KD values were found to be 103.65, 103.88, and 104.52 L kg−1, respectively. As a result of the dissolved metal isotope additions, the partition coefficients for all three metals dropped and then increased back to near ambient KD values after 14 days. Curve-fitting concentration versus time profiles from both dissolved and exchangeable particulate data sets allowed determination of kinetic rate constants. The best estimates of forward and backward kinetic rate constants for Ni, Cu, and Zn respectively are k′f = 0.03, 0.07, 0.12 d−1 and kb = 0.13, 0.12, 0.15 d−1. These results predict that sorption equilibria in South Bay should be reached on the order of a month for Ni, on the order of 3 weeks for Cu, and on the order of 2 weeks for Zn. Together, the dissolved and exchangeable particulate data indicate more sluggish sorption kinetics for Ni than for Cu and Zn and suggest that different chemical forms control the speciation of these three metals in South Bay. Order of magnitude metal sorption exchange rates were estimated using these kinetic results. These calculations indicate that sorption exchange between dissolved and suspended particulate phases can cause dynamic internal cycling of these metals in South San Francisco Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号