首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seagrass beds provide important habitat for fishes and invertebrates in many regions around the world. Accordingly, changes in seagrass coverage may affect fish communities and/or populations, given that many species utilize these habitats during vulnerable early life history stages. In lower Chesapeake Bay, seagrass distribution has contracted appreciably over recent decades due to decreased water clarity and increased water temperature; however, effects of changing vegetated habitat on fish community structure have not been well documented. We compared fish community composition data collected at similar seagrass sites from 1976–1977 and 2009–2011 to investigate potential changes in species richness, community composition, and relative abundance within these habitats. While seagrass coverage at the specific study sites did not vary considerably between time periods, contemporary species richness was lower and multivariate analysis showed that assemblages differed between the two datasets. The majority of sampled species were common to both datasets but several species were exclusive to only one dataset. For some species, relative abundances were similar between the two datasets, while for others, there were notable differences without directional uniformity. Spot (Leiostomus xanthurus) and northern pipefish (Syngnathus fuscus) were considerably less abundant in the contemporary dataset, while dusky pipefish (Syngnathus floridae) was more abundant. Observed changes in community structure may be more attributable to higher overall bay water temperature in recent years and other anthropogenic influences than to changes in seagrass coverage at our study sites.  相似文献   

2.
Variability in the abundance and distribution of seagrass-associated fish assemblages was examined at different depths in a temperate bay in southern Australia. Depth differences in seagrass-associated fish assemblages are poorly known but this information is critical given that seagrass loss can occur at specific depths depending on the cause. Overall, 69 species of fish from 26 families were recorded, with higher species richness in shallow than deep beds, with 12 species found only in deep beds and 22 species found only in shallow beds. While the total fish abundance (i.e. abundance of all species recorded) varied between years and seasons, and to some extent between sites, it was significantly higher in shallow than deep seagrass beds in the majority of cases. Although there was some variation between sites, seagrass tended to be longer and have a higher biomass in shallow than deep beds during both spring and autumn throughout the study. A positive relationship between seagrass biomass/length and total fish abundance/species richness was apparent. Assemblage structure tended to be distinct at each depth, with the largest species recorded in shallow seagrass. Large numbers of small schooling fish, such as atherinids, dominated in shallow seagrass but were not found in deep seagrass. Loss of seagrass could therefore have varying implications for distinct assemblages found at different depths.  相似文献   

3.
4.
Tidally driven flows, waves, and suspended sediment concentrations were monitored seasonally within a Zostera marina seagrass (eelgrass) meadow located in a shallow (1–2 m depth) coastal bay. Eelgrass meadows were found to reduce velocities approximately 60 % in the summer and 40 % in the winter compared to an adjacent unvegetated site. Additionally, the seagrass meadow served to dampen wave heights for all seasons except during winter when seagrass meadow development was at a minimum. Although wave heights were attenuated across the meadow, orbital motions caused by waves were able to effectively penetrate through the canopy, inducing wave-enhanced bottom shear stress (τ b ). Within the seagrass meadow, τ b was greater than the critical stress threshold (=0.04 Pa) necessary to induce sediment suspension 80–85 % of the sampling period in the winter and spring, but only 55 % of the time in the summer. At the unvegetated site, τ b was above the critical threshold greater than 90 % of the time across all seasons. During low seagrass coverage in the winter, near-bed turbulence levels were enhanced, likely caused by stem–wake interaction with the sparse canopy. Reduction in τ b within the seagrass meadow during the summer correlated to a 60 % reduction in suspended sediment concentrations but in winter, suspended sediment was enhanced compared to the unvegetated site. With minimal seagrass coverage, τ b and wave statistics were similar to unvegetated regions; however, during high seagrass coverage, sediment stabilization increased light availability for photosynthesis and created a positive feedback for seagrass growth.  相似文献   

5.
We assess the sheltering effect of Posidonia oceanica meadows on drag forces exerted on shells of the fan mussel Pinna nobilis. We examine a range of shell sizes under four unidirectional flow speeds (0.05–0.34 m s−1) and two oscillating regimes. Three meadow densities are evaluated and a control without vegetation. We found that the attenuating effect of the meadow on drag forces experienced by bivalves is determined by the form of the hydrodynamic energy, e.g., as unidirectional flow or wave action. In tidal currents, the meadow protects most sizes of bivalves, with a higher efficiency for dense meadows, while in wave dominant zones the meadow reduces drag forces for bivalves with shell areas below a threshold of 0.019 m2, whereas larger animals experience increased drag forces within the meadow independent of meadow density. Reduction of shoot density in seagrass meadows might therefore not affect the effectiveness of the canopy to reduce drag forces on associated species like the fan mussel in wave-dominated areas while increased storm frequency could result into losses of larger individuals during periods of high wave action.  相似文献   

6.
Studies of seagrass meadows have shown that the production of algal epiphytes attached to seagrass blades approaches 20% of the seagrass production and that epiphytes are more important as food for associated fauna than are the more refractory seagrass blades. Since epiphytes may compete with seagrasses for light and water column nutrients, excessive epiphytic fouling could have serious consequences for seagrass growth. We summarize much of the literature on epiphytegrazer relationships in seagrass meadows within the context of seagrass growth and production. We also provide insights from mathematical modeling simulations of these relationships for a Chesapeake BayZostera marina meadow. Finally we focus on future research needs for more completely understanding the influences that epiphyte grazers have on seagrass production.  相似文献   

7.
Structural equivalence between seagrass restoration sites and adjacent natural seagrass beds on the mid Texas coast was assessed six times between April 1995 and May 1997. Throw traps and corers were used for quantitative sampling. Restoration sites were 2.7 to 6.6 yr old when first sampled and 3.7 to 8.2 yr old when last sampled. There were few significant differences in water column, seagrass, or sediment characteristics, in fish and decapod (nekton) densities, or in nekton and benthos community compositions between restored and natural seagrass habitats at any time during the study period. Differences in densities of dominant benthic invertebrates were regularly observed, with greater densities of more taxa observed in natural seagrasses than in restored beds. Densities of Class Oligochaeta and the polychaetePrionospio heterobranchiata are proposed as potential indicators of structural equivalence in restored seagrasses. This study indicates that seagrass restorations in the vicinity of Corpus Christi, Texas, exhibit minimal quantitative differences in community structure (except for benthos) relative to adjacent natural seagrass beds after 3 to 5 yr.  相似文献   

8.
Many studies compare utilization of different marine habitats by fish and decapod crustaceans; few compare multiple vegetated habitats, especially using the same sampling equipment. Fish and invertebrates in seagrass, mangrove, saltmarsh, and nonvegetated habitats were sampled during May–August (Austral winter) and December–January (Austral summer) in the Barker Inlet-Port River estuary, South Australia. Sampling was undertaken using pop nets in all habitats and seine nets in seagrass and nonvegetated areas. A total of 7,895 fish and invertebrates spanning 3 classes, 9 orders, and at least 23 families were collected. Only one fish species,Atherinosoma microstoma, was collected in all 4 habitats, 11 species were found in 3 habitats (mangroves, seagrass, and nonvegetated), and 13 species were only caught in seagrass and nonvegetated habitats. Seagrass generally supported the highest numbers of fish and invertebrates and had the greatest species richness. Saltmarsh was at the other extreme with 29 individuals caught from two species. Mangroves and nonvegetated habitats generally had more fish, invertebrates, and species than saltmarsh, but less than seagrass. Analyses of abundances of individual species generally showed an interaction between habitat and month indicating that the same patterns were not found through time in all habitats. All habitats supported distinct assemlages although seagrass and nonvegetated assemblages were similar in some months. The generality of these patterns requires further investigation at other estuaries. Loss of vegetated habitats, particularly seagrass, could result in loss of species richness and abundance, especially for organisms that were not found in other habitats. Although low abundances were found in saltmarsh and mangroves, species may use these habitats for varying reasons, such as spawning, and such use should not be ignored.  相似文献   

9.
Spatial and temporal patterns of distribution and abundance were examined for postsettlement sciaenids collected from seagrass meadows in the Aransas Estuary, Texas. Overall, 5443 sciaenid larvae and early juveniles were identified from biweekly epibenthic sled collections taken from August 1994 to August 1995. Eight species were present in seagrass meadows, with five accounting for over 99.9% of sciaenids collected: silver perch (Bairdiella chrysoura), spotted seatrout (Cynoscion nebulosus), spot (Leiostomus xanthurus), Atlantic croaker (Micropogonias undulatus), and red drum (Sciaenops ocellatus). Settlement to seagrass meadows was partitioned temporally with little overlap among the five species. Postsettlers from inshore spawners (B. chrysoura, C. nebulosus, S. ocellatus) inhabited seagrass meadows during the spring and summer, while individuals from offshore spawners (L. xanthurus, M. undulatus) were present in the late fall and winter. Densities ofB. chrysoura, C. nebulosus, S. ocellatus were highest for small individuals (4–8 mm SL) and these taxa remained in seagrass sites through the early juvenile stage. Conversely,L. xanthurus andM. undulatus maintained longer pelagic periods and generally entered seagrass meadows at larger sizes (10–14 mm SL). Moreover, these taxa were only temporary residents of selected seagrass meadows, apparently migrating to alternative habitats shortly after arrival. During peak settlement, mean and maximum densities among species ranged from 0.1 m?2 to 0.8 m?2 and 0.7 m?2 to 23.8 m?2, respectively. Density and mean size of possettlement sciaenids differed significantly between seagrass species (Halodule wrightii, Thalassia testudinum) and among sites within the estuary.  相似文献   

10.
Recolonization dynamics from disturbance on a Philippine mixed seagrass meadow, containing species spanning more than 10-fold in rhizome elongation rates and reproductive effort, was examined by following the recovery of a 1,200 m2 gap over 2.5 yr. The objective was to assess the contribution of contrasting species to the recovery process and to evaluate the importance of sexual versus vegetative colonization. Large, slow-growing species,Thalassia hemprichii andEnhalus acoroides, that produce large, broadly-dispersed seeds dominated sexual colonization with a total of 2,643 and 210 seedlings, respectively, recruiting to the area. Despite very rapid turnover of sexual recruits, the high frequency of seedling establishment ensured successful development of new patches in areas devoid of vegetation, leading to a scattered and evenly distributed presence of vegetation inside the gap. The small seagrass speciesCymodocea rotundata andHalodule uninervis, characterized by fast rhizome elongation rates but low reproductive output and limited seed dispersal, were the major contributors to the overall 450 m2 increase in vegetation cover through fast lateral extension (144±6 cm yr−1) from meadow edge and surviving patches, forming a compact vegetation cover in one edge of the denuded area. We conclude that contrasting recruitment strategies in the mixed-species seagrass community examined have implications for colonization potential at different spatial scales. Fast clonal growth is only an efficient mechanism for colonization of disturbances within established meadows (small gaps), whereas the large species, which combined high reproductive output with high seed dispersal capacity, may act to accelerate the colonization process in large gaps or distant from established meadows.  相似文献   

11.
Beam trawls are a practical method for sampling vagile fauna from deep seagrass beds. The catches of fish and macroinvertebrates associated with Posidonia australis from two beam trawl designs were compared with the catch from a new design of beam trawl. Greater numbers of species and individuals of fish and macroinvertebrates were caught by the new trawl. Its catch also included almost the full range of species taken by the other two trawls. The new trawl was then trialed in the day and at night to compare differences in the catch of species between these times. Trawling at night yielded significantly more species and individuals of macroinvertebrates. In general, more fish were caught at night than during the day, but this was not the case at all sites, nor for all species. We emphasize the need for testing of sampling methods, and consideration of diel behavior patterns, when estimating abundance and species richness of macrofaunal seagrass communities.  相似文献   

12.
Estuarine seagrass ecosystems provide important habitat for fish and invertebrates and changes in these systems may alter their ability to support fish. The response of fish assemblages to alteration of eelgrass (Zostera marina) ecosystems in two ecoregions of the Mid-Atlantic Bight (Buzzards Bay and Chesapeake Bay) was evaluated by sampling historical eelgrass sites that currently span a broad range of stress and habitat quality. In two widely separated ecoregions with very different fish faunas, degradation and loss of submerged aquatic vegetation (SAV) habitat has lead to declines in fish standing stock and species richness. The abundance, biomass, and species richness of the fish assemblage were significantly higher at sites that have high levels of eelgrass habitat complexity (biomass >100 wet g m?2; density <100 shotts m?2) compared to sites that have reduced eelgrass (biomass <100 wet g m?2; density <100 shoots m?2) or that have completely lost eelgrass. Abundance, biomass, and species richness at reduced eelgrass complexity sites also were more variable than at high eelgrass complexity habitats. Low SAV complexity sites had higher proportions of pelagic species that are not dependent on benthic habitat structure for feeding or refuge. Most species had greater abundance and were found more frequently at sites that have eelgrass. The replacement of SAV habitats by benthic macroalgae, which occurred in Buzzards Bay but not Chesapeake Bay, did not provide an equivalent habitat to seagrass. Nutrient enrichment-related degradation of eelgrass habitat has diminished the overall capacity of estuaries to support fish populations.  相似文献   

13.
From 1989 to 2007, a severe decline in Zostera noltii meadows was reported in the Arcachon Bay, with an accelerated regression after 2005. We investigated the inter-annual variability of the biogeochemistry of the sediment in an area affected by seagrass decline. In late summer and in winter of the years 2006, 2010, and 2011, sediment cores were collected at low tide on vegetated and adjacent non-vegetated sediments located in the eastern part of the Arcachon Bay. The geochemical analyses of sediment solid-phase organic carbon, reactive P and Fe, and the pore water concentrations of Fe2+, DIP, and NH4 + are presented. The changes in the chemistry of sediment and pore water between 2006 and 2010 are interpreted as a consequence of the decrease in the Z. noltii biomass between 2006 and 2010. The absence of significant seasonal variations in biomass throughout the growth period (March–September) in 2011 is most likely related to the regression of Z. noltii meadow that strongly affects the study area. In contrast to the healthy meadow in 2006, the declining meadow favored the dissolution of sedimentary particulate phosphorus in winter. In late summer, the low biomass of seagrass resulted in a net release of ammonium in the pore water of the upper 20 cm of sediment. This study clearly shows that seagrass decay may enhance nutrient release in sediments, resulting in a significant supply of phosphorus to the water column of a magnitude comparable to annual inputs to the lagoon from the rivers and the tidal pump.  相似文献   

14.
Direct census of shoots tagged in permanent plots was used to assess the present (2000–2002)Posidonia oceanica population dynamics in 25 meadows along the Spanish Mediterranean Coast. Shoot density ranged from 154±8 to 1,551±454 shoots m−2, absolute shoot mortality from 5±0 to 249±53 shoots m−2 yr−1, and absolute shoot recruitment from <5 ±1 to 62±42 shoots m−2yr−1. Specific shoot mortality and recruitment rates, which are mathematically and statistically (p>0.05) independent of shoot density, varied from 0.015±0.006 to 0.282±0.138 yr−1 and 0.018±0.005 to 0.302±0.093 yr−1, respectively. Absolute shoot mortality rate was scaled to shoot density (Pearson correlation, r=0.78, p<0.0001), and variability in specific shoot recruitment rate was partially due to differences in the percentage of growing apexes, which produce most of the recruits within the population (Pearson correlation, r=0.50, p<0.001), demonstrating the existence of structural constraints on shoot demography. Shoot half-life was estimated to range from 2.5 to 60.4 yr and meadow turnover times between 6.7 yr and more than a century, provided current estimates of shoot mortality, recruitment rates, and density remain uniform. There were differences in shoot mortality and recruitment at the regional scale, with the meadows developing along the coast of the Spanish mainland experiencing the highest shoot mortality (Tukey test, p<0.05) and tending to exhibit the highest shoot recruitment. The low shoot recruitment did not balance shoot mortality in most (60%) of the meadows, showing a prevalence of declining populations among the 25 meadows studied (Wilcoxon ranked sign test, p<0.0005). This study demonstrates the power of direct census of seagrass shoots in permanent plots to evaluate the present status of seagrass meadows, to detect on-going population decline, and to provide some insight onto the possible factors involved. The incorporation of direct census of seagrass meadows to monitoring programs will help provide the early-warning signals necessary to support management decisions to conserve seagrass meadows.  相似文献   

15.
The complexity of habitat structure created by aquatic vegetation is an important factor determining the diversity and composition of soft-sediment coastal communities. The introduction of estuarine organisms, such as oysters or other forms of aquaculture, that compete with existing forms of habitat structure, such as seagrass, may affect the availability of important habitat refugia and foraging resources for mobile estuarine fish and decapods. Fish and invertebrate communities were compared between adjacent patches of native seagrass (Zostera marina), nonnative cultured oyster (Crassostrea gigas), and unvegetated mudflat within a northeastern Pacific estuary. The composition of epibenthic meiofauna and small macrofaunal organisms, including known prey of fish and decapods, was significantly related to habitat type. Densities of these epifauna were significantly higher in structured habitat compared to unstructured mudflat. Benthic invertebrate densities were highest in seagrass. Since oyster aquaculture may provide a structural substitute for seagrass being associated with increased density and altered composition of fish and decapod prey resources relative to mudflat, it was hypothesized that this habitat might also alter habitat preferences of foraging fish and decapods. The species composition of fish and decapods was more strongly related to location within the estuary than to habitat, and fish and decapod species composition responded on a larger landscape scale than invertebrate assemblages. Fish and decapod species richness and the size of ecologically and commercially important species, such as Dungeness crab (Cancer magister), English sole (Parophrys vetulus), or lingcod (Ophiodon elongatus), were not significantly related to habitat type.  相似文献   

16.
In alpine meadow ecosystems, considerable spatial heterogeneity in forb-dominant vegetation exists as a result of severe grassland degeneration; however, there is limited quantitative information on the vegetative differences between degenerated and pristine grasslands. Therefore, a field study, which seeks to identify the edaphic factors driving the variation in plant composition and distribution, was conducted in a severely degraded alpine meadow located in the Qinghai-Tibetan Plateau, NW China. Five meadows, an original meadow and four degraded meadows, were used to determine the differentiation and relationships between the vegetation and soil of degraded alpine meadows. The dominated species of these degraded meadows are Ligularia virgaureaArtemisia gmelinii (LA), Oxytropis ochrocephalaLeontopodium nanum (OL), Aconitum pendulumPotentilla anserina (AP) and Stellera chamaejasmeArtemisia nanschanica (SA), respectively. The results indicate that vegetation cover, grass biomass, species number and diversity indices clearly decrease from the original to the degraded meadow. Soil water, clay and nutrient content are also reduced with grassland degradation in surface and subsoil layers. The joint study of floristic and edaphic variables confirms that the soil features, especially the bulk density, sand content, pH, salinity, N and K, mainly determine the establishment of vegetation in the severely degraded fields of this study. These results may be useful for alpine grassland ecosystem restoration and management.  相似文献   

17.
Benthic resource utilization by, red drum (Sciaenops ocellatus) and spotted seatrout (Cynoscion nebulosus) was studied in a restored, mangrove-rimmed impoundment (Cabbagehead Bayou) of Upper Tampa Bay, Florida, and in a nearby, natural site of unaltered tidal regime (Double Branch Bay). Diets of fish captured from August 1990 to May 1992 were determined from stomach content analysis. Simultaneously, food availability was evaluated by sampling benthic macroinvertebrates, mobile decapods, and small fish. Red drum and spotted seatrout utilized the restored habitat 1 yr after it was opened to tidal influence. Both species also were collected in the natural mangrove. Although there were noted differences in benthic assemblages between the two sites, red drum and spotted seatrout exhibited flexibility in diet, feeding on abundant and accessible prey. The high abundance of microcrustacea, such as amphipods, on detritus accumulated in the restored habitat constituted a main food resource for both fish species. Major food items in the diet of small (<200 mm) red drum were amphipods, mysids, and nereid and arenicolid polychaetes. Large (200–590 mm) red drum fed on polychaetes, xanthid crabs, palaemonid shrimp, and small fishes. Spotted seatrout preyed primarily upon mysids, shrimp, and small fishes, and to a lesser extent, upon a nereid polychaete. Our findings on fish feeding in a restored mangrove impoundment indicated that the detrital-associated benthic community is utilized by reinvading fish within a short time period, suggesting that not only habitat but food resources were augmented by the reopening of this wetland.  相似文献   

18.

Four meadows of turtle grass (Thalassia testudinum Banks ex Konig) in Sarasota Bay, Florida were sampled on a bimonthly basis from June 1992 to July 1993 to determine spatial and temporal variation in short shoot density, biomass, productivity, and epiphyte loads. Concurrent with the seagrass sampling, quarterly water-quality monitoring was undertaken at ≥3 sites in the vicinity of each studied seagrass meadow. Three months after termination of the seagrass sampling effort, a biweekly water-quality monitoring program was instituted at two of the seagrass sampling sites. In addition, a nitrogen loading model was calibrated for the various watersheds influencing the seagrass meadows. Substantial spatial and temporal differences in turtle grass parameters but smaller spatial variation in water quality parameters are indicated by data from both the concurrent quarterly monitoring program and the biweekly monitoring program instituted after termination of the seagrass study. Turtle grass biomass and productivity were negatively correlated with watershed nitrogen loads, while water quality parameters did not clearly reflect differences in watershed nutrient inputs. We suggest that traditional water-quality monitoring programs can fail to detect the onset or continuance of nutrient-induced declines in seagrass health. Consequently, seagrass meadows should be monitored directly as a part of any effort to determine status and/or trends in the health of estuarine environments. *** DIRECT SUPPORT *** A01BY074 00029

  相似文献   

19.
Seagrass ecosystems are attracting attention as potentially important tools for carbon (C) sequestration, comparable to those terrestrial and aquatic ecosystems already incorporated into climate change mitigation frameworks. Despite the relatively low C stocks in living biomass, the soil organic carbon pools beneath seagrass meadows can be substantial. We tested the relationship between soil C storage and seagrass community biomass, productivity, and species composition by revisiting meadows experimentally altered by 30 years of consistent nutrient fertilization provided by roosting birds. While the benthos beneath experimental perches has maintained dense, Halodule wrightii-dominated communities compared to the sparse Thalassia testudinum-dominated communities at control sites, there were no significant differences in soil organic carbon stocks in the top 15 cm. Although there were differences in δ13C of the dominant seagrass species at control and treatment sites, there was no difference in soil δ13C between treatments. Averages for soil organic carbon content (2.57?±?0.08 %) and δ13C (?12.0?±?0.3?‰) were comparable to global averages for seagrass ecosystems; however, our findings question the relevance of local-scale seagrass species composition or density to soil organic carbon pools in some environmental contexts.  相似文献   

20.
Current information on feeding habits of the numerous small invertebrates concentrated among seagrass blades has been inadequate to predict basic food requirements, natural influences of these crowded animals on their shared foods, or the animals’ resulting influences on each other. Apparently detrital food webs in seagrass meadows are reported frequently, but recent data from various seagrass meadows and other environments indicate that such detritus is often refractory to digestion by microorganisms and small invertebrates. A summary of literature on natural feeding habits among common seagrass meadow invertebrates, and detailed analyses of foraging by the commonest invertebrates in NW Gulf of Mexico seagrass meadows, show various degrees of feeding selectivity for epiphytic algae. Different species of epiphytes progressing along a seagrass blade can provide a gradient of food types and abundance for detailed studies on selective feeding. For minimal disturbance to feeding behavior, remote photographic sampling coupled with microacoustic monitoring and immediate, high-resolution gut analyses enable one to compare foraging frequencies on different foods to the available areas of those foods. Such comparisons can be interpreted for evidence of selectivity when an animal forages on a food more frequently than is expected by chance movement over the available areas of food. Feeding appears to be most frequent while the various invertebrates are among epiphytic algae at night, not while they are on bottom detritus. Based on available evidence from various detrital and other food webs, an hypothesis for future research is derived in which particular ephemeral algae are generally selected over other foods, but detritus may be important insteads when particular epiphytic foods are scarce. Even when total detrital foods are common, highly selected foods may be limited among such densely populated animals as in seagrass meadows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号