首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hurricanes and other major storms cause acute changes in salinity within Florida's streams and rivers. Winddriven tidal surges that increase salinities may have long-lasting effects on submersed aquatic vegetation (SAV) and the associated fauna. We investigated potential effects of salinity pulses on SAV in Kings Bay, Florida, by subjecting the three most common macrophytes,Vallisneria americana, Myriophyllum spicatum., andHydrilla verticillata, to simulated salinity pulses. In Kings Bay, we documented changes in salinity during three storms in September 2004 and measured biomass and percent cover before and after these storms. During experiments, macrophytes were exposed to salinities of 5‰, 15‰, or 25‰ for 1, 2, or 7 d, with a 28-d recovery period in freshwater. Relative to controls, plants subjected to salinities of 5‰ exhibited few significant decreases in growth and no increase in mortality. All three species exhibited decreased growth in salinities of 15‰ or 25‰.H. verticillata, exhibited 100% mortality at 15‰ and 25‰, irrespective of the duration of exposure.M. spicatum andV. american exhibited increased mortality after 7-d exposures to 15‰ or any exposure to 25‰ Maximum daily salinities in Kings Bay approached or exceeded 15‰ after each of the three storms, with pulses generally lasting less than 2 d. Total aboveground biomass and percent cover of vascular plants, were reduced following the storms.M. spicatum exhibited an 83% decrease in aboveground biomass and an 80% decrease in percent cover.H. verticillata exhibited a 47% and 15% decline in biomass and percent cover, respectively.V. americana, exhibited an 18% increase in aboveground biomass and a 37% increase in percent cover, which suggests greater tolerance of salinity pulses and release from competition with the invasiveH. verticillata andM. spicatum. Our results indicate that rapid, storm-induced pulses of high salinity can have important consequences for submersed aquatic vegetation, restoration efforts, and management of invasive species.  相似文献   

2.
Estuarine salinity distributions reflect a dynamic balance between the processes that control estuarine circulation. At seasonal and longer time scales, freshwater inputs into estuaries represent the primary control on salinity distribution and estuarine circulation. El Niño-Southern Oscillation (ENSO) conditions influence seasonal rainfall and stream discharge patterns in the Tampa Bay, Florida region. The resulting variability in freshwater input to Tampa Bay influences its seasonal salinity distribution. During El Niño events, ENSO sea surface temperature anomalies (SSTAs) are significantly and inversely correlated with salinity in the bay during winter and spring. These patterns reflect the elevated rainfall over the drainage basin and the resulting elevated stream discharge and runoff, which depress salinity levels. Spatially, the correlations are strongest at the head of the bay, especially in bay sections with long residence times. During La Niña conditions, significant inverse correlations between ENSO SSTAs and salinity occur during spring. Dry conditions and depressed stream discharge characterize La Niña winters and springs, and the higher salinity levels during La Niña springs reflect the lower freshwater input levels.  相似文献   

3.
The Florida Bay ecosystem has changed substantially in the past decade, and alterations in the seagrass communities have been particularly conspicuous. In 1987 large areas ofThalassia testudinum (turtlegrass) began dying rapidly in western Florida Bay. Although the rate has slowed considerably, die-off continues in many parts of the bay. Since 1991, seagrasses in Florida Bay have been subjected to decreased light availability due to widespread, persistent microalgal blooms and resuspended sediments. In light of these recent impacts, we determined the current status of Florida Bay seagrass communities. During the summer of 1994, seagrass species composition, shoot density, shoot morphometrics, and standing crop were measured at 107 stations. Seagrasses had been quantified at these same stations 10 yr earlier by Zieman et al. (1989).T. testudinum was the most widespread and abundant seagrass species in Florida Bay in both 1984 and 1994, and turtlegrass distribution changed little over the decade. On a baywide basis,T. testudinum density and biomass declined significantly between surveys; mean short-shoot density ofT. testudinum dropped by 22% and standing crop by 28% over the decade.T. testudinum decline was not homogeneous throughout Florida Bay; largest reductions in shoot density and biomass were located principally in the central and western bay. Percent loss ofT. testudinum standing crop in western Florida Bay in 1994 was considerably greater at the stations with the highest levels of standing crop in 1984 (126–215 g dry wt m−2) than at the stations with lower levels of biomass. While turtlegrass distribution remained consistent over time, both the distribution and abundance of two other seagrasses,Halodule wrightii andSyringodium filiforme, declined substantially between 1984 and 1994. Baywide,H. wrightii shoot density and standing crop declined by 92%, andS. filiforme density and standing crop declined by 93% and 88%, respectively, between surveys. Patterns of seagrass loss in Florida Bay between 1984 and 1994 suggest die-off and chronic light reductions were the most likely causes for decline. If die-off and persistent water-column turbidity continue in Florida Bay, the long-term future of seagrasses in the bay is uncertain.  相似文献   

4.
Understanding the natural spatial and temporal variability that exists within an ecosystem is a critical component of efforts to restore systems to their natural state. Analysis of benthic foraminifers and molluscs from modern monitoring sites within Florida Bay allows us to determine what environmental parameters control spatial and temporal variability of their assemblages. Faunal assemblages associated with specific environmental parameters, including salinity and substrate, serve as proxies for an interpretation of paleoecologic data. The faunal record preserved in two shallow (<2 m) cores in central Florida Bay (Russell Bank and Bob Allen Bank) provides a record of historical trends in environmental parameters for those sites. Analysis of these two cores has revealed two distinct patterns of salinity change at these sites: 1) a long-term trend of slightly increasing average salinity; and 2) a relatively rapid change to salinity fluctuations of greater frequency and amplitude, beginning around the turn of the century and becoming most pronounced after 1940. The degree of variability in substrate types at each locality limits interpretations of substrate trends to specific sites. A common sequence of change is present in the Russell Bank and Bob Allen Bank cores: from mixed grass and bare-sediment indicators at the bottom of the cores, to bare-sediment dwellers in the center, to a dominance of vegetative-cover indicators at the top of the cores. Changes in interpreted salinity patterns around the turn of the century are consistent with the timing of the construction of the Flagler Railroad from 1905 to 1912, and the Tamiami Trail and the canal and levee systems between 1915 and 1928. Beginning around 1940, the changes in the frequency and amplitude of salinity fluctuations may be related to changes in water management practices, meteorologic events (frequent hurricanes coupled with severe droughts in 1943 and 1944), or a combination of factors. The correspondence of these changes in Florida Bay with changes in the terrestrial Everglades suggests factors affecting the entire ecosystem are responsible for the salinity and substrate patterns seen in Florida Bay.  相似文献   

5.
An historical summary of the distribution and abundance of submerged aquatic vegetation (SAV) in the Chesapeake Bay is presented. Evidence suggests that SAV has generally been common throughout the bay over the last several hundred years with several fluctuations in abundance. The decline ofZostera marina (eelgrass) in the 1930’s and the rapid expansion ofMyriophyllum spicatum (watermilfoil) in the late 1950’s and early 1960’s were two significant events involving a single species. Since 1965, however, there has been a significant reduction of all species in most sections of the bay. Declines were first observed in the Patuxent, Potomac and sections of other rivers in the Maryland portion of the Bay between 1965 and 1970. Dramatic reductions were observed over the entire length of the bay from 1970 to 1975. Particularly severe losses were observed at the head of the bay around Susquehanna Flats as well as in numerous rivers along Maryland’s eastern and western shores. Changes in the lower, Virginia portion of the bay occurred primarily in the western tributaries. Greatest losses of vegetation occurred in the years following Tropical Storm Agnes in 1972. Since 1975 little regrowth has been observed in the Chesapeake Bay. Other areas along the Atlantic Coast of the U.S. during the same period have experienced no similar widespread decline. It thus appears that the factors affecting the recent changes in distribution and abundance of submerged vegetation in the bay are regional in nature. Causes for this decline may be related to changes in water quality, primarily increased eutrophication and turbidity.  相似文献   

6.
A procedure was developed using aboveground field biomass measurements of Chesapeake Bay submersed aquatic vegetation (SAV), yearly species identification surveys, annual photographic mapping at 1∶24,000 scale, and geographic information system (GIS) analyses to determine the SAV community type, biomass, and area of each mapped SAV bed in the bay and its tidal tributaries for the period of 1985 through 1996. Using species identifications provided through over 10,000 SAV ground survey observations, the 17 most abundant SAV species found in the bay were clustered into four species associations: ZOSTERA, RUPPIA, POTAMOGETON, and FRESHWATER MIXED. Monthly aboveground biomass values were then assigned to each bed or bed section based upon monthly biomass models developed for each community. High salinity communities (ZOSTERA) were found to dominate total bay SAV aboveground biomass during winter, spring, and summer. Lower salinity communities (RUPPIA, POTAMOGETON, and FRESHWATER MIXED) dominated in the fall. In 1996, total bay SAV standing stock was nearly 22,800 metric tons at annual maximum biomass in July encompassing an area of approximately 25,670 hectares. Minimum biomass in December and January of that year was less than 5,000 metric tons. SAV annual maximum biomass increased baywide from lows of less than 15,000 metric tons in 1985 and 1986 to nearly 25,000 metric tons during the 1991 to 1993 period, while area increased from approximately 20,000 to nearly 30,000 hectares during that same period. Year-to-year comparisons of maximum annual community abundance from 1985 to 1996 indicated that regrowth of SAV in the Chesapeake Bay from 1985–1993 occurred principally in the ZOSTERA community, with 85% of the baywide increase in biomass and 71% of the increase in are a occurring in that community. Maximum biomass of FRESHWATER MIXED SAV beds also increased from a low of 3,200 metric tons in 1985 to a high of 6,650 metric tons in 1993, while maximum biomass of both RUPPIA and POTAMOGETON beds fluctuated between 2,450 and 4,600 metric tons and 60 and 600 metric tons, respectively, during that same period with net declines of 7% and 43%, respectively, between 1985 and 1996. During the July period of annual, baywide, maximum SAV biomass, SAV beds in the Chesapeake Bay typically averaged approximately 0.86 metric tons of aboveground dry mass per hectare of bed area.  相似文献   

7.
Watershed land use can affect submerged aquatic vegetation (SAV) by elevating nutrient and sediment loading to estuaries. We analyzed the effects of watershed use and estuarine characteristics on the spatial variation of SAV abundance among 101 shallow subestuaries of Chesapeake Bay during 1984–2003. Areas of these subestuaries range from 0.1 to 101 km2, and their associated local watershed areas range from 6 to 1664 km2. Watershed land cover ranges from 6% to 81% forest, 1% to 64% cropland, 2% to 38% grassland, and 0.3% to 89% developed land. Landscape analyses were applied to develop a number of subestuary metrics (such as subestuary area, mouth width, elongation ratio, fractal dimension of shoreline, and the ratio of local watershed area to subestuary area) and watershed metrics (such as watershed area). Using mapped data from aerial SAV surveys, we calculated SAV coverage for each subestuary in each year during 1984–2003 as a proportion of potential SAV habitat (the area < 2 m deep). The variation in SAV abundance among subestuaries was strongly linked with subestuary and watershed characteristics. A regression tree model indicated that 60% of the variance in SAV abundance could be explained by subestuary fractal dimension, mean tidal range, local watershed dominant land cover, watershed to subestuary area ratio, and mean wave height. Similar explanatory powers were found in wet and dry years, but different independent variables were used. Repeated measures ANOVA with multiple-mean comparison showed that SAV abundance declined with the dominant watershed land cover in the order: forested, mixed-undisturbed, or mixed-developed > mixed-agricultural > agricultural > developed. Change-point analyses indicated strong threshold responses of SAV abundance to point source total nitrogen and phosphorus inputs, the ratio of local watershed area to subestuary area, and septic system density in the local watershed.  相似文献   

8.
Estimates of water quality variables such as chlorophylla concentration (Chl), colored dissolved organic matter (CDOM), or salinity from satellite sensors are of great interest to resource managers monitoring coastal regions such as the Florida Bay and the Florida Shelf. However, accurate estimates of these variables using standard ocean color algorithms have been difficult due to the complex nature of the light field in these environments. In this study, we process SeaWiFS satellite data using two recently developed algorithms; one for atmospheric correction and the other a semianalytic bio-optical algorithm and compare the results with standard SeaWiFS algorithms. Overall, the two algorithms produced more realistic estimates of Chl and CDOM distributions in Florida Shelf and Bay waters. Estimates of surface salinity were obtained from the CDOM absorption field assuming a conservative mixing behavior of these waters. A comparison of SeaWiFS-derived Chl and CDOM absorption with field measurements in the Florida Bay indicated that although well correlated, CDOM was underestimated, while Chl was overestimated. Bottom reflectance appeared to affect these estimates at the shallow central Bay stations during the winter. These results demonstrate the need for new bio-optical algorithms or tuning of the parameters used in the bio-optical algorithm for local conditions encountered in the Bay.  相似文献   

9.
Natural patterns of freshwater delivery to the Florida Bay estuary have been disrupted by flood-control and water-supply projects. Restoration efforts are likely to alter salinity regimes and patterns of nekton distribution and abundance. Spatial and seasonal community structure differences were analyzed for small-bodied and large-bodied nekton collected by fisheries-independent monitoring from 2006 through 2009 in the northeastern basins of Florida Bay. The small-bodied nekton community was dominated by resident fish that may be indicators of ecosystem health because they spend their lives within the bay and are not directly influenced by human harvest; the large-bodied nekton community was dominated by transient and, in some cases, economically important species. Differences in community structure revealed a gradient in similarity that was associated with freshwater influence, as determined by salinity variability over the study period. These observed changes associated with salinity regimes within and between basins underscore the importance of monitoring communities before and after alterations in freshwater inflow.  相似文献   

10.
Beginning in late 1987 Florida Bay experienced a large and unprecedented die-off ofThalassia testudinum. The die-off occurred only in stands of denseT. testudinum. We initiated an experimental monitoring effort in 1989 to attempt to ascertain the cause of this die-off phenomenon. From 1989 to 1995 the abundance and productivity ofT. testudinum was measured at five stations associated with the seagrass die-off and three stations where no die-off had occurred (including one on the seaside of Key Largo, outside of Florida Bay). Early in the study the salinity was very high, exceeding 46 psu, but it has decreased to 29–38 psu in recent years. Seagrass standing crop and either short-shoot density or mass per short shoot declined at nearly all stations, including the stations without die-off (unaffected stations). Over the course of the study, areal productivity declined at three die-off stations; but mass-specific productivity increased at all die-off stations and one unaffected station. Seasonality was pronounced; detrended standardized residuals showed responses for all of the seagrass parameters to be greater than the yearly mean in spring and summer and less than the mean in fall and winter. Detrended residuals also showed decreased productivity to be correlated with increased salinities in the summer despite a long-term record of declining salinities. We propose a conceptual model of the seagrass die-off phenomenon. We document that salinity does contribute to stress onT. testudinum in Florida Bay, but salinity is believed to be only one contributing factor to the loss of seagrasses. The documented increase in the mass-specific productivity ofT. testudinum over the period 1989–1995 suggests seagrasses are growing rapidly in Florida Bay by 1995; we predict that the loss ofT. testudinum may be slowing down and that recovery is possible.  相似文献   

11.
Progress is reported in relating upstream water management and freshwater flow to Florida Bay to a valuable commercial fishery for pink shrimp (Farfantepenaeus duorarum), which has major nursery grounds in Florida Bay. Changes in freshwater inflow are expected to affect salinity patterns in the bay, so the effect of salinity and temperature on the growth, survival, and subsequent recruitment and harvest of this ecologically and economically important species was examined with laboratory experiments and a simulation model. Experiments were conducted to determine the response of juvenile growth and survival to temperature (15°C to 33°C) and salinity (2‰ to 55‰), and results were used to refine an existing model. Results of these experiments indicated that juvenile pink shrimp have a broad salinity tolerance range at their optimal temperature, but the salinity tolerance range narrows with distance from the optimal temperature range, 20–30°C. Acclimation improved survival at extreme high salinity (55‰), but not at extremely low salinity (i.e., 5‰, 10‰). Growth rate increases with temperature until tolerance is exceeded beyond about 35°C. Growth is optimal in the mid-range of salinity (30‰) and decreases as salinity increases or decreases. Potential recruitment and harvests from regions of Florida bay were simulated based on local observed daily temperature and salinity. The simulations predict that potential harvests might differ among years, seasons, and regions of the bay solely on the basis of observed temperature and salinity. Regional differences in other characteristics, such as seagrass cover and tidal transport, may magnify regional differences in potential harvests. The model predicts higher catch rates in the September–December fishery, originating from the April and July settlement cohorts, than in the January–June fishery, originating from the October and January settlement cohorts. The observed density of juveniles in western Florida Bay during the same years simulated by the model was greater in the fall than the spring, supporting modeling results. The observed catch rate in the fishery, a rough index of abundance, was higher in the January–June fishery than the July–December fishery in most of the biological years from 1989–1990 through 1997–1998, contrary to modeling results and observed juvenile density in western Florida Bay.  相似文献   

12.
Ambient exchangeable ammonium concentrations in freshwater sediments are generally considerably greater than those reported for marine sediments. Laboratory measurements indicate that competition for cation exchange sites by ions in seawater is a factor responsible for the lower exchangeable ammonium concentrations in marine sediments. Exchangeable ammonium concentrations were 3- to 6-fold higher when river and estuarine sediments were incubated with fresh water relative to the same sediments incubated with salt water (%.-23). A model was developed to explore the implications for benthic nitrogen cycling of this salinity effect on exchangeable ammonium concentrations. Ammonium diffusion, exchangeable and dissolved ammonium concentrations, and nitrification rates were components of the model formulation. The model output suggests that higher exchangeable ammonium concentrations predicted in fresh water relative to marine sediments can markedly increase the fraction of the ammonium produced in sediments that is nitrified (and subsequently denitrified). These results are consistent with field and experimental laboratory data which indicate that a larger percentage of net ammonium production in aerobic freshwater sediments is nitrified and denitrified (80–100%) relative to marine sediments (40–60%).  相似文献   

13.
The waters of Naples Bay, Florida, and associated waterways were monitored for potentially pathogenic bacteria, specificallyVibrio cholerae, V. parahaemolyticus, Salmonella, andPseudomonas aeruginosa. Ten to twelve stations were sampled over a period of eleven months.Vibrio cholerae was recovered in 33.6% of the 116 total samples andSalmonella in 28.4% of the samples. The results show that these bacteria exist in these waters and can be recovered from areas with both high and low numbers of total and fecal coliforms.  相似文献   

14.
Nekton and macrocrustacean population levels and characteristics were studied in two similar tidal marsh creeks. Absolute and area-adjusted data were analyzed to determine variability resulting from daily population fluctuations. Two sampling schemes—intensive 3-d seasonal and periodic 1-d—were examined by constructing probability matrices to compare the accuracy of data comparisons resulting from each scheme. The probability of inaccuracies in comparisons of abundance using nonreplicated sampling schemes ranged from 0% to 100%. Significant differences between consecutive day data were observed for population characteristics such as blue crab (Callinectes sapidus) sex ratios, spot (Leiostomus xanthurus) length-weights, killifish: sciaenid ratios, and killifish: blue crab ratios. These data support the need to account for short-term variability when assessing mobile aquatic fauna abundance in estuarine wetlands.  相似文献   

15.
Temporal variation in abundance and mean proloculus diameter of the benthic foraminiferal speciesEpistominella exigua has been reconstructed over the last ∼ 50,000 yr BP, from a core collected from the distal Bay of Bengal fan, to assess its potential application in palaeoceanographic reconstruction studies. The down-core variation shows significant change in abundance ofE. exigua during the last ∼ 50,000 yr BP. In view of the present day abundance of this species from areas with strong seasonal organic matter supply, we conclude that at ∼ 7, ∼ 22, ∼ 33 and ∼ 46kyr BP, strong seasonality prevailed in the distal Bay of Bengal fan, probably indicating either strong or prolonged north-east monsoon or weakened south-west monsoon. For the first time, a strong correlation is observed in abundance and mean proloculus diameter ofE. exigua. Based on coherent variation in mean proloculus diameter and abundance, it is postulated that mean proloculus diameter can also be used to infer increased seasonality in organic matter production, thus variation in strength or duration of monsoon. Thus, this study establishes that the down-core variation in the abundance and mean proloculus diameter ofEpistominella exigua can be used to infer past climatic variations from the distal Bay of Bengal fan.  相似文献   

16.
Concentrations of mercury (Hg) in fish were compared between two Florida estuaries, the Indian River Lagoon and Florida Bay. The objective was to determine if differences in Hg concentration exist and to attempt to relate those differences to sources of Hg. Five hundred and thirteen estuarine fish were collected and analyzed for Hg concentration. Fish species collected were black drum, bluefish, bonnethead shark, common snook, crevalle jack, gafftopsail catfish, gray snapper, Mayan cichlid, pompano, red drum, sheepshead, southern flounder, spadefish, and spotted seatrout. Analysis of variance of species-specific Hg data among the three defined regions of eastern and western Florida Bay and the Indian River Lagoon substantiated regional differences. Proximity to known anthropogenic sources of Hg appeared to be a significant factor in the distribution of Hg concentration among the fish collected. Sufficient numbers of crevalle jack, gray snapper, and spotted seatrout were collected to permit statistical analysis among regions. Hg concentrations in all three of these species from eastern Florida Bay were higher than those collected in the other two areas. A major fraction of the estuarine fish collected in eastern Florida Bay exceeded one or more State of Florida or U.S. Food and Drug Administration fish consumption health advisory criteria. In general, fish from western Florida Bay contained less Hg than those from the Indian River Lagoon, and fish from the Indian River contained less Hg than those from eastern Florida Bay. Crevalle jack from all areas and spotted seatrout from Florida Bay were placed on a consumption advisory in Florida. Detailed study of Florida Bay food web dynamics and Hg biogeochemical cycling is recommended to better understand the processes underlying the elevated Hg levels in fish from eastern Florida Bay. This information may be vital in the formulation of appropriate strategies in the ongoing South Florida restoration process.  相似文献   

17.
A large-scale survey of sediment quality in Biscayne Bay, Florida, was conducted in 1995–1996 to characterize the relative degree, geographic patterns, and spatial extent of degraded sediment quality. Chemical analyses and multiple toxicity tests were performed on 226 surficial sediment samples collected over an area of 484 km2 in greater Biscayne Bay, including saltwater reaches of several tributaries. Benthic samples were collected and analyzed at one-third of the locations. One or more chemical concentrations exceeded effects range median (ERM) values in 35 samples, representing an area of 5.4 km2 (1.1% of the survey area). Highly toxic conditions in amphipod survival tests occurred in 24 of the samples, representing 62 km2 (13% of the area). Highly significant results were more frequently observed in three sub-lethal tests: sea urchin fertilization (affecting 47% of the area), sea urchin embryological development (84% of the area), and microbial bioluminescence (51% of the area). The highest levels of chemical contamination (range in mean ERM quotients of 0.2 to 2.0, average 0.76) were observed in samples from the lower Miami River. The high degree of contamination in the river contrasted sharply with conditions in the bay, where chemical concentrations generally were much lower (range in mean ERM quotients of 0.005 to 0.21, average 0.04). Amphipod survival tests showed a very high degree of correspondence with a gradient in chemical contamination in the river and adjoining reaches of the bay. Correlation analyses, scatter plots, and principal component analyses indicated that both amphipod survival in the laboratory tests and the abundance and diversity of the benthos decreased sharply with increasing concentrations of mixtures of organic compounds and trace metals in the sediments. The triad of analyses provided a strong weight of evidence of pollution-induced degradation of sediment quality in the riverine locations.  相似文献   

18.
We evaluate if the distribution and abundance ofThalassia testudinum, Syringodium filiforme, andHalodule wrightii within Biscayne Bay, Florida, are influenced by salinity regimes using, a combination of field surveys, salinity exposure experiments, and a seagrass simulation model. Surveys conducted in June 2001 revealed that whileT. testudinum is found throughout Biscayne Bay (84% of sites surveyed),S. filiforme andH wrightii have distributions limited mainly to the Key Biscayne area.H. wrightii can also be found in areas influenced by canal discharge. The exposure of seagrasses to short-term salinity pulses (14 d, 5–45‰) within microcosms showed species-specific susceptibility to the salinity treatments. Maximum growth rates forT testudinum were observed near oceanic salinity values (30–40‰) and lowest growth rates at extreme values (5‰ and 45‰).S. filiforme was the most susceptible seagrass species; maximum growth rates for this species were observed at 25‰ and dropped dramatically at higher and lower salinity.H. wrightii was the most tolerant, growing well at all salinity levels. Establishing the relationship between seagrass abundance and distribution and salinity is especially relevant in South Florida where freshwater deliveries into coastal bays are influenced by water management practices. The seagrass model developed by Fong and Harwell (1994) and modified here to include a shortterm salinity response function suggests that freshwater inputs and associated decreases in salinity in nearshore areas influence the distribution and growth of single species as well as modify competitive interactions so that species replacements may occur. Our simulations indicate that although growth rates ofT. testudinum decrease when salinity is lowered, this species can still be a dominant component of nearshore communities as confirmed by our surveys. Only when mean salinity values are drastically lowered in a hypothetical restoration scenario isH. wrightii able to outcompeteT. testudinum.  相似文献   

19.
Hypoxia occurs during summer in the southeastern region of Corpus Christi Bay, Texas. The objectives of this study were to identify potential causes of recurrent hypoxic events, to determine hypoxic effects on benthic macroinfauna, and to develop models of benthic response. Long-term and short-term hydrographic surveys were performed, and macroinfaunal samples were collected from normoxic and hypoxic regions of the bay. Hypoxia occurred in seven of the nine summers sampled (1988 to 1996). In 1994, the hypoxic event persisted for approximately 3 wk. Hypoxic events were associated with water column stratification where the difference between bottom and surface salinity was as high as 7.2‰ and averaged 4.1‰ The salinity difference is surprising because water column stratification is not expected in shallow (< 4 m), windy (average 18.5 km h−1) bays. Stratification did occur—hypersaline bottom water in a relatively stagnant portion of the bay—in spite of mixing forces (i.e., high winds), giving rise to hypoxia. Benthic biomass decreased 12-fold, and abundance and diversity decreased 5-fold under hypoxic conditions. In addition, dominance patterns shifted as oxygen levels declined from 5 mg O2 1−1 to <1 mg O2 1−1. The polychaete Streblospio benedicti and oligochaetes tolerated low oxygen better than other infauna. Community response to hypoxic disturbance was fit to a nonparametric categorical model and a parametric logistic model. Biomass, abundance, and diversity exhibited a lag response at <3 mg l−1, and increased exponentially from 3 mg 1−1 to 6 mg 1−1. Based on both models, 3 mg 1−1 appears to define the breakpoint between normoxic and hypoxic benthic communities in Corpus Christi Bay. This value is higher than traditional definitions of hypoxia, <2 mg 1−1 or <2 ml 1−1 (ca. 2.8 mg 1−1). *** DIRECT SUPPORT *** A01BY085 00002  相似文献   

20.
Pensacola Bay, Florida, was in the strong northeast quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, and the magnitude of the freshwater inflow pulse that followed the storm. We computed the magnitude of tidal flushing associated with the surge using a tidal prism model. We also evaluated hurricane effects on water quality using water quality surveys conducted 20 and 50 d after the storm, which we compared with a survey 14 d before landfall. We evaluated the scale of hurricane effects relative to normal variability using a 5-yr monthly record. Ivan's 3.5 m storm surge inundated 165 km2 of land, increasing the surface area of Pensacola Bay by 50% and its volume by 230%. The model suggests that 60% of the Bay's volume was flushed, initially increasing the average salinity of Bay waters from 23 to 30 and lowering nutrient and chlorophylla concentrations. Additional computations suggest that wind forcing was sufficient to completely mix the water column during the storm. Freshwater discharge from the largest river increased twentyfold during the subsequent 4 d, stimulating a modest phytoplankton bloom (chlorophyll up to 18 μg l−1) and maintaining hypoxia for several months. Although the immediate physical perturbation was extreme, the water quality effects that persisted beyond the first several days were within the normal range of variability for this system. In terms of water quality and phytoplankton productivity effects, this ecosystem appears to be quite resilient in the face of a severe hurricane effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号