首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The salinity of interstitial water (i.e., the salinity of the free soil water) was examined at 11 equidistant stations along a transect on a Mississippi tidal marsh dominated byJuncus roemerianus andSpartina cynosuroides. Changes in the nearby surface water (e.g., bay water) were reflected in the changes in interstitial water salinity. The salinity of interstitial water was usually higher, varying between 2.5 and 15.8‰ from February 1975 through January 1976, than the salinity of the nearby surface water which ranged from 0.0 to 11.5‰. Following a long period of high salinity in the bay and sound (exceeding 14‰), the salinity of the interstitial water increased to a maximum of 16.8‰ in October. The salinity increased as the distance of the sampling station from the source of the flood water increased. Mean interstitial wate salinity across the marsh studied was within 10‰ which did not seem to influence the marsh plant zonation occurring on the marsh.  相似文献   

2.
Salinities occupied by different life stages of bay anchovy (Anchoa mitchilli) were compared over annual cycles at 128 stations in 12 Florida estuaries. The comparison included eight stations in an oligotrophic, groundwater-based estuary in which all life stages were rare or absent. At other stations, adults, eggs, and early larvae occurred in intermediate to high salinities (10-30 psu) with no apparent central salinity tendency. The larva-juvenile transition was marked by an upstream shift to lower salinities (0-15 psu), also with no central salinity tendency. Mean salinities of the juvenile catch were strongly dependent on the salinities of the sampling effort. This dependence was strongest in estuaries that had weak horizontal salinity gradients. Weak salinity gradients were either natural or resulted from estuarine dams. After using nonlinear regression to account for the interaction between effort salinity and catch salinity, catch salinities were found to be similar from year to year within estuaries, but widely different among estuaries, with interestuarine differences ranging as high as 10–13 psu. Lower salinities were occupied by juveniles in estuaries that had long freshwater turnover times. Inherent geomorphic and inflow-related effects on the distribution of prey resources, coupled with an ontogenetic diet shift, are proposed as the explanation for both the habitat shift and the strong interestuarine variability in salinity at capture.  相似文献   

3.
Historic changes in water-use management in the Florida Everglades have caused the quantity of freshwater inflow to Florida Bay to decline by approximately 60% while altering its timing and spatial distribution. Two consequences have been (1) increased salinity throughout the bay, including occurrences of hypersalinity, coupled with a decrease in salinity variability, and (2) change in benthic habitat structure. Restoration goals have been proposed to return the salinity climates (salinity and its variability) of Florida Bay to more estuarine conditions through changes in upstream water management, thereby returning seagrass species cover to a more historic state. To assess the potential for meeting those goals, we used two modeling approaches and long-term monitoring data. First, we applied the hydrological mass balance model FATHOM to predict salinity climate changes in sub-basins throughout the bay in response to a broad range of freshwater inflow from the Everglades. Second, because seagrass species exhibit different sensitivities to salinity climates, we used the FATHOM-modeled salinity climates as input to a statistical discriminant function model that associates eight seagrass community types with water quality variables including salinity, salinity variability, total organic carbon, total phosphorus, nitrate, and ammonium, as well as sediment depth and light reaching the benthos. Salinity climates in the western sub-basins bordering the Gulf of Mexico were insensitive to even the largest (5-fold) modeled increases in freshwater inflow. However, the north, northeastern, and eastern sub-basins were highly sensitive to freshwater inflow and responded to comparatively small increases with decreased salinity and increased salinity variability. The discriminant function model predicted increased occurrences of Halodule wrightii communities and decreased occurrences of Thalassia testudinum communities in response to the more estuarine salinity climates. The shift in community composition represents a return to the historically observed state and suggests that restoration goals for Florida Bay can be achieved through restoration of freshwater inflow from the Everglades.  相似文献   

4.
Adenosine triphosphate (ATP), particulate organic carbon (POC), pH, temperature, and salinity associated with the water column of several salt marsh creeks were monitored at 5 stations for 8 months. A gradient in mean salinity of 11.5‰ to 32.7‰ was observed in the creeks. No significant correlations (Pearson’s r) could be found among the variables measured at the station with the highest salinity. ATP and POC were found to be positively correlated at all other stations. Salinity was found to be negatively correlated with both ATP and POC only at a station with the second highest mean salinity (28.8‰) and could account for only 45.7‰ of the variation in ATP. The lack of significant correlations between salinity and ATP as well as the inability of salinity to account for a large portion of the variation in ATP suggested that salinity had little relationship to the level of total microbial mass.  相似文献   

5.
We developed a relative index of fish biomass and size distribution in ultra-shallow waters (< 2 m) of Barataria Bay, Louisiana, based on the comparison of horizontal hydroacoustic data with gill net and push trawl catches in an effort to understand the role that habitat plays in both fish biomass and distribution. Exclosure net experiments indicated that the contribution of acoustic backscattering from sources other than fishes were negligible. Split-beam transducer, gill net, and push trawl sampling were conducted concurrently in Barataria Bay to provide information on fish composition and length distributions and for comparisons among gear types. Results suggest that acoustic fish biomass was generally higher in the low salinity stations and lower at the high salinity stations, at least in March 2004. We observed a greater mean length of fishes associated with oyster shell habitats when compared to adjacent sand-mud habitats. This paper demonstrates the utility of hydroacoustics as a tool to quantify relative acoustic fish biomass and size distribution associated with common estuarine habitats in ultra-shallow waters. This study also illustrates the potential of using acoustics for augmenting traditional sampling procedures.  相似文献   

6.
Seasonal patterns of aboveground and belowground biomass, leaf chlorophyll (chl) content, and in situ differences in photosynthetic parameters were examined in the shoal grass Halodule wrightii along an estuarine gradient in the western Gulf of Mexico. Continuous measurements of biomass were collected over a 5-yr period (1989–1994) with respect to several abiotic factors in three estuarine systems that were characterized by significant differences in salinity and ambient dissolved inorganic nitrogen (DIN; NO2 ?+NO3 ?) regimes that ranged from 5–25‰ (0–80 μM DIN) in the Guadalupe estuary to 35–55‰ (0–9 μM DIN) in the upper Laguna Madre, Photosynthesis versus irradiance (P vs. I) parameters, measured from December 1989 to April 1991, showed no significant differences among the three sites, and there were no significant differences in leaf chlorophyll content and chl a:b ratios among sites over the entire 5-yr period. Saturation irradiance in Halodule wrightii is estimated at 319 μmoles photons m?2 s?1 based on measurements collected at the three sites over a 2-yr period. No strong seasonal variations were observed in total plant biomass, but root:shoot ratios (RSR) showed a clear pattern of maximum RSR values in winter and minimum values in summer. There were no significant differences in RSR among sites, and no consistent correlations could be established between plant parameters and sediment porewater NH4 +, salinity, or temperature. Sediment porewater NH4 + values generally ranged from 50 μM to 400 μM (average 130–150 μM) but could not be correlated with significant differences in sediment composition between the sites. The high productivity of Halodule wrightii under a variety of light, nutrient, and salinity conditions explains its ubiquitous distribution and opportunistic strategy as a colonizing species. However, the persistence of a dense algal bloom in Laguna Madre coincident with low DIN levels (<5 μM) contradicts previously accepted relationships on nutrient stimulation of algal growth, and provides strong evidence that water quality parameters for estuarine seagrasses are decidedly estuarine-specific. Consequently, a knowledge of the long-term history of estuarine systems is critical to habitat managers, who are required to establish minimum water quality criteria for the protection of submerged aquatic vegetation in estuarine systems. *** DIRECT SUPPORT *** A01BY074 00028  相似文献   

7.
A study was carried out in fall 1987 to determine if red drum (Sciaenops ocellatus) spawned in the southern portion of Mosquito Lagoon, Florida, 30 km from the nearest tidal pass. Weekly plankton tows were taken from mid-September to mid-November. Floating sciaenid eggs were removed from the samples and incubated 16–36 h: 329 red drun eggs were hatched. Viable red drum eggs were collected from October 27 to November 18 at salinities of 29‰ to 32‰ and water temperatures of 21°C to 23°C. The largest number of eggs was collected on November 4, during a full moon. This is the first documentation of red drum spawning in an estuary. The physiography and high salinity (which are more characteristic of marine than estuarine waters) of Mosquito Lagoon were probable factors in producing this phenomenon.  相似文献   

8.
The abiotic hydrological environment and the community dynamics of the fish fauna were investigated in the Ria de Aveiro, an estuarine coastal lagoon system (43 km2), which has both marine and fluvial influences. Abiotic hydrological and fish community parameters were recorded routinely during 12 months at ten stations. Temperature ranged between 9.5°C and 26.0°C, salinity between 0.0‰ and 32.0‰, dissolved oxygen between 0.8 mg 1?1 and 15.4 mg 1?1, pH between 6.1 and 9.4, and transparency between 4.4% and 100.0%. No significant differences were observed in temperature and dissolved oxygen among stations, or in seasonal variation in transparency. Nineteen thousand thirty-one fish specimens comprising 55 species were sampled. Abundance, biomass, and species richness were highest in summer and late winter at stations near the lagoon entrance. Sedentary species were most numerous, marine migratory species had the highest biomass, and the category “occasional species” had the highest number of species. Atherinidae, Mugilidae, and Gobiidae were the most important families. Eight species represented about 80% of the total fish abundance and biomass but only six species occurred in all the months and at all the stations. It was concluded that the Ria de Aveiro, with high seasonal and spatial abiotic variation, has a very rich and representative fish community compared with temperate and tropical estuaries and estuarine coastal lagoons around the world.  相似文献   

9.
Examination of small-scale spatial variation in essential to understanding the relationships between environmental factors and benthic community structure in estuaries. A sampling experiment was performed in October 1993 to measure infauna association with sediment composition and salinity gradients in Nueces Bay, Texas, USA. The bay was partitioned into four salinity zones and three sediment types. Higher densities of macrofaua, were found in sediments with greater sand content and in areas with higher salinity. High diversity was also associated with high homogeneous salinity (31–33‰) and greater sand content. Macrofauna biomass and diversity were positively correlated with bottom salinity, porewater salinity, and bottom dissolved inorganic nitrogen (DIN). Furthermore, species dominance shifted along the estuarine gradient.Streblospio benedicti dominated at lower salinity, but,Mediomatsus ambiseta andMulinia lateralis were the dominant species at higher salinity. Statistical analyses revealed significant correlations for sediment characteristics (i.e., increased fine sediments, water content, and total organic carbon) with decreased total abundance and diversity. Increased salinity and DIN were correlated with increased total biomass, diversity, and macrofauma community structure. These physico-chemical variables are regulated by freshwater inflow, so inflow is an important factor influencing macrofauna community structure by indirectly influencing the physico-chemical environment.  相似文献   

10.
The tolerance of post yolk-sac American shad Alosa sapidissima larvae to salinities typically seen in estuaries was assessed experimentally. Sixteen-day-old Hudson River (experiment I) and 35-d-old Delaware River (experiment II) larvae were held for 8 d and 9 d respectively in low (0–1‰), medium (9–11‰), and highly (19–20‰) brackish water, and mortality and growth rates were measured. Growth rates did not vary significantly among salinity treatments. Mortality in experiment I did not vary significantly among salinity treatments however, in experiment II, mortality was zero at 10‰ but higher and statistically indistinguishable between 0‰ and 20‰ In experiment II relative condition increased with salinity. These results imply that estuarine salinities neither depress growth rates nor elevate mortality rates of larval American shad when compared with freshwater conditions. We conclude that ecological factors other than the physiological effects of salinity have played more important roles in the evolution of the upriver spawning and nursery preference shown by this species.  相似文献   

11.
The rhizocephalanLoxothylacus panopaei parasitizes the estuarine crabRhithropanopeus harrisii. Parasitized crabs are abundant during summers when salinities increase to around 15‰ in the crab–s habitat and scarce when salinities are lower. The two hypotheses that were proposed to explain this pattern were (1) that the parasite interferes with crab osmoregulation causing the host to die in low salinity water and (2) that salinity tolerance of the parasite larvae controls the incidence of parasitism. The first hypothesis was shown to be incorrect because (1) osmoregulation of infected crabs was, not altered by the parasite and (2) crab mortality did not increase in low salinity water down to 1‰. Unparasitized and parasitized crabs and the parasite itself were hypersomotic at low salinities (below 27‰ for the crabs). The parasite became slightly hyperosmotic at high salinities while the crabs were slightly hypoosmotic. The second hypothesis appears correct, becauseL. panopaei larvae survived poorly in salinities below 10‰ but well in salinities from 10 to 15‰. ThusR. harrisii, have a reproductive refuge at salinities below 10‰, because parasite larvae cannot survive and infect the mud crab at these low salinities.  相似文献   

12.
Disruption of the natural patterns of freshwater flow into estuarine ecosystems occurred in many locations around the world beginning in the twentieth century. To effectively restore these systems, establishing a pre-alteration perspective allows managers to develop science-based restoration targets for salinity and hydrology. This paper describes a process to develop targets based on natural hydrologic functions by coupling paleoecology and regression models using the subtropical Greater Everglades Ecosystem as an example. Paleoecological investigations characterize the circa 1900 CE (pre-alteration) salinity regime in Florida Bay based on molluscan remains in sediment cores. These paleosalinity estimates are converted into time series estimates of paleo-based salinity, stage, and flow using numeric and statistical models. Model outputs are weighted using the mean square error statistic and then combined. Results indicate that, in the absence of water management, salinity in Florida Bay would be about 3 to 9 salinity units lower than current conditions. To achieve this target, upstream freshwater levels must be about 0.25 m higher than indicated by recent observed data, with increased flow inputs to Florida Bay between 2.1 and 3.7 times existing flows. This flow deficit is comparable to the average volume of water currently being diverted from the Everglades ecosystem by water management. The products (paleo-based Florida Bay salinity and upstream hydrology) provide estimates of pre-alteration hydrology and salinity that represent target restoration conditions. This method can be applied to any estuarine ecosystem with available paleoecologic data and empirical and/or model-based hydrologic data.  相似文献   

13.
We examined patterns of habitat function (plant species richness), productivity (plant aboveground biomass and total C), and nutrient stocks (N and P in aboveground plant biomass and soil) in tidal marshes of the Satilla, Altamaha, and Ogeechee Estuaries in Georgia, USA. We worked at two sites within each salinity zone (fresh, brackish, and saline) in each estuary, sampling a transect from the creekbank to the marsh platform. In total, 110 plant species were found. Site-scale and plot-scale species richness decreased from fresh to saline sites. Standing crop biomass and total carbon stocks were greatest at brackish sites, followed by freshwater then saline sites. Nitrogen stocks in plants and soil decreased across sites as salinity increased, while phosphorus stocks did not differ between fresh and brackish sites but were lowest at salty sites. These results generally support past speculation about ecosystem change across the estuarine gradient, emphasizing that ecosystem function in tidal wetlands changes sharply across the relatively short horizontal distance of the estuary. Changes in plant distribution patterns driven by global changes such as sea level rise, changing climates, or fresh water withdrawal are likely to have strong impacts on a variety of wetland functions and services.  相似文献   

14.
Lake Pontchartrain., Louisiana is a 1,630 km2 shallow brackish lagoon with a mean salinity from 1.2‰ in the west to 5.4‰ in the east., The construction of a 120 km long deep-water connection to the Gulf of Mexico in 1963, was expected to cause a 5‰ increase in lagoon salinity. However, the actual increase was everywhere in the lagoon less than 2‰ Analysis of 31 years of daily salinity and discharge records indicates that discharge is the most important factor controlling salinity variations in Lake Pontchartrain., Seventy-four percent of low-frequency salinity variations are explained by freshwater discharge and the completion of the deep-water canal. Lake Pont.-chartrain experiences annual variations of salinity as high as 8‰ This salinity signal has remained constant since the beginning of the salinity records in 1946. It appears that the deep-water canal is not responsible for observed die-back of freshwater swamps and retreat of lagoon shorelines.  相似文献   

15.
Spatial and temporal variations in the abundances and distributions of oligochaetes of a southwestern Louisiana estuary were examined as part of a long term study of community structure of benthic macroinvertebrates. Quantitative samples were collected at monthly intervals from nine stations for two years and an additional 17 stations were sampled once. A tubificid oligochaete,Tubificoides denouxi n. sp., is described from the five species collected. The two predominant oligochaetes,Tubificoides heterochaetus andT. denouxi, were congeneric and exhibited completely allopatric distributions. Two oligochaete species with-restricted distributions,Monopylephorus helobius andLimnodriloides sp., were sympatric withT. denouxi, whileThalassodrilides belli, although less abundant, was sympatric with bothT. denouxi andT. heterochaetus. Sexually mature specimens ofT. denouxi andT. belli were collected only in the summer,T. heterochaetus was sexually mature in both winter and summer collections, andMonopylephorus helobius was sexually mature in spring and summer collections. Many of the studies of Oligochaeta have concluded that correlation exists between sediment grain size and species demography. Our data demonstrate a strong relationship between salinity and the abundance and distribution of estuarine species.Tubificoides denouxi was found only within the salinity range of 14.8 to 22.0‰ salinity,T. heterochaetus was found only within the range of 2.3 to 14.1‰, andT. belli had a salinity distribution intermediate between the previous species. No relationship was found between sediment grain-size analysis, water depth or hydrographic variables and species distribution.  相似文献   

16.
Progress is reported in relating upstream water management and freshwater flow to Florida Bay to a valuable commercial fishery for pink shrimp (Farfantepenaeus duorarum), which has major nursery grounds in Florida Bay. Changes in freshwater inflow are expected to affect salinity patterns in the bay, so the effect of salinity and temperature on the growth, survival, and subsequent recruitment and harvest of this ecologically and economically important species was examined with laboratory experiments and a simulation model. Experiments were conducted to determine the response of juvenile growth and survival to temperature (15°C to 33°C) and salinity (2‰ to 55‰), and results were used to refine an existing model. Results of these experiments indicated that juvenile pink shrimp have a broad salinity tolerance range at their optimal temperature, but the salinity tolerance range narrows with distance from the optimal temperature range, 20–30°C. Acclimation improved survival at extreme high salinity (55‰), but not at extremely low salinity (i.e., 5‰, 10‰). Growth rate increases with temperature until tolerance is exceeded beyond about 35°C. Growth is optimal in the mid-range of salinity (30‰) and decreases as salinity increases or decreases. Potential recruitment and harvests from regions of Florida bay were simulated based on local observed daily temperature and salinity. The simulations predict that potential harvests might differ among years, seasons, and regions of the bay solely on the basis of observed temperature and salinity. Regional differences in other characteristics, such as seagrass cover and tidal transport, may magnify regional differences in potential harvests. The model predicts higher catch rates in the September–December fishery, originating from the April and July settlement cohorts, than in the January–June fishery, originating from the October and January settlement cohorts. The observed density of juveniles in western Florida Bay during the same years simulated by the model was greater in the fall than the spring, supporting modeling results. The observed catch rate in the fishery, a rough index of abundance, was higher in the January–June fishery than the July–December fishery in most of the biological years from 1989–1990 through 1997–1998, contrary to modeling results and observed juvenile density in western Florida Bay.  相似文献   

17.
The aquatic macrofauna of the Guadalquivir estuary were sampled (1 mm mesh persiana net) at 5 sampling sites located along the entire (except the tidal freshwater region) estuarine gradient of salinity (outer 50 km). A total of 134 fish and macroinvertebrate species was collected but only 62 were considered common or regularly present in the estuary. Univariate measures of the community structure showed statistically significant differences among sampling sites: species richness, abundance, and biomass decreased in the upstream direction, being positively correlated with the salinity. Temporal differences of these three variables were also statistically significant. While a clear seasonal pattern (minimum densities in winter and maximum in spring-summer) was observed for abundance and biomass, no such pattern existed for the number of species. Mysids was the most dominant group throughout the estuary (96% to 99% of abundance; 49% to 85% of biomass), although fish biomass was also important at the outer estuary (36% to 38%). Multivariate analyses indicated highly significant spatial variation in the macrofaunal communities observed along the salinity gradient. These analyses suggest that the underlying structure was a continuum with more or less overlapping distributions of the species dependent on their ability to tolerate different physicochemical conditions. There were also significant temporal (intermonthly + interannual) variation of the estuarine community; the relative multivariate dispersion indicated that monthly variation was more considerable (relative multivariate dispersion >1) at the outer part of the estuary during the wet year (last 20 km) and was higher in the inner stations during the dry year (32 to 50 km from the river mouth). Since a clear negative exponential relationship was observed between the freshwater input (from a dam located 110 km upstream) and water salinity at all sampling stations, it is concluded that the human freshwater management is probably affecting the studied estuarine communities. While the higher seasonal (long-term) stability of the salinity gradient, due to the human control of the freshwater input, may facilitate the recruitment of marine species juveniles during the meteorologically unstable early-spring, the additional (short-term) salinity fluctuations during the warm period may negatively affect species that complete their lifecycle within the estuary.  相似文献   

18.
Accurate measures of intertidal benthic microalgal standing stock (biomass) and productivity are needed to quantify their potential contribution to food webs. Oxygen microelectrode techniques, used in this study, provide realistic measures of intertidal benthic microalgal production. By dividing a salt-marsh estuary into habitat types, based on sediment and sunlight characteristics, we have developed a simple way of describing benthic microalgal communities. The purpose of this study was to measure and compare benthic microalgal biomass and production in five different estuarine habitats over an 18-mo period to document the relative contributions of benthic microalgal productivity in the different habitat types. Samples were collected bimonthly from April 1990 to October 1991. Over the 18-mo period, tall Spartina zone habitats had the highest (101.5 mg chlorophyll a (Chl a) m?2±6.9 SE) and shallow subtidal habitats the lowest (60.4±8.9 SE) microalgal biomass. There was a unimodal peak in biomass during the late winter-early spring period. The concentrations of photopigments (Chl a and total pheopigments) in the 0–5 mm of sediments were highly correlated (r2=0.73 and 0.88, respectively) with photopigment concentrations in the 5–10 mm depth interval. Biomass specific production (μmol O2 mg Chl a ?1 h?1) was highest in intertidal mudflat habitats (206.3±11.2 SE) and lowest in shallow subtidal habitats (104.3±11.1 SE). Regressions of maximum production (production at saturating irradiances) vs. biomass (Chl a) in the upper 2 mm of sediment by habitat type gave some of the highest correlations ever reported for benthic microalgal communities (r2 values ranged from 0.43 to 0.73). The habitat approach and oxygen microelectrode techniques provide a useful, realistic ranged from 0.43 to 0.73). The habitat approach and oxygen microelectrode techniques provide a useful, realistic method for understanding the biomass and production dynamics of estuarine benthic microalgal communities.  相似文献   

19.
The New River Estuary consists of a series of broad shallow lagoons draining a catchment area of 1,436 km2, located in Onslow County, North Carolina. During the 1980s and 1990s it was considered one of the most eutrophic estuaries in the southeastern United States and sustained dense phytoplankton blooms, bottom water anoxia and hypoxia, toxic outbreaks of the dinoflagellatePfiesteria, and fish kills. High nutrient loading, especially of phosphorus (P), from municipal and military sewage treatment plants was the principal cause leading to the eutrophic conditions. Nutrient addition bioassay experiments showed that additions of nitrogen (N) but not P consistently yielded significant increases in phytoplankton production relative to controls. During 1998 the City of Jacksonville and the U.S. Marine Corps Base at Camp Lejeune completely upgraded their sewage treatment systems and achieved large improvements in nutrient removal, reducing point source inputs of N and P to the estuary by approximately 57% and 71%, respectively. The sewage treatment plant upgrades led to significant estuarine decreases in ammonium, orthophosphate, chlorophylla, and turbidity concentrations, and subsequent increases in bottom water dissolved oxygen (DO) and light penetration. The large reduction in phytoplankton biomass led to a large reduction in labile phytoplankton carbon, likely an important source of biochemical oxygen demand in this estuary. The upper estuary stations experienced increases in average bottom water DO of 0.9 to 1.4 mg l−1, representing an improvement in benthic habitat for shellfish and other organisms. The reductions in light attenuation and turbidity should also improve the habitat conditions for growth of submersed aquatic vegetation, an important habitat for fish and shellfish.  相似文献   

20.
Salinity fluctuation has been proposed as an important determinant of estuarine fish distribution. To test this idea, we compared distribution, behavioral preference and physiological sensitivity of two juvenile estuarine fishes, spot (Leiostomus xanthurus) and croaker (Micropogonias undulatus), with respect to salinity change. In field collections, spot: croaker ratios were positively correlated with salinity variation. Subsequent behavioral observations revealed that croaker tend to cross a 10‰ salinity gradient less often than spot. We proposed that energetic costs of salinity adaptation may be higher for croaker, resulting in the observed avoidance behavior. Oxygen consumption rates over rapid salinity fluctuations showed no significant differences in metabolic response between species, although there was some indication that sensitivity changes with fish size. Apparently, juvenile spot and croaker are well-equipped to withstand extreme changes in salinity. We conclude that environmental factors correlated with salinity change may be responsible for distribution differences between these two abundant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号