首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three gear types were used to collect finfish species from several tributaries of the South Creek estuary near Aurora, North Carolina, to ascertain whether a man-initiated marsh and creek system resembled adjacent natural areas in finfish species composition and abundance. Project Area II was the man-initiated area constructed in 1983 as up-front mitigation by North Carolina Phosphate Corporation prior to its anticipated mining in the headwaters of nearby natural wetlands. Two creeks served as controls throughout the study: Drinkwater Creek and Jacks Creek. Otter trawls were used monthly from July 1984 through December 1988. Wegener rings were used in April, July, and October from 1984 through 1987. An experimental gill net was used monthly from June 1984 through 1985. A total of 48 finfish species was captured during the study; only 14 species (29.2%) were common among gear types. The species collected were mud sunfish, blueback herring, alewife American shad, striped anchovy, bay anchovy, inland silverside, American eel, silver perch, Atlantic menhaden, crevalle jack, common carp, spotted seatrout, weakfish, sheepshead minnow, gizzard shad, ladyfish, chain pickerel, banded killifish, mummichog, striped killifish, rainwater killifish, mosquitofish, naked goby, green goby, white catfish, brown bull-head, pinfish, longnose gar, green sunfish, pumpkinseed, bluegill, redear sunfish, spot, Atlantic croaker, largemouth bass, white perch, striped bass, striped mullet, white mullet, golden shiner, summer flounder, southern flounder, yellow perch, bluefish, Atlantic needlefish, hogchoker, andTilapia species. Abundance of finfish species was a function of gear type. Bay anchovy and spot represented about 85% of all fish in trawl samples. The remainder was comprised of 27 other species. In Wegener rings, five species—bay anchovy, menhaden, rainwater killifish, spot, and inland silverside—each represented over 10% of all fish collected. Croaker and striped mullet each comprised more than 5% of all fish collected in Wegener rings, but were present in substantial numbers only in 1985. Based on trawl samples, the total number of finfish collected from Project Area II during the period 1984–1988 was statistically similar to those collected from the control creeks; Wegener ring data analysis indicated significantly greater catches in Project Area II compared to the control creeks. Bay anchovy catches were not significantly different among the three creeks by either trawl or Wegener ring. The same result was true for Atlantic menhaden and southern flounder. The abundance of spot in trawl samples from Project Area II was significantly greater than for the control creeks; abundance in ring samples from Project Area II was statistically similar to Jacks Creek, but significantly higher than Drinkwater Creek. The number of Atlantic croaker in Project Area II trawl samples was significantly lower than for the cotnrol creeks. Wegener rings did not sample croaker effectively.  相似文献   

2.
We examined the community structure of fish and selected decapod crustaceans and tested for within estuary differences among habitats at depths of 0.6 m to 7.9 m, in Great Bay and Little Egg Harbor in southern New Jersey. Several habitat types were identified a priori (e.g., eelgrass, sea lettuce, and marsh creeks) and sampled by trawl (4.9 m headrope, 19-mm mesh wings, 6.3-mm mesh liner), monthly, from June 1988 through October 1989. Repetitive (n=4) 2-min trawl tows were taken at each habitat type from 13 locations. The fishes and decapod crustaceans collected were typical of other Mid-Atlantic Bight estuaries but varied greatly inseasonal abundance and species. In the years sampled, bay anchovy (Anchoa mitchilli) was the dominant species (50.5% of the total number), followed by spot (Leiostomus xanthurus) (10.7%), Atlantic silverside (Menidia menidia) (9.7%), fourspine stickleback (Apeltes quadracus) (5.9%), blue crab (Callinectes sapidus) (4.6%), and northern pipefish (Syngnathus fuscus) (4.2%). The biota were examined by multi-dimensional scaling (MDS) for habitat associations and “best abiotic predictor” of community structure. Percent silt combined with salinity was the most important abiotic determinant of the faunal distributions among habitats. Temperature was a major factor influencing seasonal occurrence of the biota but had less effect on habitat comparisons. The analysis confirmed the distinct nature of the assemblages associated with the habitats, that is, eelgrass, upper estuary subtidal creeks, channels, and open bay areas. Several species were associated with specific habitats: for example,A. quadracus andS. fuscus with eelgrass, clupeids with subtidal creek stations,L. xanthurus with marsh channels, and black sea bass (Centropristis striata) and spotted hake (Urophycis regia) with sponge-peat habitat. Species richness appeared to be positively related to habitat structural heterogeneity. Thus, the best predictors for these estuarine fish and decapod crustacean assemblages were seasonal temperature, percent silt and salinity combined, and the physical heterogeneity of the habitat.  相似文献   

3.
Fishes and invertebrate macrofauna (nekton) were sampled biweekly (July through October 1985) from the surface of tidal freshwater marshes. Samples were collected with flume nets at three different stream orders (orders 2, 3 and 4+) along a marsh stream order gradient. Twenty-five species of fishes (5,610 individuals, 17.072 kg preserved wet weight) representing 13 families, and three species of invertebrates (19,570 individuals, 13.026 kg preserved wet weight) were collected. The most abundant species were grass shrimp (Palaemonetes pugio), mummichogs (Fundulus heteroclitus), banded killifish (F. diaphanus), inland silversides (Menidia beryllina), and blue crabs (Callinectes sapidus). Invertebrate catches (mostly grass shrimp and blue crabs) were not significantly different among stations. Total numbers of fishes were significantly greater at both headwater (order 2) and main creek (order 3) stations than river (order 4+) stations, but catches of headwater and main creek stations were not significantly different. The relationship between marsh stream order and fish abundance may partly be related to the distribution of submerged aquatic vegetation (SAV) within marsh tidal creeks. Submerged aquatic vegetation decreases in abundance with increasing stream order. Some species may use SAV as a refuge from predators or as a foraging area during low tide when the marsh surface is inaccessible. The presence of SAV in tidal creeks may enhance the habitat value of adjacent marshes.  相似文献   

4.
Maryland’s coastal bays provide habitat for juveniles of many commercially and recreationally important species of shellfish and finfish. Since 1972, the Maryland Department of Natural Resources has conducted the Maryland Coastal Bays Trawl and Seine Survey to monitor the populations of key species. The survey has undergone substantial spatial and methodological changes affecting the interpretation of simple indices of abundance. We developed generalized linear models to standardize the indices of abundance of five commonly caught fish species: Atlantic menhaden Brevoortia tyrannus, weakfish Cynoscion regalis, spot Leiostomus xanthurus, bay anchovy Anchoa mitchilli, and summer flounder Paralichthys dentatus. Density declined significantly since 1972 for menhaden, bay anchovy, and spot in at least one region within the coastal bays. The northern bays had significantly higher densities than the southern bays for all species. Changes in abundance indices of the five species examined were not related to sea grass coverage, temperature, salinity, nitrogen-to-phosphorus ratios, and other habitat variables but were likely a result of stock-wide recruitment processes.  相似文献   

5.
The detection of long-term shifts in species composition and spatial structuring of aquatic communities may be obscured by high levels of interannual variation. Estuarine fish communities are likely to exhibit high levels of variation owing to the influence of riverine forcing and the importance of anadromous and transient species, whose abundances may not be locally controlled. We describe patterns of interannual variation and long-term shifts in the nearshore fish community of the mesohaline Hudson River estuary based on 21 yr of beach seine sampling conducted annually between late August and mid November. Of the 60 species encountered, the most abundant were Atlantic silversides (Menidia menidia), striped bass (Morone saxatilis), white perch (Morone americana), American shad (Alosa sapidissima), and blueback herring (Alosa aestivalis). Relationships between annual community composition and seasonal flow and temperature regimes were examined with canonical correspondence analysis. Annual variation was most closely correlated with river flows in the 3-mo period preceding fish sampling, indicating a persistent effect of environmental conditions on community structure. Despite significant interannual variation in composition, longer-term trends in community structure were observed. These included declines in catch rates of freshwater and estuarine species and a dramatic increase in the catch of Atlantic silversides, an annual marine species. Associated with these changes were declines in community diversity and increased compositional variation. These results indicate that analyses of temporal changes in community structure need to account for the multiple time scales under which forcing factors and community composition vary.  相似文献   

6.
The seasonal abundance and spatial distribution of eggs and early larvae of the bay anchovy,Anchoa mitchilli, and the weakfish,Cynoscion regalis, were determined from plankton collections taken during 1971–1976 in the lower Chesapeake Bay. Eggs and larvae of the bay anchovy,Anchoa mitchilli, dominated the ichthyoplankton, making up 96% of the total eggs and 88% of all larvae taken. A comparison of egg and larval densities from the lower Chesapeake Bay to existing data from other East Coast estuaries suggested that Chesapeake Bay is a major center of spawning activity for this species.Anchoa mitchilli spawning commenced in May when mean water column temperatures approached 17°C and abruptly ceased after August. Eggs and early larvae presented a continuous distribution throughout the study area during these months. Eggs and larvae of several sciaenid species, especiallyC. regalis, ranked second in numerical abundance. Larval weakfish were consistently taken in late summer of each sampling year but peak abundance and distribution was observed in August 1971. Sciaenid eggs exhibited a distinct polyhaline distribution with greatest concentrations observed at the Chesapeake Bay entrance or along the Bay eastern margin. Analysis of sciaenid egg morphometry and larval occurrence suggested spawning activity of at least four species. Additional important species represented by eggs and/or larvae in the lower Chesapeake Bay wereHypsoblennius hentzi, Gobiosoma ginsburgi, Trinectes maculatus, Symphurus plagiusa andParalichthys dentatus with the remaining species occurring infrequently.  相似文献   

7.
A brackish-water, intertidal creek was sampled 19 times during the summer of 1976. Samples were analyzed to determine occurrence, abundance, and diversity of fish species present and to determine patterns of daily fish movement and utilization of intertidal creeks in an old rice field. Samples were collected from the primary station on the ebbing tide with a channel net. Three secondary stations were each sampled twice for comparative results and total biomass and average length per species calculated for each sample. We collected 125,579 individuals with a total biomass of 11.7 kg which represented 23 families and 37 species. Anchoa mitchilli was the dominant species and comprised 96.3% of the total numbers of individuals caught. The next two most abundant fish, Menidia menidia and Fundulus heteroclitus, represented 2.5% and 0.4% of the total numbers caught. The data from the nineteen sample collections were ordered by time of day and the resultant time series sequence of collections simulated a sample collection taken about once every 1.5 hours over 24 hours. A pattern of occurrence was noted for A. mitchilli as increased fish numbers occurred when the creek flooded during the daylight hours and there were significantly reduced numbers when the creek flooded during the early evening or at night. A relationship between light intensity, feeding, and predator avoidance is proposed to explain the creek loading pattern of A. mitchilli.  相似文献   

8.
Exchanges of fish larvae between the inner continental shelf and estuaries can be critical to the functional significance of these habitats as nurseries. We sampled near-surface fishes on the inner continental shelf off New Jersey and in an adjacent estuary during the summer and fall of 2005 and 2006 to evaluate the occurrence and variation in these connections. Very few of the abundant taxa (Anchoa mitchilli, Brevoortia tyrannus, Urophycis regia, Etropus microstomus, Peprilus triacanthus, and Pomatomus saltatrix) were exclusive to either habitat but some did change in relative habitat affinity among seasons. For some species, this was indicative of a departure from the ocean for estuaries (e.g., Micropogonias undulatus) while others used both habitats during the summer and fall (e.g., Syngnathus fuscus, Scophthalmus aquosus, and A. mitchilli). Together, these observations confirm the high degree of connectivity between the near-surface larval fishes from the inner continental shelf and estuaries.  相似文献   

9.
Seasonality and abundance of ichthyoplankton in great South Bay,New York   总被引:1,自引:0,他引:1  
The seasonality and abundance patterns of ichthyoplankton were investigated during 1985–1986 in Great South Bay, New York, USA. Eggs representing 17 species and larvae representing 23 species of fish were identified. Bay anchovy, Anchoa mitchilli, was the most abundant ichthyoplankter, comprising >96% of the eggs and >69% of the larvae collected. Bay anchovy spawned throughout the bay from late May through August, with peak baywide densities of >200 eggs and 6 larvae m?3. Eggs of windowpane flounder (Scophthalmus aquosus) ranked second in abundance and were present in both spring and fall. Other dominant larvae were winter flounder (Pleuronectes americanus) and American sand lance (Ammodytes americanus). Their combined density reached 8 m?3 and accounted for the winter peak in larvae. The seasonality of abundance of larval fish was strongly correlated with reported densities of copepod nauplii prey.  相似文献   

10.
I examined the relative importance of beds of tapegrass (Vallisneria americana) and adjacent unvegetated habitats to juvenile and adult (6–35 mm standard length) rainwater killifish (Lucania parva) over a large spatial scale within the St. Johns River estuary, Florida. Abundance of rainwater killifish did not differ between oligohaline and tidal freshwater portions of the estuary and this species was relatively rare at opposite ends of the St. Johns River estuary. The presence of rainwater killifish at a given site was determined in part by large-scale variation in environmental factors such as habitat complexity and salinity. When present at a site, rainwater killifish were found almost exclusively in structurally complex beds of tapegrass. Behavioral observations in the laboratory indicated that rainwater killifish preferred vegetated over unvegetated habitats in the absence of both potential prey and predators and that use of vegetated habitats increased further upon addition of predatory largemouth bass (Micropterus salmoides). A laboratory predation experiment indicated that survival of rainwater killifish exposed to largemouth bass was significantly higher in vegetation than over open sand. Strong preferences for structurally complex vegetation likely reflect an evolved or learned behavioral response to risk of predation and help explain habitat use of rainwater killifish in the St. Johns River estuary.  相似文献   

11.
Forty-eight core and grab samples were taken from two impoundments and an adjacent tidal creek and salt marsh during each of six sampling periods (January, June and November 1983; and January, April and July 1984). Habitats sampled within the impoundments included the perimeter ditch and shallow vegeted areas dominated byRuppia maritima, Spartina alterniflora, andScirpus robustus. The adjacent tidal creek bottom and low marsh ofS. alterniflora were sampled for comparison with the impoundment sites. Major differences in faunal composition and density of macrobenthic invertebrates were observed between habitats in this study. Macrobenthic density was highest (475 individuals 0.05 m?2) at the impoundment site dominated byScripus robustus, where oligochaetes were abundant. The open marsh site had a density of 254 individuals 0.05 m?2. Among unvegetated sites, density for all sampling periods was higher in Chainey Creek than in the perimeter ditches of the impoundments. The total number of taxa was highest for the open marsh and tidal creek sites. The impoundments contained vegetated sites which were inhabited by fewer species than nonimpounded sites, while the perimeter ditch sites were comparatively depauperate. Cluster and nodal analyses identified four broad assemblages based on habitat: 1) an open marsh assemblage, 2) a creek assemblage, 3) a eurytopic assemblage, and 4) an impoundment assemblage. The separation of faunal assemblages by sampling site rather than sampling period suggests that physical differences between habitats were important factors determining distribution patterns.  相似文献   

12.
We assessed fish assemblage stability over the last half century in Lake Pontchartrain, an environmentally degraded oligohaline estuary in southeastern Louisiana. Because assemblage instability over time has been consistently associated with severe habitat degradation, we attempted to determine whether fish assemblages in demersal, nearshore, and pelagic habitats exhibited change that was unrelated to natural fluctuations in environmental variables (e.g., assemblage changes between wet and dry periods). Collection data from three gear types (trawl, beach seine, and gill nets) and monthly environmental data (salinity, temperature, and Secchi depth) were compared for four collecting periods: 1954 (dry period), 1978 (wet period), 1996–1998 (wet period), and 1998–2000 (dry period). Canonical correspondence analysis (CCA) revealed that although the three environmental variables were significantly associated with the distribution and abundance patterns of fish assemblages in all habitats (with the exception of Secchi depth for pelagic samples), most fish assemblage change occurred among sampling periods (i.e., along a temporal gradient unrelated to changing environmental variables). Assemblage instability was the most pronounced for fishes collected by trawls from demersal habitats. A marked lack of cyclicity in the trawl data CCA diagram indicated a shift away from a baseline demersal assemblage of 50 yr ago. Centroid positions for the five most collected species indicated that three benthic fishes, Atlantic croaker (Micropogonias undulatus), spot (Leiostomus xanthurus), and hardhead catfish (Arius felis), were more dominant in past demersal assemblages (1954 and 1978). A different situation was shown for planktivorous species collected by trawls with bay anchovy (Anchoa mitchilli) becoming more dominant in recent assemblage and Gulf menhaden (Brevoortia patromus) remaining equally represented in assemblages over time. Changes in fish assemblages from nearshore (beach seine) and pelagic (gill net) habitats were more closely related to environmental fluctuations, though the CCA for beach seine data also indicated a decrease in the dominance ofM. undulatus and an increase in the proportion ofA. mitchilli over time. The reduced assemblage role of benthic fishes and the marked assemblage change indicated by trawl data suggest that over the last half century demersal habitats in Lake Pontchartrain have been impacted more by multiple anthropogenic stressors than nearshore or pelagic habitats.  相似文献   

13.
We examined the 5-yr (1996–2000) response of subtidal marsh creek fishes (2,793 trawls, 47 species, 30,719 fish) to a large marsh restoration project in the upper Delaware Bay, and found that the salinity gradient covaried along with marsh surface vegetation type among two treated and one untreated reference sites, confounding direct comparison of fish utilization. Examination of environmental correlates with monthly yearly trends highlighted differences between potential mechanism driving assemblage dynamics either intrinsic or extrinsic to the marshes. Within-site and among-site differences in fish assemblage, as described by principal components analysis, correlated poorly with marsh vegetation on both seasonal and interannual scales and appeared to driven by larval supply. Assemblage dynamics could be expalined in part by the occurrence of juveniles of transient marine fishes along a salinity gradient (0–15.2%) range in monthly site mean), but were largely determined by fluctuations in the distribution of two transient species: young-of-the-year bay anchovyAnchoa mitchilli and Atlantic croakerMicropogonias undulatus. A minor mode in variance, driven by locally spawned species, was moderately correlated with environmental parameters. Analysis of marshes on an individual basis did not discern additional important gradients. Our findings are in contrast to those in systems dominated by resident species, probably because transient fishes, which often dominante the system, are more plastic to the nature of ecological services or are affected as much by environment outside of the marsh as by that in the marsh.  相似文献   

14.
A 16-yr (1985–2000) time series of calanoid copepod (Acartia tonsa andEurytemora affinis) abundance in the upper Chesapeake Bay was examined for links to winter weather variability. A synthesis of sea level pressure data revealed ten dominant, winter weather patterns. Weather patterns differed in frequency of occurrence as well as associated precipitation and temperature. The two dominant copepod species responded differently to winter weather variability.A. tonsa abundance showed little response to winter weather and did not vary in abundance during wet or dry springs.E affinis responded strongly to winter weather patterns that produced springs with high freshwater discharge and low salinities. During wet springs,E. affinis abundance increased overall and its area of dominance extended further down estuary. The different response of the two species is likely related to several factors including residence time, development time, salinity tolerance, food limitation, and life history strategy. Important fish species that rely on zo oplankton as food resources were also related to winter weather variability and spring zooplankton abundance.Morone saxatilis (striped bass) andAnchoa mitchilli (bay anchovy) juvenile indices were positively and negatively correlated toE. affinis abundance, respectively. *** DIRECT SUPPORT *** A02BY003 00004  相似文献   

15.
Salt marsh plant communities are regulated by feedback processes involving hydrologic regimes, disturbance, and marsh physical characteristics, and as expected differ among habitat types. Using three barrier beach salt marshes along the Gulf of Maine, we examined the effects of ditching and ditch-plugging on plant characteristics by means of comparisons to natural creek and pool habitats. Results indicated that ditch and creek habitats were similar in terms of species richness and diversity of emergent vascular plants, but cover and biomass were significantly higher in habitat adjacent to creeks. Plant composition in ditch habitat was distinguished by the higher percentage of forb species (associated with poor drainage), while the proportion of tall-form Spartina alterniflora was much higher in creek habitat (associated with sloping banks of creeks). These results are indicative of differences in hydrologic and disturbance regimes that can influence competitive and facilitative interactions, habitat structure, and heterogeneity. Results for pool comparisons indicated that plant characteristics were significantly different between ditch-plug and natural pools. Species richness, diversity, and biomass were significantly lower in ditch-plug habitat compared with all other habitats, and plant cover averaged only 30 % in habitat adjacent to ditch-plugs, which was significantly lower than all other habitats. These differences have ecological implications in terms of habitat structure and function of ditch-plug habitat. In addition, increased stress leading to plant dieback due to ditch-plugging has resulted in subsidence that can decrease the stability of ditch-plug habitat and expedite the loss of salt marsh habitat, especially with rising sea levels.  相似文献   

16.
The seasonal occurrence and relative abundance of larval and juvenile fishes, particularly members of the family Sciaenidae, from a Virginia Atlantic coast estuary were determined from ichthyoplankton and otter trawl collections made from March 1979 to March 1980. The larvae of 19 species in 14 families were identified in the ichthyoplankton. Larvae of the engraulid, Anchoa mitchilli (bay anchovy), and the atherinid, Menidia menidia (Atlantic silverside), dominated the samples and made up 13 and 22%, respectively, of the 9,440 larvae collected. Peak occurrence of all larvae was from May to August. The juveniles of 28 species in 19 families were identified from otter trawl collections. Juvenile sciaenids numerically dominated the trawl collecions and made up 68% of the trawl catch. Juvenile density peaked during September through December.  相似文献   

17.
We described seasonal fish-assemblages in an estuarine marsh fringing Matagorda Bay, Gulf of Mexico. Habitat zones were identified by patterns of fish species abundance and indicator species optima along gradients in salinity, dissolved oxygen (DO), and depth in our samples. Indicators of the lower brackish zone (lower lake and tidal bayou closest to the bay) were gulf menhaden (Brevoortia patronus), bay anchovy (Anchoa mitchilli), silver perch (Bairdiella chrysoura), and spotted seatrout (Cynoscion nebulosus) at salinity >15‰, DO 7–10 mg l−1, and depth <0.5 m. Indicators of the upper brackish zone (lake and fringing salt marsh) were pinfish (Lagodon rhomboides) and spot (Leiostomus xanthurus) at salinity 10–20‰, DO >10 mg l−1, and depth <0.5 m. In the freshwater wetland zone (diked wetland, ephemeral pool, and perennial scour pool), indicators were sheepshed minnow (Cyprinod on variegatus), rainwater killifish (Lucania parva), mosquitofish (Gambusia affinis), and sailfin molly (Poecilia latipinna) at salinity <5‰, DO <5 mg l−1, and depth ≥1 m. In the freshwater channelized zone (slough and irrigation canal), indicators were three sunfish species (Lepomis), white crappie (Pomoxis annularis), and gizzard shad (Dorosoma cepedianum) at salinity <5‰, DO <5 mg l−1, and depth >1.5 m. In brackish zones, seasonal variation in species diversity among sites was positively correlated with temperature, but assemblage structure also was influenced by depth and DO. In the freshwater zones, seasonal variation in species diversity among sites was positively correlated with depth, DO, and salinity, but assemblage structure was weakly associated with temperature. Species diversity and assemblage structure were strongly affected by the connectivity between freshwater wetland and brackish zones. Uncommon species in diked wetlands, such as tarpon (Megalops atlanticus) and fat sleeper (Dormitator maculatus), indicated movement of fishes from the brackish zone as the water level rose during natural flooding and scheduled (July) releases from the diked wetland. From September to July, diversity in the freshwater wetland zone decreased as receding waters left small isolated pools, and fish movement became blocked by a water-control structure. Subsequently, diversity was reduced to a few species with opportunistic life histories and tolerance to anoxic conditions that developed as flooded vegetation decayed.  相似文献   

18.
Large, recreationally or commercially important populations of Atlantic sturgeon (Acipenser oxyrinchus), American shad (Alosa sapidissima), and striped bass (Morone saxatilis) occur in the Hudson River. Members of the Hudson River populations of these fishes also occur over a broad range along the Atlantic coast where they mix with conspecifics from other anadromous populations. For management purposes, it is imperative to be able to discriminate among individual stocks so that weak stocks may be protected and harvest may be allocated equitably. Because of their sensitivity and resistance to environmentally-induced temporal variation, molecular approaches have been increasingly employed in stock identification studies. However, post-Pleistocene recolonization of the Hudson River must have occurred less than 10,000 years ago—a relatively brief period for genetic divergence among populations. We tested whether various measures of DNA variation between Hudson River populations and adjacent populations of Atlantic sturgeon, American shad, and striped bass were sufficient to discriminate among their conspecific populations. American shad populations surveyed for mtDNA variation were highly diverse genotypically, but genotypic frequencies among the populations of the Connecticut, Hudson, and Delaware rivers were statistically homogenous (p>0.05). In contrast, Atlantic sturgeon (surveyed for mtDNA variation) and striped bass (surveyed for mtDNA and nuclear DNA variation) populations of the Hudson River were not genotypically diverse, but they were differentiated from northern and southern populations. Our results suggest higher gene flow (and lesser homing fidelity) among American shad populations in comparison with the two other species.  相似文献   

19.
Variability in assemblages of organisms in contiguous lagoons is dependent upon component bays and their connections to the ocean and terrestrial watersheds. Fish and blue crab assemblage structure of Maryland's coastal lagoon complex, which consists of Assawoman, Isle of Wight, Sinepuxent, and Chincoteague Bays, was analyzed for spatial and seasonal patterns for the period 1991–2002. Nonmetric multidimensional scaling ordinated sites from a Maryland state trawl survey into discrete groups associated with each embayment. Dominant species includedCallinectes sapidus, Anchoa mitchilli, Leiostomous xanthurus, Bairdiella chrysoura, andBrevoortia tyramus. The relative abundance of these and other dominant species were significantly higher in the two bays north of the ocean inlet than in bays south of the inlet. Ninety-two species were identified in the survey, with total species richness highest in the southern-most bay (Chincoteague: S=83) and lowest in the northern most bay (Assawoman: S=59). On a catch per unit effort basis, the northern two bays were more diverse and productive. These bays were most affected by anthropogenic eutrophication, but also exhibited higher connectivity to the ocean inlet. There was clear seasonality in assemblage structure with peak abundance and diversity in the summer compared to spring and fall. Factors that influenced seasonal and spatial structure of Maryland's coastal lagoon complex included temperature, degree of eutrophication, and proximity to oceanic exchange. The arrangement of the bays in their exposure to oceanic and watershed influences specify that habitat management actions should occur at a bay-level scale rather than across the lagoon complex.  相似文献   

20.
Bay scallop (Argopecten irradians) populations existed in Chesapeake Bay until 1933, when they declined dramatically due to a loss of seagrass habitat. Since then, there have been no documented populations within the Bay. However, some anecdotal observations of live bay scallops within the lower Bay suggest that restoration of the bay scallop is feasible. We therefore tested whether translocated adults of the southern bay scallop, Argopecten irradians concentricus, could survive during the reproductive season in vegetated and unvegetated habitats of the Lynnhaven River sub-estuary of lower Chesapeake Bay in the absence of predation. Manipulative field experiments evaluated survival of translocated, caged adult scallops in eelgrass Zostera marina, macroalgae Gracilaria spp., oyster shell, and rubble plots at three locations. After a 3-week experimental period, scallop survival was high in vegetated habitats, ranging from 98% in their preferred habitat, Z. marina, to 90% in Gracilaria spp. Survival in Z. marina was significantly higher than that in rubble (76%) and oyster shell (78%). These findings indicate that reproductive individuals can survive in vegetated habitats of lower Chesapeake Bay when protected from predators and that establishment of bay scallop populations within Chesapeake Bay may be viable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号