首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The Delaware River and Bay Estuary is one of the major urbanized estuaries of the world. The 100-km long tidal river portion of the estuary suffered from major summer hypoxia in the past due to municipal and industrial inputs in the urban region; the estuary has seen remarkable water quality improvements from recent municipal sewage treatment upgrades. However, the estuary still has extremely high nutrient loading, which appears to not have much adverse impact. Since the biogeochemistry of the estuary has been relatively similar for the past two decades, our multiple year research database is used in this review paper to address broad spatial and seasonal patterns of conditions in the tidal river and 120 km long saline bay. Dissolved oxygen concentrations show impact from allochthonous urban inputs and meteorological forcing as well as biological influences. Nutrient concentrations, although high, do not stimulate excessive algal biomass due to light and multiple nutrient element limitations. Since the bay does not have strong persistent summer stratification, there is little potential for bottom water hypoxia. Elevated chlorophyll concentrations do not exert much influence on light attenuation since resuspended bottom inorganic sediments dominate the turbidity. Dissolved inorganic carbon and dissolved and particulate organic carbon distributions show significant variability from watershed inputs and lesser impact from urban inputs and biological processes. Ratios of dissolved and particulate carbon, nitrogen, and phosphorus help to understand watershed and urban inputs as well as autochthonous biological influences. Owing to the relatively simple geometry of the system and localized anthropogenic inputs as well as a broad spatial and seasonal database, it is possible to develop these biogeochemical trends and correlations for the Delaware Estuary. We suggest that this biogeochemical perspective allows a revised evaluation of estuarine eutrophication that should have generic value for understanding other estuarine and coastal waters.  相似文献   

2.
External nutrient loadings, internal nutrient pools, and phytoplankton production were examined for three major subsystems of the Chesapeake Bay Estuary—the upper Mainstem, the Patuxent Estuary, and the 01 Potomac Estuary—during 1985–1989. The atomic nitrogen to phosphorus ratios (TN:TP) of total loads to the 01 Mainstem, Patuxent, and the Potomac were 51, 29 and 35, respectively. Most of these loads entered at the head of the estuaries from riverine sources and major wastewater treatment plants. Approximately 7–16% for the nitrogen load entered the head of each estuary as particulate matter in contrast to 48–69% for phosphorus. This difference is hypothesized to favor a greater loss of phosphorus than nitrogen through sedimentation and burial. This process could be important in driving estuarine nitrogen to phosphorus ratios above those of inputs. Water column TN: TP ratios in the tidal fresh, oligohaline, and mesohaline salinity zones of each estuary ranged from 56 to 82 in the Mainstem, 27 to 48 in the Patuxent, and 72 to 126 in the Potomac. A major storm event in the Potomac watershed was shown to greatly increase the particulate fraction of nitrogen and phosphorus and lower the TN:TP in the river-borne loads. The load during the month that contained this storm (November 1985) accounted for 11% of the nitrogen and 31% of the phosphorus that was delivered to the estuary by the Potomac River during the entire 60-month period examined here. Within the Mainstem estuary, salinity dilution plots revealed strong net sources of ammonium and phosphate in the oligohaline to upper mesohaline region, indicating that these areas were sites of considerable internal recycling of nutrients to surface waters. The sedimentation of particulate nutrient loads in the upper reaches of the estuary is probably a major source of these recycled nutrients. A net sink of nitrate was indicated during summer. A combination of inputs and these internal recycling processes caused dissolved inorganic N to P ratios to approach 16:1 in the mesohaline zone of the Mainstem during late summer; this ratio was much higher at other times and in the lower salinity zones. Phytoplankton biomass in the mesohaline Mainstem reached a peak in spring and was relatively constant throughout the other seasons. Productivity was highest in spring and summer, accounting for approximately 33% and 44%, respectively, of the total annual productivity in this region. In the Patuxent and Potomac, the TN:TP ratios of external loads documented here are 2–4 times higher than those observed over the previous two decades. These changes are attributed to point-source phosphorus controls and the likelihood that nitrogen-rich nonpoint source inputs, including contributions from the atmosphere, have increased. These higher N:P ratios relative to Redfield proportions (16:1) now suggest a greater overall potential for phosphorus-limitation rather than nitrogen-limitation of phytoplankton in the areas studied.  相似文献   

3.
Terrestrially-derived organic matter in sediments of the Delaware Estuary originates from riverine transport of soils and fresh litter, sewage and industrial wastes, and marsh export of organic matter. The quantity, composition, and spatial distribution of terrigenous organic matter in sediments was determined by elemental (C and N), lignin, and stable carbon isotope analyses. Sediments in the upper Delaware Estuary had low organic carbon content and high lignin content. In contrast, sediments in the lower Delaware Estuary had high organic carbon content and low lignin content. There was a slight decrease in the proportion of syringyl and cinnamyl phenols relative to vanillyl phenols between the upper estuary and lower estuary. Differences in lignin and stable carbon isotope compositions between sediments of the Delaware Estuary and sediments of the Broadkill River estuary (an adjoining salt-marsh estuary) supported previous observations that marshes do not export substantial quantities of organic matter to estuaries. Additional results suggested that lignin-rich sediments were concentrated in the upper estuary, most likely in the zone of high turbidity. Furthermore, algal material diluted lignin-rich sediments, particularly in the lower estuary. The weaker algal signal in bottom sediments compared to that in suspended particulate matter suggested algal material was decomposed either in the water column or at the sediment-water interface. Physical sorting of sediments prior to deposition was also indicated by observations of compositional differences between the upper and lower estuary bottom sediments. Finally, seasonal variations in primary productivity strongly influenced the relative abundance of terrestrial organic matter. In fall, however, the proportion of lignin was greatest because of a combination of greater inputs of terrestrially-derived organic matter, lower river discharge, and a decrease in algal biomass.  相似文献   

4.
潘峰  郭占荣  刘花台  王博  李志伟  庄振杰 《地球科学》2018,43(11):4109-4119
为了解潮间带微环境中磷、铁元素的分布和耦合规律及对磷释放的影响,借助薄膜扩散梯度技术(ZrO-Chelex DGT)原位高分辨率获取九龙江口红树林潮滩孔隙水剖面的溶解活性磷(DRP)、Fe2+浓度,并测定沉积物相应的理化参数.研究结果表明:(1)在表层孔隙水中,DRP、Fe2+浓度呈现显著的正相关性,证实了磷、铁元素的耦合关系以及沉积物铁氧化物对磷吸附/解吸附的控制作用;(2)在深部还原带,DRP浓度相对Fe2+浓度具有较大的波动,主要受到沉积物异质性以及红树植物吸收等的影响;(3)根据表层孔隙水中DRP的浓度梯度计算获得磷的分子扩散通量为0.000 64~0.006 00 μg·cm-2·d-1,结果远低于一般湖泊沉积物内源磷的扩散通量,原因是富铁且具较深氧化带的潮滩沉积物中的磷-铁耦合关系有效地抑制了磷的释放.   相似文献   

5.
The contribution of terrigenous organic matter (TOM) to high molecular weight dissolved and particulate organic matter (POM) was examined along the salinity gradient of the Delaware Estuary. Dissolved organic matter (DOM) was fractionated by ultrafiltration into 1–30 kDa (HDOM) and 30 kDa–0.2 μm (VHDOM) nominal molecular weight fractions. Thermochemolysis with tetramethylammonium hydroxide (TMAH) was used to release and quantify lipids and lignin phenols. Stable carbon isotopes, fatty acids and lignin content indicated shifts in sources with terrigenous material in the river and turbid region and a predominantly algal/planktonic signal in the lower estuary and coastal ocean. Thermochemolysis with TMAH released significant amounts of short chain fatty acids (C9–C13), not seen by traditional alkaline hydrolysis, which appear to be associated with the macromolecular matrix. Lignin phenol distributions in HDOM, VHDOM and particles followed predicted sources with higher concentrations in the river and turbid region of the estuary and lower concentrations in the coastal ocean. TOM comprised 12% of HDOM within the coastal ocean and up to 73% of HDOM within the turbid region of the estuary. In the coastal ocean, TOM from high molecular weight DOM comprised 4% of total DOC. The annual flux of TOM from the Delaware Estuary to the coastal ocean was estimated at 2.0×1010 g OC year−1 and suggests that temperate estuaries such as Delaware Bay can be significant sources of TOM on a regional scale.  相似文献   

6.
We studied nutrient sources to the Sacramento River and Suisun Bay (northern San Francisco Bay) and the influence which these sources have on the distributions of dissolved inorganic nitrogen (DIN) and dissolved reactive phosphorus (DRP) in the river and bay. We found that agricultural return flow drains and a municipal wastewater treatment plant were the largest sources of nutrients to the river during low river flow. The Sutter and Colusa agricultural drains contributed about 70% of the transport of DIN and DRP by the river above Sacramento (about 20% of the total transport by the river) between August 8 and September 26, 1985. Further downstream, the Sacramento Regional Wastewater Treatment Plant discharged DIN and DRP at rates that were roughly 70% of total DIN and DRP transport by the river at that time. Concentrations at Rio Vista on the tidal river below the Sacramento plant and at the head of the estuary were related to the reciprocals of the river flows, indicating the importance of dilution of the Sacramento waste by river flows. During very dry years, elevated DIN and DRP concentrations were observed in Suisun Bay. We used a steady-state, one-dimensional, single-compartment box model of the bay, incorporating terms for advection, exchange, and waste input, to calculate a residual rate for all processes not included in the model. We found that the residual for DIN was related to concentrations of chlorophylla (Chla). The residual for DRP was also related to Chla at high concentrations of Chla, but showed significant losses of DRP at low Chla concentrations. These losses were typically equivalent to about 80% of the wastewater input rate.  相似文献   

7.
Rainfall events cause episodic discharges of groundwaters contaminated with septic tank effluent into nearshore waters of the Florida keys, enhancing eutrophication in sensitive coral reef communities. Our study characterized the effects of stormwater discharges by continuously (30-min intervals) measuring salinity, temperature, tidal stage, and dissolved oxygen (DO) along an offshore eutrophication gradient prior to and following heavy rainfall at the beginning of the 1992 rainy season. The gradient included stations at a developed canal system (PP) on Big Pine Key, a seagrass meadow in a tidal channel (PC), a nearshore patch reef (PR), a bank reef at Looe Key National Marine Sanctuary (LK), and a blue water station (BW) approximately 9 km off of Big PIne Key. Water samples were collected at weekly intervals during this period to determine concentrations of total nitrogen (TN), ammonium (NH4 +), nitrate plus nitrite NO3 ? plus NO2 ?), total phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP), and chlorophyll a (chl a). Decreased salinity immediately followed the first major rainfall at Big Pine Key, which was followed by anoxia (DO <0.1 mg I?1), high concentrations of NH4 + (≈24 μM), TDP (≈1.5 μM), and chl a (≈20 μg I?1). Maximum concentration of TDP (≈0.30 μM) also followed the initial rainfall at the PC, PR, and LK stations. In contrast, NH4 + (≈4.0 μM) and chl a (0.45 μg I?1) lagged the rain event by 1–3 wk, depending on distance from shore. The highest and most variable concentrations of NH4 +, TDP, and chl a occurred at PP, and all nutrient parameters correlated positively with rainfall. DO at all stations was positively correlated with tide and salinity and the lowest values occurred during low tide and low salinity (high rainfall) periods. Hypoxia (DO <2.5 mg I?1) was observed at all stations follwing the stormwater discharges, including the offshore bank reef station LK. Our study demonstrated that high frequency (daily) sampling is necessary to track the effects of episodic rainfall events on water quality and that such effects can be detected at considerable distances (12 km) from shore. The low levels of DO and high levels of nutrients and chl a in coastal waters of the Florida Keys demand that special precautions be exercised in the treatment and discharge of wastewaters and land-based runoff in order to preserve sensitive coral reef communities.  相似文献   

8.
The differences and similarities between near-pristine estuaries of different latitudinal regions were examined by selecting three tropical systems from North Queensland, Australia (Jardine, Annan, Daintree) and three temperate systems from Scotland, United Kingdom (Inverness, Cromarty, Dornoch Firths) for comparison. Although estuaries from the different regions have a number of unifying features, such as salinity gradients, tidal variations and terrestrial inputs they also have a number of important differences. The most distinct of these is the timing and variability of the major physical forcings on the estuary (e.g., river flow, insolation). The three tropical estuaries were much more episodic than their temperate counterparts, with a much more dynamic salinity structure and more variable riverwater concentrations, so that delivery of material to the estuary is dominated by short-lived flood events. In contrast, seawater concentrations were more stable in the tropical estuaries due to a more constant input of insolation, resulting in year round biological activity. There was biological removal of dissolved inorganic phosphorus in the low salinity region of the tropical Jardine and Daintree estuaries and a low salinity input of nitrate in the tropical Annan estuary most likely due to nitrification in the bottom sediments, and the biological reaction zone in the tropical Annan Estuary was flushed out of the estuarine basin to the edge of the offshore plume during a flood. Similar effects were not seen in the temperate Inverness, Cromarty, and Dornoch Firths. Similarities between estuaries include mid-estuary inputs of ammonium which were seen in both the temperate and tropical estuaries, although they occur under vastly contrasting conditions of low river discharge and periods of flood, respectively. Five of the estuaries show a general increase in dissolved inorganic phosphorus concentrations towards the sea during low flows, reflecting their pristine condition, and all six estuaries had low salinity silicate maxima probably sourced from the dissolution of freshwater biogenic silicate that has been carried seaward, except in the tropical estuaries during the dry season when a benthic source is proposed.  相似文献   

9.
The speciation of dissolved organic phosphorus (DOP) in the temperate Tamar estuary of SW England is described. Eight stations from the riverine to marine end-members were sampled during four seasonal campaigns in 2007 and the DOP pool in the water column and sediment porewater was characterized and quantified using a flow injection manifold after sequential enzymatic hydrolysis. This enabled the enzymatically hydrolysable phosphorus (EHP) fraction and its component labile monoester phosphates, diester phosphates and a phytase-hydrolysable fraction that includes myo-inositol hexakisphosphate (phytic acid), to be determined and compared with the total DOP, dissolved reactive phosphorus (DRP) and total dissolved phosphorus (TDP) pools. The results showed that the DOP pool in the water column varied temporally and spatially within the estuary (1.1-22 μg L−1) and constituted 6-40% of TDP. The EHP fraction of DOP ranged from 1.1-15 μg L−1 and represented a significant and potentially bioavailable phosphorus fraction. Furthermore the spatial profiles of the three components of the EHP pool generally showed non-conservative behavior along the salinity gradient, with apparent internal estuarine sources. Porewater profiles followed broadly similar trends but were notably higher at the marine station throughout the year. In contrast to soil organic phosphorus profiles, the labile monoester phosphate fraction was the largest component, with diester phosphates also prevalent. Phytic acid concentrations were higher in the lower estuary, possibly due to salinity induced desorption processes. The EHP fraction is not commonly determined in aquatic systems due to the lack of a suitable measurement technique and the Tamar results reported here have important implications for phosphorus biogeochemistry, estuarine ecology and the development of efficient strategies for limiting the effects of phosphorus on water quality.  相似文献   

10.
The distribution of nutrients (N, P, Si, C) in the Wujiang River surface water was studied during the high-flow and low-flow periods in 2002. The results showed that nitrate nitrogen (NO3-N) is the main form of dissolved inorganic nitrogen (DIN) in the Wujiang River Basin. It accounts for about 90% of DIN. The average NO3-N concentrations in the mainstream are 147.5 μM in the high-flow period and 158.0 μM in the low-flow period, respectively. The average concentrations of total phosphorus (TP) are 6.43 μM in the high-flow period and 4.18 μM in the low-flow period, respectively. Of the various forms of phosphorus, particulate phosphorus (PP) has the highest percentage ( 62.9%) of TP in the high-flow period. In the low-flow period, however, phosphate is the main form of phosphorus, which accounts for 49% of TP. With the Wujiangdu Reservoir as the boundary, the concentrations of DIN and phosphorus in the upper reaches are different from those in the lower reaches of the Wujiang River. As a whole, the concentrations of DIN and phosphorus are both higher in the low-flow period than in the high-flow period. The spatial and temporal variations of DIN and phosphorus concentrations suggested that DIN and phosphorus come from agricultural and domestic wastewaters and groundwaters and that the Wujiangdu Reservoir has an important impact on the concentrations and distribution of DIN and phosphorus in the Wujiang River. The distribution patterns of dissolved silica (DSi) and dissolved organic carbon (DOC) are similar. Both of them maintain no change in the whole course of the river and their concentrations (with the exception of the reservoir itself) are higher in the high-flow period than in the low-flow period. The average DSi and DOC concentrations in the mainstream are 85.4, 84.6 μM in the high-flow period and 60.8, 53.9 μM in the low-flow period, respectively. The concentrations of nutrients in most of the major tributaries are lower than in the mainstream. This suggested that the contributions of most tributaries are relatively small but importance should be attached to the influence of some individual tributaries such as the Qingshuijiang River and the Weng'an River on the mainstream.  相似文献   

11.
Gravitational circulation of the Delaware Estuary is dominated by a single river, the Delaware River. The seasonal variation in river discharge is large. Consequently, the water column varies between vertically homogenous conditions found during most of the year and strongly stratified conditions found during the high flow of the spring freshet. Both the variation in river discharge and the extent of stratification affect chemical distributions and biological processes in the estuary. With a simple advection-diffusion model, we show that the apparent nonconservative behavior of nitrate in the Delaware Estuary can result from varying endmember concentration and varying river discharge. In addition, we illustrate the relationship between water column stratification, phytoplankton production, and concurrent bacterial activity. Finally, as an indirect chemical response to phytoplankton growth during high river discharge, we show strongly nonconservative patterns for ammonium, phosphate, and silicate in the estuary.  相似文献   

12.
This study addresses the distribution of total phosphorus (TP) and its inorganic (IP) and organic (OP) fractions, grain-size and organic matter of surface and recent sediments, coupled to the behavior of total and dissolved inorganic phosphorus (TP and DIP) of the water column, of the semi-pristine Guaratuba Bay estuary, SE Brazil. Surface sediment samples were taken at 43 sites spread along the estuarine gradient and recent sediments from 3 short (35 cm long) cores from the upper, central and lower portions of the estuary, respectively. Highest TP and IP concentrations of surface sediments were detected within the upper sector and the transition zone between the upper and central sectors, all characterized by fine sediments, low salinities and water depths. In contrast, the lower sector and its narrow and deep tidal channel, subject to more intense tidal forcing, exhibited a higher fraction of sandy sediments with lower TP, IP and OP contents. In spite of the spatial variability in sediment grain size, IP corresponded to the major fraction of TP in all estuarine sectors and both TP and IP correlated significantly with the fine sedimentary (silt + clay) grain-size fraction. The fine surface sediments acted as a trap for IP at the fresh water–low salinity interface, which also corresponded to the region of a DIP sink in surface waters. In general, the short sediment cores showed that TP and IP contents increased from 15 cm depths to the top layer. Published sedimentation rates from additional cores taken at the sites of the short cores of this study, implied that depositional alterations of TP and IP increased during the early 1970s, which corresponded to the onset of anthropogenic disturbances from crop plantations in the lowland plains of the river end-member and urbanization at the estuary’s mouth and along the adjacent coast.  相似文献   

13.
Temporal variability of phosphorus fractions in Irish karst springs   总被引:1,自引:0,他引:1  
Transfer pathways of phosphorus (P) from soil to surface waters are the subject of much current research because of concerns about eutrophication. However, P transfer via groundwater discharge has received little attention. Temporal P changes at eight Carboniferous limestone karst springs from two catchments in western Ireland are examined. The eight springs were sampled fortnightly between June and October 1999 and thereafter monthly until February 2000. Each sample was analysed for total P (TP), total dissolved P (TDP) and dissolved reactive P (DRP). Total P exhibited some hydrological response at all springs (e.g. increase from 45 to 107 µg l–1) reflecting significant changes in particulate P (PP) (e.g. increase from 7 to 44 µg l–1) and dissolved organic P (DOP) (e.g. increase from 0 to 27 µg l–1), with DRP displaying greatest temporal stability. Greatest response to rainfall events occurred after the first major autumnal rains in September 1999, when there appeared to be dislodging of loosely bound PP and DOP, which was transported to groundwater. This response to the first autumnal rains probably reflects the hydrological switch where the catchments change from a soil moisture deficit to a soil moisture surplus situation. Daily autosampling demonstrated TP concentrations of up to 1,814 µg l–1 due to local pollution, highlighting the need to adopt storm event driven sampling rather than discrete sampling in karstic springs. Identification and management of springs in karst areas, with associated point recharge via swallow holes, presents an urgent and demanding challenge.  相似文献   

14.
Systematic studies on the suspended particulate matter (SPM) measured on a seasonal cycle in the Mandovi Estuary, Goa indicate that the average concentrations of SPM at the regular station are ∼20mg/l, 5mg/l, 19mg/l and 5mg/l for June–September, October–January, February–April and May, respectively. SPM exhibits low-to-moderate correlation with rainfall indicating that SPM is also influenced by other processes. Transect stations reveal that the SPM at sea-end stations of the estuary are at least two orders of magnitude greater than those at the river-end during the monsoon. Estuarine turbidity maximum (ETM) of nearly similar magnitude occurs at the same location in two periods, interrupted by a period with very low SPM concentrations. The ETM occurring in June–September is associated with low salinities; its formation is attributed to the interactions between strong southwesterly winds (5.1–5.6ms−1) and wind-induced waves and tidal currents and, dominant easterly river flow at the mouth of the estuary. The ETM occurring in February–April is associated with high salinity and is conspicuous. The strong NW and SW winds (3.2–3.7ms−1) and wind-driven waves and currents seem to have acted effectively at the mouth of the estuary in developing turbidity maximum. The impact of sea breeze appears nearly same as that of trade winds and cannot be underestimated in sediment resuspension and deposition  相似文献   

15.
Spatial and temporal dynamics of N and P were examined in the tidal Hudson River between 1992 and 1996. For all seasons and at all locations in the river nutrient concentrations were generally quite high. TN averaged 60 μM and was above 50 μM in 75% of samples. TP averaged 1.7 μM and was above 1.2 μM in 75% of samples. NO3 was the dominant form of N (60% of TN) while PO4 comprised about 40% of TP. Seasonal and spatial variation in most N and P components was quite low but patterns were apparent. Seasonally, forms of N (TN, NO3 and NH4) and PO4 showed opposite patterns. All N components showed summertime decreases, but PO4 increased over the summer. Spatially, along the 200 km fresh to oligohaline stretch, N and P showed similar patterns—declining from upper to mid sections of the river but subsequently increasing in most down river, oligohaline stretches. The down river increase in nutrients is likely caused by a combination of sewage inputs and salinity-related geochemical release of P. A preliminary budget of the upper to the mid section of the river (a 100 km stretch) suggests that the decline in nutrient concentration in this section is due to the net retention of almost 2,000 mT N and 200 mT P per year or about 20% of the N and P input to this section of river. The retention in tidal rivers, like the Hudson, occurs immediately above the estuary and may, therefore, be relatively more significant than retention occurring higher in the watershed.  相似文献   

16.
We measured dissolved and particulate organic carbon (DOC and POC) in samples collected along 13 transects of the salinity gradient of Chesapeake Bay. Riverine DOC and POC end-members averaged 232±19 μM and 151±53 μM, respectively, and coastal DOC and POC end-members averaged 172±19 μM and 43±6 μM, respectively. Within the chlorophyll maximum, POC accumulated to concentrations 50–150 μM above those expected from conservative mixing and it was significantly correlated with chlorophylla, indicating phytoplankton origin. POC accumulated primarily in bottom waters in spring, and primarily in surface waters in summer. Net DOC accumulation (60–120 μM) was observed within and downstream of the chlorophyll maximum, primarily during spring and summer in both surface and bottom waters, and it also appeared to be derived from phytoplankton. In the turbidity maximum, there were also net decreases in chlorophylla (?3 μg l?1 to ?22 μg l?1) and POC concentrations (?2 μM to ?89 μM) and transient DOC increases (9–88 μM), primarily in summer. These occurred as freshwater plankton blooms mixed with turbid, low salinity seawater, and we attribute the observed POC and DOC changes to lysis and sedimentation of freshwater plankton. DOC accumulation in both regions of Chesapeake Bay was estimated to be greater than atmospheric or terrestrial organic carbon inputs and was equivalent to ≈10% of estuarine primary production.  相似文献   

17.
Submarine groundwater discharge (SGD) is now recognized as an important source of nutrients and freshwater to some coastal environments. We studied a shallow coastal lagoon (Little Lagoon, AL, USA) in the northern Gulf of Mexico that lacks riverine inputs but has been suspected to receive significant SGD. We observed persistent salinity gradients between the east and west ends of the lagoon and the pass connecting it to the Gulf of Mexico. Covariance between salinity in the lagoon and the groundwater tracer 222Rn indicated that SGD was responsible for the salinity gradients and is the primary source of freshwater to the lagoon. Cluster analysis of 246 biweekly samples based on temperature, salinity, and two proxies of SGD revealed two hydrographic regimes with different drivers for nutrient inputs. In samples characterized by high discharge and low temperatures (generally December–April), total nitrogen (TN) was negatively correlated with salinity, while total phosphorus (TP) was positively correlated with temperature. Total nitrogen in the groundwater was very high (0.36–4.80 mM) while total phosphorus was relatively low (0.3–2.3 μM), consistent with SGD as the source of TN during the high-discharge periods. In periods with low discharge and higher temperatures (approx. May–November), TN and TP had strong positive correlations with temperature and are inferred to originate from benthic efflux. Seasonal changes in nutrient stoichiometry in the lagoon water column also indicate an alternation between low TN/TP sediments and high TN/TP groundwater as the primary sources of nitrogen in this system.  相似文献   

18.
On different time scales of suspended matter dynamics in the Weser estuary   总被引:1,自引:0,他引:1  
Long-term observations in the Weser estuary (Germany) between 1983 and 1997 provide insight into the response of the estuarine turbidity maximum (ETM) under a wide range of conditions. In this estuary the turbidity zone is closely tied to the mixing zone, and the positions of the ETM and the mixing zone vary with runoff. The intratidal suspended particulate matter (SPM) concentrations vary due to deposition during slack water periods, subsequent resubsequent and depletion of temporarily-formed and spatially-limited deposits during the following ebb or flood, and subsequent transport by tidal currents. The corresponding time history of SPM concentrations is remarkably constant over the years. Spring tide SPM concentrations can be twice the neap tide concentrations or even larger. A hysteresis in SPM levels between the falling and rising spring-neap cycle is attributed to enhanced resuspension by the stronger spring tidal currents. There is evidence that the ETM is pushed up-estuary during times of higher mean water levels due to storms. During river floods the ETM is flushed towards the outer estuary. If river floods and their decreasing parts occur during times of relatively high mean water levels, the ETM seems to be maintained in the outer estuary. If river floods and their decreasing parts occur during times of relatively low mean water levels, the ETM seems to loose inventory and may need up to half a year of non-event conditions to gain its former magnitude. During this time seasonal effects may be involved. Analyses of storm events and river floods have revealed that the conditions in the seaward boundary region play an equally important role for the SPM dynamics as those arising from the river.  相似文献   

19.
Estuary evolution is investigated using the hydrodynamic and sediment transport model, Delft3D, to study the response of a dammed tidal basin to restored tidal processes. The development of decadal (10-year) morphological simulations of the restored estuary required simplifying several data inputs and implementing a time-scale acceleration technique. An innovative river sediment discharge schematization was developed that connected sediment discharge to morphological change in the estuary. Mud erodibility parameters were determined from laboratory analysis of sediment cores from the modern lakebed and statistical refinement with a Bayes network of the probability of occurrence. The changing estuary morphology appears to have a dominant impact on the physical habitat (substrate, inundation frequency, mean salinity, and salinity range). The numerical model provides a tool to compare the functions of the historical estuary and possible future alternatives for a restored estuary. Sensitivity of the morphological model to sediment types and erodibility parameters was also examined. A conceptual model covering morphology and indicators of physical habitat for three phases of estuary evolution during restoration is presented that could be applied to estuarine systems that are severely out of equilibrium.  相似文献   

20.
沉水植物黑藻对上覆水中各形态磷浓度的影响   总被引:18,自引:2,他引:16  
室内模拟研究了沉水植物黑藻对上覆水中不同形态磷浓度的影响及其季节性变化,并从沉水植物生长、间隙水和碱性磷酸酶活性(APA)三方面进行了讨论,进一步揭示磷在浅水湖泊水-沉积物界面的交换机理。结果表明,在本研究条件下,上覆水中各形态磷以溶解性总磷(DTP)为主,其他形态磷浓度变异较大,黑藻降低了上覆水中总磷(TP)、溶解性活性磷(SRP)和DTP浓度,也降低了DTP和SRP占总磷的比例,从而使颗粒态总磷(PP)和溶解性有机磷(DOP)占总磷比例升高。黑藻主要通过吸收上覆水中的磷和抑止沉积物、上覆水中APA使上覆水中各形态磷浓度保持较低水平,其中对SRP和DTP浓度的影响更明显。上覆水中各形态磷浓度呈现明显的季节性变化。在7~8月,TP、SRP和DTP浓度呈下降趋势,并在8月达到最低值;9~10月间有所升高,但仍然维持在较低水平,不同采样时间存在波动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号