首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the sediment profiles of total phosphorus (TP), inorganic phosphorus (Pi), organic phosphorus (Po), C/P and N/P were used to investigate time-dependent P distribution changes in Lake Chaohu. The characteristics of Pi and Po fractions in the surface sediments were studied and the difference between east and west lake region was also discussed. The Pi and Po contents displayed a clear gradient from east to west in sediments of Lake Chaohu, and the Po/P ratios were lower in sediments with industrial and urban pollution sources input in west lake region. The study indicated that different sediments area had diverse concentrations and distributions of Po fractions due to their different drainage basin and pollution sources. The profile distribution of the C/P and N/P ratios decreased with increasing depths and stayed relatively constant ratios at the depths of 15–30 cm. The C/P and N/P ratios were always below Redfield ratios in sediment profile, indicating P enrichment but likely due to the preferential loss of carbon in respect to phosphorus. The rank order of Pi-fractions extracted was HCl-Pi > NaOH-Pi > NaHCO3-Pi in surface sediments. The relative distribution of NaHCO3-Pi and HCl-Pi was in agreement with the trophic conditions of the regions studied. Among the sequentially extracted Po forms, the rank order of Po fractions was residual Po > HCl-Po > fulvic acid-P > humic acid-P > NaHCO3-Po, with mean relative proportion of 5.4:3.4:2.2:1.1:1.0.  相似文献   

2.
自然界中已发现的硫酸盐矿物主要是表生作用和热液后期的产物,均是在低温、低压条件下形成的。因此,对于硫酸盐化合物来说,由于其结晶条件相似,那么,各种离子(或离子团)在不同的硫酸盐化合物中是否占有大致相同的体积。  相似文献   

3.
侯景儒 《第四纪研究》1993,13(3):203-213
地质统计学是数学地质领域最为活跃而实用的分支,它是以区域化变量理论为基础,以变异函数为基本工具,研究那些在空间分布上既具有随机性又具有结构性的自然现象的科学。在第四纪研究中的很多特征(变量)均可看成区域化变量进行地质统计学分析。作者在讨论了经典概率论及数理统计方法简单地应用于第四纪研究可能出现的问题后,着重介绍了用于第四纪研究中的若干地质统计学方法及基本理论,同时,对地质统计学方法应用于第四纪研究中的前景进行了分析。  相似文献   

4.
Lamé modulus (λ) and shear modulus (μ) are among the most important,intrinsic,elastic constants of rocks.Using λ and μ could be much more advantageous than using P- and S-wave velocities (Vp and Vs).He...  相似文献   

5.
The excess vibrational entropy (ΔS vibex) of several silicate solid solutions are found to be linearly correlated with the differences in end-member volumes (ΔV i ) and end-member bulk moduli (Δκ i ). If a substitution produces both, larger and elastically stiffer polyhedra, then the substituted ion will find itself in a strong enlarged structure. The frequency of its vibration is decreased because of the increase in bond lengths. Lowering of frequencies produces larger heat capacities, which give rise to positive excess vibrational entropies. If a substitution produces larger but elastically softer polyhedra, then increase and decrease of mean bond lengths may be similar in magnitude and their effect on the vibrational entropy tends to be compensated. The empirical relationship between ΔS vibex, ΔV i and Δκ i , as described by ΔS vibex = (ΔV i  + mΔκ i )f, was calibrated on six silicate solid solutions (analbite–sanidine, pyrope–grossular, forsterite–fayalite, analbite–anorthite, anorthite–sanidine, CaTs–diopside) yielding m = 0.0246 and f = 2.926. It allows the prediction of ΔS vibex behaviour of a solid solution based on its volume and bulk moduli end-member data.  相似文献   

6.
The orientation of the straight internal foliation Si within large ( 5 mm) garnet porphyroblasts has been measured relative to the orientation of the external foliation Se around a single antiform of 0.5 m wavelength, which folds the dominant regional foliation. The internal foliation is not constant in orientation, but varies consistently both with position around the fold and with the porphyroblast ellipticity. The dip of Si (hinge dip taken as zero) is consistently less than the dip of Se; it increases with increasing dip of Se and with increasing ellipticity of the porphyroblasts. Si effectively defines a fold with an opening angle greater than that in the external foliation. The opening angle of this fold in Si decreases with increasing porphyroblast ellipticity. The observed variation in the orientation of Si can be explained qualitatively by a flattened flexural flow model for fold development, as could be expected for folding of a pre-existing, strongly anisotropic foliation. The measurements clearly demonstrate that rotation of porphyroblasts relative to geographical co-ordinates did occur during the development of this fold and that a model based on the classical theories of rotation of stiff inclusions in a weaker viscous matrix is most appropriate.  相似文献   

7.
Hydrogen incorporation is critical for explaining defect energies, structure parameters and other physical characteristics of minerals and understanding mantle dynamics. This work analyzed the hydrogen complex defects in jadeite by the plane-wave pseudo-potential method based on density functional theory, and optimized the atomic positions and lattice constants in all configurations(different defective systems). Incorporation mechanisms considered for hydrogen(H) in jadeite include:(1) hydrogen incorporating with the O2 site oxygen and coexisting with M2 vacancy;(2) one H atom combined with an Al atom replacing Si in tetrahedron;(3) 4H atoms directly replacing Si in tetrahedron and(4) 3H atoms replacing Al on the M1 site. The four incorporation mechanisms mentioned above form the corresponding V_(Na)-H_i, Al_(Si)-H_i, V_(Si)-4H_i and V_(Al)-3H_i point defects. The molecular dynamics simulation to the ideal, V_(Na)-H_i, Al_(Si)-H_i, V_(Si)-4H_i and V_(Al)-3H_i point defects under the P-T conditions of 900 K, 2 GPa, the V_(Na)-H_i and Al_(Si)-H_i point defects under different pressures at T = 900 K, and Al_(Si)-H_i point defects under different temperatures at P = 3 GPa was performed to examine the preferential mode of hydrogen incorporation in jadeite by means of first-principles calculations. The calculations show that the averaged O–H bond-length in the hydrogen point defects system decreased in the order of Al_(Si)-H_i, V_(Na)-H_i, V_(Si)-4H_i and V_(Al)-3H_i. V_(Na)-H_i complex defects result in a contraction of the jadeite volume and the presence of Al_(Si)-H_i, V_(Si)-4H_i and V_(Al)-3H_i defects could increase the supercell volume, which is the most obvious in the V_(Al)-3H_i defects. The energy of formation of Al_(Si)-H_i and V_(Al)-3H_i complex defects was much lower than that of other defect systems. The V_(Al)-3H_i defects system has the lowest energy and the shortest O–H bond-length, suggesting that this system is the most favorable. The analytical results of vacancy formation energy, O–H bondlength, and the stability of the hydrogen defects in jadeite have suggested that the preferred hydration incorporation mode in jadeite is V_(Al)-3H_i complex defect.  相似文献   

8.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

9.
Fan‐shaped polycrystalline staurolite porphyroblasts, 3–4 cm in length and 0.5 cm in width, occur together with centimetre‐sized euhedral prismatic staurolite porphyroblasts in pelitic schists of the Littleton Formation on the western overturned limb of the Bolton syncline in eastern Connecticut. The fans consist of intergrown planar splays of [001] elongated prisms, which are crudely radial from a single apex. The apical angles of the radial groupings range up to 70°. The orientations of the individual staurolite prisms are related by a rigid rotation about an axis perpendicular to the fan plane. The zone axes [001] always lie in the plane of the fan. Although the angle between the [100] zone axes of the individual prisms is uniform in each fan, it ranges from +30° to ?30° in different fans. Internally, the fans display: (i) remnants of a passively captured Si foliation defined by disc‐shaped quartz blebs (type 1 inclusions) and layers of very fine carbonaceous material and tabular ilmenite platelets; (ii) bent staurolite blades and undulose extinction along low‐angle (010) subgrain boundaries near the apex of the fans; (iii) wedge‐shaped dilatational zones containing equigranular inclusion‐free quartz, mica and staurolite, and (iv) growth‐related quartz inclusion trails roughly perpendicular to a crystal face (type 2 inclusions). The Si inclusion trails are typically perpendicular to the fan surface, radiate parallel to the blades, and show little to no curvature except at the very edge of the fans where they abruptly curve through nearly 90° into parallelism with an external Se foliation. Careful examination of the three‐dimensional geometry of fans based on U‐stage measurements, serial sections and two‐circle optical goniometric measurements permits a detailed reconstruction of their sequential development. The origin of a fan involves limited intracrystalline deformation and brittle crack dilation, spalling, rotation, and growth of small marginal fragments and of new staurolite along wedge‐shaped zones along the Si inclusion surfaces. Fans preferentially develop in porphyroblasts in which Si is subparallel to the 010 cleavage. These internal features reflect the rotation and deformation of a brittle porphyroblast relative to syn‐growth shear stresses.  相似文献   

10.
11.
Seismic tomography studies reveal distinct velocity and VP/VS anomalies in the mantle transition zone (MTZ) beneath the Yangtze Craton and Cathaysia Block in southeastern China. The anomalies under the Yangtze Craton are characterized by high velocity (both VP and VS) and low VP/VS ratio, while those beneath the Cathaysia Block are characterized by low velocity (especially VS) and high VP/VS ratio. Here, we conduct analyses of phase relations and thermoelasticity to model the effects of thermal and chemical homogeneities in the MTZ, by taking advantage of recent simultaneous VP and VS seismic tomography results under southeastern China. We attempt to quantify the seismic tomography results and examine the effects of temperature, chemical composition, and water (or protonization) on velocity anomalies in the deep mantle. We find VP/VS to be a powerful parameter in distinguishing the various effects of temperature, chemical composition, and protonization. We conclude that an ancient stagnated oceanic slab is most likely the main cause of the observed fast velocity and low VP/VS anomalies in the MTZ under the Yangtze Craton. This ancient slab material is most likely a product of paleo Pacific subduction around 100–125 Ma ago, when the oceanic plate abruptly changed its direction of motion. Such an event has been shown to be closely related to the magmatic activities around eastern China, the ultrahigh-pressure metamorphism zone between the Yangtze Craton and the North China Craton, and the destruction of the lower crust of the North China Craton. The anomalies under the Cathaysia Block, on the other hand, are likely due to dehydration-induced partial melting of subducted Pacific slab materials. Here the large low VS anomaly in MTZ coincides with the extensive Mesozoic to Cenozoic igneous features on the surface, suggesting a state with lower viscosities in the upper mantle. Dehydration-induced partial melting in MTZ may have also promoted deformation of the South China fold belt. Our results suggest that these lithospheric processes are directly related to the tectonic interaction between the oceanic and continental plates in southeastern China and that a better understanding of past deep mantle dynamic processes may place important constraints on the evolution of the cratons in China.  相似文献   

12.
New experimental data on compositions of garnets in two-pyroxene — garnet assemblages in the system CaO –MgO –Al2O3 –SiO2 (CMAS) are presented for conditions between 1,100 and 1,570° C and 30 to 50 kb. Garnets in these assemblages become less calcic with increasing pressure. Garnet-orthopyroxene barometry (Al-solubility-barometry) pertinent to geobarometry for garnet lherzolites has been evaluated with a set of experimental data covering the range 900 to 1,570° C and 15 to 100 kb. Various formulations of this barometer work well to 75 kb. Phase equilibria are not sufficient to positively verify the thermodynamic validity of any of such models. Empirical garnet-orthopyroxene barometry at least in the system CMAS can be formulated to obtain a pressure estimate without previous temperature estimation (P(kb)=34.4-19.175 1n X Al M1 +17.702 1n X Ca M2 ). The potential application of an analogous garnetclinopyroxene equilibrium is limited because the amount of Ca-Tschermaks in natural clinopyroxenes is usually quite small in garnet lherzolites and many eclogites. The Ca-Mg exchange between garnet and clinopyroxene appears however sufficiently sensitive to pressure to allow calibration of a CMAS barometer. The reaction 3CaMgSi2O6+Mg3Al2Si3O12=3Mg2Si2O6+Ca3Al2Si3O12 has a V o of 3.5 cm3. The total pressure dependency of this reaction is however closer to a theoretical V o of about 5 cm3 when excess volume properties of the phases involved are taken into account. We have calibrated such a barometer (mean error of estimate 2.8 kb) for assemblages with pyrope-rich (py>80) garnets and orthopyroxenes. This may provide the basis for a geobarometer for eclogites from kimberlites.Abbreviations Used in the Text CaTs Ca-tschermak's molecule, CaAl2SiO6 - cpx clinopyroxene - di diopside, CaMgSi2O6 - en enstatite, Mg2Si2O6 - gr grossular, Ca3Al2Si3O12 - gt garnet - MgTs Mg-Tschermak's molecule, MgAl2SiO6 - opx orthopyroxene - px pyroxene - py pyrope, Mg3Al2Si3O12 - a i j activity of component i in phase j - activity coefficient - G(I) molar Gibbs free energy difference of reaction (I) at standard state unless specified otherwise - H(I), (H I) molar enthalpy (difference) of phase (reaction) (I) at standard state unless specified otherwise - S (I), (S I) molar entropy (difference) of phase (reaction) (I) at standard state unless specified otherwise - V o, (V I o) molar volume (difference) of phase (reaction) (I) at standard state - X i j mole fraction of component i in phase j  相似文献   

13.
Distribution coefficients were obtained for yttrium and the rare earth elements (YREEs) in aqueous solutions containing freshly precipitated hydroxides of trivalent cations (Fe3+, Al3+, Ga3+, and In3+). Observed patterns of log i K S–, where i K S = [MS i ][M3+]?1[S i ]?1, [MS i ] is the concentration of a sorbed YREE, [M3+] is the concentration of a free hydrated YREE ion, and [S i] is the concentration of a sorptive solid substrate (Fe(III), Al, Ga, In)– exhibited similarities to patterns of YREE solution complexation constants with hydroxide (OH β 1) and fluoride (F β 1), but also distinct differences. The log i K S pattern for YREE sorption on Al hydroxide precipitates is very similar to the pattern of YREE hydroxide stability constants (logOH β 1) in solution. Linear free-energy relationships between log i K S and logOH β 1 showed excellent correlation for YREE sorption on Al hydroxide precipitates, good correlation for YREE sorption on Ga or In hydroxide precipitates, yet poor correlation for YREE sorption on Fe(III) hydroxide precipitates. Whereas the correlation between log i K S and logF β 1 was generally poor, patterns of log( i K S/F β 1) displayed substantially increased smoothness compared to patterns of log i K S. This indicates that the conspicuous sequence of inflections along the YREE series in the patterns of log i K S and logF β 1 is very similar, particularly for In and Fe(III) hydroxide precipitates. While the log i K S patterns obtained with Fe(III) hydroxide precipitates in this work are quite distinct from those obtained with Al, Ga, and In hydroxide precipitates, they are in good agreement with patterns of YREE sorption on ferric oxyhydroxide precipitates reported by others. Furthermore, our log i K S patterns for Fe(III) hydroxide precipitates bear a striking resemblance to predicted log i K S patterns for natural surfaces that are based on YREE solution chemistry and shale-normalized YREE concentrations in seawater. Yttrium exhibits an itinerant behavior among the REEs: sorption of Y on Fe(III) hydroxide precipitates is intermediate to that of La and Ce, while for Al hydroxide precipitates Y sorption is similar to that of Eu. This behavior of Y can be rationalized from the propensities of different YREEs for covalent vs. ionic interactions. The relatively high shale-normalized concentration of Y in seawater can be explained in terms of primarily covalent YREE interactions with scavenging particulate matter, whereby Y behaves as a light REE, and primarily ionic interactions with solution ligands, whereby Y behaves as a heavy REE.  相似文献   

14.
The Ou Backbone Range strikes northwards through the central northeastern Japan arc and is bounded on both sides by the active reverse Uwandaira and Sen'ya faults. We have applied a traveltime inversion method (seismic tomography) with spatial velocity correlation to active and passive seismic data in order to investigate a three-dimensional (3-D) velocity structure. The data set contains 33,993 P- and 18,483 S-wave arrivals from 706 natural sources and 40 blasts, as well as 2803 P-wave traveltime data from 10 explosions detonated during the 1997 controlled source experiment. The traveltime inversion reveals a zone beneath the Ou Backbone Range in which P-wave velocities (VP) are approximately 6–8% lower than the average velocity at equivalent depths. The low VP and a low VP to S-wave velocity (VS) ratio (VP/VS) of about 1.65 suggest the presence of aqueous fluids in the middle crust.  相似文献   

15.
Based on potentiometric data and gypsum solubility in mixed salt solutions, respectively, the activity coefficients of MgCOo3 and CaSOo4 ion pairs decrease with ionic strength (I) at 25°C. Computed γ's for the ion pairs fit the empirical equation log γi = ? BI. B coefficients of 0.63 ±0.10 for MgCOo3 and 0.45 ± 0.15 for CaSOo4 are obtained from linear regression of log γi values vs I between 0.04 and 0.6 molal. Assumptions that the activity coefficients of these neutral ion pairs equal unity or are approximated by the Setchenow expression (log γi = kI) are therefore invalid at moderate ionic strengths. Log γi = ? BI is the same general form as the equation of Kirkwood (Chem. Rev.24, 233–251, 1939) for neutral dipoles.  相似文献   

16.
The subduction and exhumation of accretionary prism metasedimentary rocks are accompanied by large‐strain ductile deformations which may be recorded in microstructures. Porphyroblast microstructures have been a key to unravel the kinematics in such deformed belts. Shape‐preferred orientation (SPO) of epidote and amphibole inclusions that define S‐shaped trails in prograde cores of plagioclase porphyroblasts were analysed from the high‐P/T Sambagawa metamorphic rocks. Inclusions are found to be elongate parallel to the [010] and [001] directions, respectively, and their long‐axis orientations define an internal foliation Si (best‐fit great circle) and lineation Li (maximum on the Si). S‐shaped inclusion trails in the orthogonal sections do not exhibit the same geometries, but rather are grouped into two types, where the foliation intersection axes (FIAs) are nearly perpendicular and parallel to Li, respectively. These two types of S‐shaped inclusion trails are seen in the sections inclined at low and high angles to the Li, respectively. However, the latter type commonly consists of composite trails, where the Si is first rotated about an FIA perpendicular to the Li (i.e. unique axis), and then about an FIA parallel to the Li. The S‐shaped inclusion trails are interpreted to have formed by the successive overgrowth of matrix minerals and rotation of the plagioclase porphyroblast cores about a unique axis in non‐coaxial deformation. The rotation of Si about an FIA nearly parallel to the Li is perhaps an apparent rotation, caused by the deflection of foliation around the growing prismatic plagioclase grain prior to inclusion into the porphyroblast. This study has for the first time documented the 3‐D geometry of S‐shaped inclusion trails in porphyroblasts from accretionary prism metasedimentary rocks and identified their origin, which helps to understand the flow kinematics in the deeper part of a subduction channel.  相似文献   

17.
A laser fluorination microprobe system has been constructed for high-accuracy, high-precision multisulfur isotope analysis with improved spatial resolution. The system uses two lasers: (a) a KrF excimer laser for in situ spot analysis by ultraviolet (UV) photoablation with λ = 248 nm and (b) a CO2 laser for whole-grain analysis of powdered samples by infrared heating at λ = 10.6 μm. A CO2 laser is necessary for the analysis of interlaboratory isotope reference materials because they are supplied as powders. The δ34S and δ33S compositions of reference materials measured with a CO2 laser fluorination system agree (±0.2‰, 1σ) with the recommended values by the Sulfur Isotope Working Group of the International Atomic Energy Agency [Ding et al 2001] and [Taylor]. The precision of replicate analyses of powdered sulfide minerals with the CO2 laser is typically ±0.2‰ (1σ) for δ34S.The in situ fluorination of sulfides with a KrF excimer laser (λ = 248 nm) was validated by comparison of measurements of side-by-side laser craters and powders excavated from drill holes. Powders from drill holes were analyzed with the CO2 laser. In situ laser craters and drill hole powders give the same δ34SV-CDT and δ33SV-CDT values within 0.2‰. The δ34SV-CDT and δ33SV-CDT values of both powders and in situ analyses are independent of F2 gas pressure over a range of 15 to 65 torr. No dependence of δ34SV-CDT and δ33SV-CDT values on UV laser energy fluence has been observed. Mineral-specific fractionation of sulfur isotopes in analyzing pyrite, sphalerite, galena, troilite, and chalcopyrite has not been observed with a KrF excimer laser (λ = 248 nm). Test analyses with an ArF excimer laser (λ = 193 nm), however, gave fractionated sulfur isotope ratios.A range of Δ33S anomalies of from - 1.5 to +3.0‰ in Archean samples from the North Pole district, Pilbara Craton, Australia, and from black shale of the Lokamonna Formation, South Africa, were verified by in situ analysis of individual pyrite grains with a KrF excimer laser. These results show that a combination of high-accuracy, high-precision analyses with improved spatial resolution permits locating and analyzing host minerals of non-mass-dependent sulfur isotope anomalies.  相似文献   

18.
A study of the lithogeochemistry of metavolcanics in the Ben Nevis area of Ontario, Canada has shown that factor analysis methods can distinguish lithogeochemical trends related to different geological processes, most notably, the principal compositional variation related to the volcanic stratigraphy and zones of carbonate alteration associated with the presence of sulphides and gold. Auto- and cross-correlation functions have been estimated for the two-dimensional distribution of various elements in the area. These functions allow computation of spatial factors in which patterns of multivariate relationships are dependent upon the spatial auto- and cross-correlation of the components. Because of the anisotropy of primary compositions of the volcanics, some spatial factor patterns are difficult to interpret. Isotropically distributed variables such as CO 2 are delineated clearly in spatial factor maps. For anisotropically distributed variables (SiO 2 ), as the neighborhood becomes smaller, the spacial factor maps becomes better. Interpretation of spatial factors requires computation of the corresponding amplitude vectors from the eigenvalue solution. This vector reflects relative amplitudes by which the variables follow the spatial factors. Instability of some eigenvalue solutions requires that caution be used in interpreting the resulting factor patterns. A measure of the predictive power of the spatial factors can be determined from autocorrelation coefficients and squared multiple correlation coefficients that indicate which variables are significant in any given factor. The spatial factor approach utilizes spatial relationships of variables in conjunction with systematic variation of variables representing geological processes. This approach can yield potential exploration targets based on the spatial continuity of alteration haloes that reflect mineralization.List of symbols c i Scalar factor that minimizes the discrepancy between andU i - D Radius of circular neighborhood used for estimating auto- and cross-correlation coefficients - d Distance for which transition matrixU is estimated - d ij Distance between observed valuesi andj - E Expected value - E i Row vector of residuals in the standardized model - F(d ij) Quadratic function of distanced ij F(d ij)=a+bd ij+cd ij 2 - L Diagonal matrix of the eigenvalues ofU - i Eigenvalue of the matrixU;ith diagonal element ofL - N Number of observations - p Number of variables - Q Total predictive power ofU - R Correlation matrix of the variables - R 0j Variance-covariance signal matrix of the standardized variables at origin;j is the index related tod andD (e.g.,j=1 ford=500 m,D=1000 m) - R 1j Matrix of auto- and cross-correlation coefficients evaluated at a given distance within the neighborhood - R m 2 Multiple correlation coefficient squared for themth variable - S i Column vectori of the signal values - s k 2 Residual variance for variablek - T i Amplitude vector corresponding toV i;ith row ofT=V –1 - T Total variation in the system - U Nonsymmetric transition matrix formed by post-multiplyingR 01 –1 byR ij - U i Componenti of the matrixU, corresponding to theith eigenvectorV i;U i= iViTi - U* i ComponentU i multiplied byc i - U ij Sum of componentsU i+U j - V i Eigenvector of the matrixU;ith column ofV withUV=VL - w Weighting factor; equal to the ratio of two eigenvalues - X i Random variable at pointi - x i Value of random variable at pointi - y i Residual ofx i - Z i Row vectori for the standardized variables - z i Standardized value of variable  相似文献   

19.
Thermodynamic properties of several TeO2 polymorphs and metal tellurites were measured by a combination of calorimetric techniques. The most stable TeO2 polymorph is α-TeO2, with its enthalpy of formation (ΔfHo) selected from literature data as ?322.0 ± 1.3 kJ·mol?1. β-TeO2 is metastable (in enthalpy) with respect to α-TeO2 by +1.40 ± 0.07 kJ·mol?1, TeO2 glass by a larger amount of +14.09 ± 0.11 kJ·mol?1. >200 experimental runs and post-synthesis treatments were performed in order to produce phase-pure samples of Co, Cu, Mg, Mn, Ni, Zn tellurites. The results of the hydrothermal and solid-state syntheses are described in detail and the products were characterized by powder X-ray diffraction. The standard thermodynamic data for the Te(IV) phases are (standard enthalpy of formation from the elements, ΔfHo in kJ·mol?1, standard third-law entropy So in J·mol?1·K?1): Co2Te3O8: ΔfHo = ?1514.2 ± 6.0, So = 319.2 ± 2.2; CoTe6O13: ΔfHo = ?2212.5 ± 8.1, So = 471.7 ± 3.3; MgTe6O13: ΔfHo = ?2525.8 ± 7.9, So = 509.2 ± 3.6; Ni2Te3O8: ΔfHo not measured, So = 293.3 ± 2.1; NiTe6O13: ΔfHo = ?2198.7 ± 8.2, So = 466.5 (estimated); CuTe2O5: ΔfHo = ?820.2 ± 3.3, So = 187.2 ± 1.3; Zn2Te3O8: ΔfHo = ?1722.5 ± 4.0, So = 299.3 ± 2.1. The solubility calculations show that the Te(IV) concentration in an aqueous phase, needed to produce such phases, must be at least 3–5 orders of magnitude higher than the natural Te background concentrations. The occurrence of these minerals, as expected, are restricted to hotspots of Te concentrations. In order to produce more reliable phase diagrams, more work needs to be done on the thermodynamics of potential competing phases in these systems, including Te(VI) phases.  相似文献   

20.
The transport mechanisms of As from contaminated soil or irrigation water into roots and subsequently into grain, and the As species distribution—a toxicity determinant, is critical for assessing health risks imposed by As. However, the commonly-employed extraction of plant material with trifluoroacetic acid (TFA) has not proven successful in preserving inorganic As species. Synchrotron-based spectroscopic techniques are useful for discerning elemental distributions and chemical speciation of elements in situ. Here, we both characterize the mineral phases of Fe coatings on rice roots, and quantify plant nutrients and As species in situ on roots and grain samples. Arsenic in rice grains was present in bran layers as oxidized As (69-88% as As(V)i and 12-31% as DMA) and in the germ as a mixture of As(V)i and As(III)i, but was non-detected from the endosperm, which is consistent with previous findings. The extent of Fe coatings on rice roots was variable and, when present, consisted of lepidocrocite (γ-FeOOH), goethite (α-FeOOH) and ferrihydrite (Fe(OH)3·nH2O). Arsenic was co-located with root Fe coatings, but our findings indicate that Fe is not a direct interceptor of As uptake, and is rather a bulk scavenger mostly near the air-water interface. On whole root mounts with Fe plaque, arsenic was present as mixed species of As(V)i (44-66%) and As(III)i (34-56%). Within a root cross-section, oxidized As species were dominant in the xylem (86% as As(V)i and 14% as DMA) whereas mostly reduced species (71% as As(III)i, 29% as AsGlu3) resided within a vacuole adjacent to the xylem. This finding contrasts the prevailing view that As(V)i is rapidly reduced in roots and transported to shoots as As(III)i, and points to the importance of interspecies differences in As-uptake dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号