首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 990 毫秒
1.
The Susquehanna River is the major contributor to sediment loadings in the Chesapeake Bay. Because many environmental contaminants are associated with suspended particulates, the degree of particle retention within the reservoirs of the lower Susquehanna River is an important consideration in evaluating contaminant loadings to the Chesapeake Bay. Profiles of weapons-test Cs-137, nuclear power plant-related Cs-134 and Cs-137, and naturally-derived Pb-120 were used to estimate rates of sediment accretion in the conowingo Reservioir, an impoundment of the Susquehanna River along the Maryland-Pennsylvania border. Net accretion rates ranged from about 2 cm yr?1 downstream of a nuclear power plant cooling discharge to a high of about 7 cm yr?1 at the mount of an incoming creek. Slight, but consistent, increases in the annual rate of accretion since the creation of the reservoir in 1928 are apparent. The current net average annual sediment load reatined by the reservoir is estimated to be 0.4×106 to 1.5 × 106 metric tons yr?1. The retained sediment load represents about 8–23% of the long-time average sediment input to the reservoir.  相似文献   

2.
Kaneohe Bay, Hawaii, is an estuary used as a harbor for a military installation and for recreation, fishing, and research purposes. Rapid shoaling of the bay had been reported and attributed to increased stream erosion and sedimentation from the newly suburbanized watershed. Comparison of a 1976 bathymetric survey of Kaneohe Bay with that of a 1927 survey indicates an average shoaling of the lagoonal area of 1.0 m. Average shoaling for the north and middle bay at 0.6m/49 years (1.2 cm yr−1 is lower than for the south bay at 1.5m/49 years (3.1 cm yr−1). The total lagoonal fill in the 49-year period is about 1.95× 107 m3, assigned as follows: 64% carbonate detritus from the reefs as well as growth of living coral and unrecorded dredging spill, 9% recorded dredging spoils, and only 27% terrigenous sediment. Seismic reflection profiles distinguish spoil from natural sediment and show that the infilling sediment is trapped between, burying reef structures built during Quaternary lower stands of the sea. There had been little obvious change between 1882 and 1927 surveys. All information suggests that increased shoaling rates since 1927 are due to reported and unreported disposal of dredge spoil, mainly from 1939 to 1945 for ship and seaplane channels in the south bay, and not from increased runoff and urbanization around the south bay. Hawaii Institute of Geophysics Contribution No. 1257.  相似文献   

3.
High rates of wetland loss in the Mississippi deltaic plain have been attributed to a combination of insufficient marsh sedimentation and relative sea-level rise rates of over 1.2 cm yr?1. This study examines contemporary patterns of sediment delivery to the marsh surface by evaluating the contribution of individual marsh flooding events. Strong meteorological effects on water level in Terrebonne Bay often mask the usual microtidal fluctuations in water level and cause flood events to be of unpredictable frequency and duration. Sediment deposited on the marsh surface was collected weekly at two sites. Preliminary results allow the relative contributions of tidal and storm inundations to be calculated. Maximum sedimentation is associated with strong southerly winds both causing increased flooding and mobilizing sediment from open bay areas. Sediment deposition is limited by the availability of suspended sediment and the opportunity for its transport onto the marsh surface.  相似文献   

4.
In order to test the assumption that accretion rates of intertidal salt marshes are approximately equal to rates of sea-level rise along the Rhode Island coast,210Pb analyses were carried out and accretion rates calculated using constant flux and constant activity models applied to sediment cores collected from lowSpartina alterniflora marshes at four sites from the head to the mouth of Narragansett Bay. A core was also collected from a highSpartina patens marsh at one site. Additional low marsh cores from a tidal river entering the bay and a coastal lagoon on Block Island Sound were also analyzed. Accretion rates for all cores were also calculated from copper concentration data assuming that anthropogenic copper increases began at all sites between 1865 and 1885. Bulk density and weight-loss-on-ignition of the sediments were measured in order to assess the relative importance of inorganic and organic accumulation. During the past 60 yr, accretion rates at the eight low marsh sites averaged 0.43±0.13 cm yr?1 (0.25 to 0.60 cm yr?1) based on the constant flux model, 0.40±0.15 cm yr?1 (0.15 to 0.58 cm yr?1) based on the constant activity model, and 0.44±0.11 cm yr?1 (0.30 to 0.59 cm yr?1) based on copper concentration data, with no apparent trend down-bay. High marsh rates were 0.24±0.02 (constant flux), 0.25±0.01 (constant activity), and 0.47±0.04 (copper concentration data). The cores showing closest agreement between the three methods are those for which the excess210Pb inventories are consistent with atmospheric inputs. These rates compare to a tide gauge record from the mouth of the bay that shows an average sea-level rise of 0.26±0.02 cm yr?1 from 1931 to 1986. Low marshes in this area appear to accrete at rates 1.5–1.7 times greater than local relative sea-level rise, while the high marsh accretion rate is equal to the rise in sea level. The variability among the low marsh sites suggests that marshes may not be poised at mean water level to within better than ±several cm on time scales of decades. Inorganic and organic dry solids each contributed about 9% by volume to low marsh accretion, while organic dry solids contributed 11% and inorganic 4% to high marsh accretion. Water/pore space accounted for the majority of accretion in both low and high marshes. If water associated with the organic component is considered, organic matter accounts for an average of 91% of low marsh and 96% of high marsh accretion. A dramatic increase in the organic content at a depth of 60 to 90 cm in the cores from Narragansett Bay appears to mark the start of marsh development on prograding sand flats.  相似文献   

5.
In an attempt to characterize localized rates of sediment accretion, 10 sediment cores were collected from the lower reach of the Passaic River, a major tributary of Newark Bay, New Jersey. Sediments were assayed for 210Pb activity at predetermined depths and the rate of sediment accretion (cm yr?1) was estimated from the least squares regression of the log of unsupported activity versus depth. Sediment accretion rates, derived from 210Pb measurements (RPb) were used to predict the depth interval within the core containing sediments deposited around 1954; subsequent 137Cs analyses were focused on this depth interval. Sediment accretion rates derived from 137Cs measurements (RCs) were extrapolated from the depth of the 1954 horizon. Lead-210 derived sediment accretion rates in cores collected from a sediment bench extending along the inside bend on the southern shore of a meander in the river, ranged from 4.1 cm yr?1 to 10.2 cm yr?1 and averaged 6.8 cm yr?1. The RCs estimates for cores from this area ranged from 3.8 cm yr?1 to 8.9 cm yr?1 and averaged 6.6 cm yr?1. The RCs for cores collected in a more hydrologically dynamic reach of the river upstream of the sediment bench, were only 0.41 cm yr?1 and 0.66 cm yr?1. The results of this investigation indicate that this reach of the lower Passaic River is an area of high sediment accumulation, retaining much of the sediment load deposited from upstream and downstream sources. The rates of sediment accretion in the lower Passaic River are among the highest reported anywhere in the Newark Bay estuary.  相似文献   

6.
In this paper we assemble and analyze quantitative annual input-export budgets for total nitrogen (TN) and total phosphorus (TP) for Chesapeake Bay and three of its tributary estuaries (Potomac, Patuxent, and Choptank rivers). The budgets include estimates of TN and TP sources (point, diffuse, and atmospheric), internal losses (burial in sediments, fisheries yields, and denitrification), storages in the water column and sediments, internal cycling rates (zooplankton excretion and net sediment-water flux), and net downstream exchange. Annual terrestrial and atmospheric inputs (average of 1985 and 1986 data) of TN and TP ranged from 4.3 g TN m?2 yr?1 to 29.3 g TN m?2 yr?1 and 0.32 g TP m?2 yr?1 to 2.42 g TP m?2 yr?1, respectively. These rates of TN and TP input represent 6-fold to 8-fold and 13-fold to 24-fold increases in loads to these systems since the precolonial period. A recent 11-yr record for the Susquehanna River indicates that annual loads of TN and TP have varied by about 2-fold and 4-fold, respectively. TN inputs increased and TP inputs decreased during the 11-yr period. The relative importance of nutrient sources varied among these estuaries: point sources of nutrients delivered about half the annual TN and TP load to the Patuxent and nearly 60% of TP inputs to the Choptank; diffuse sources contributed 60–70% of the TN and TP inputs to the mainstream Chesapeake and Potomac River. The direct deposition of atmospheric wet-fall to the surface waters of these estuaries represented 12% or less of annual TN and TP loads except in the Choptank River (37% of TN and 20% of TP). We found direct, although damped, relationships between annual rates of nutrient input, water-column and sediment nutrient stocks, and nutrient losses via burial in sediments and denitrification. Our budgets indicate that the annual mass balance of TN and TP is maintained by a net landward exchange of TP and, with one exception (Choptank River), a net seaward transport of TN. The budgets for all systems revealed that inorganic nutrients entering these estuaries from terrestrial and atmospheric sources are rapidly converted to particulate and organic forms. Discrepancies between our budgets and others in the literature were resolved by the inclusion of sediments derived from shoreline erosion. The greatest potential for errors in our budgets can be attributed to the absence of or uncertainties in estimates of atmospheric dry-fall, contributions of nutrients via groundwater, and the sedimentation rates used to calculate nutrient burial rates.  相似文献   

7.
To compare natural variability and trends in a developed estuary with human-influenced patterns, stable isotope ratios (δ13C and δ15N) were measured in sediments from five piston cores collected in Chesapeake Bay. Mixing of terrestrial and algal carbon sources primarily controls patterns of δ13Corg profiles, so this proxy shows changes in estuary productivity and in delivery of terrestrial carbon to the bay. Analyses of δ15N show periods when oxygen depletion allowed intense denitrification and nutrient recycling to develop in the seasonally stratified water column, in addition to recycling taking place in surficial sediments. These conditions produced 15N-enriched (heavy) nitrogen in algal biomass, and ultimately in sediment. A pronounced increasing trend in δ15N of +4‰ started in about A.D. 1750 to 1800 at all core sites, indicating greater eutrophication in the bay and summer oxygen depletion since that time. The timing of the change correlates with the advent of widespread land clearing and tillage in the watershed, and associated increases in erosion and sedimentation. Isotope data show that the region has experienced up to 13 wet-dry cycles in the last 2700 yr. Relative sea-level rise and basin infilling have produced a net freshening trend overprinted with cyclic climatic variability. Isotope data also constrain the relative position of the spring productivity maximum in Chesapeake Bay and distinguish local anomalies from sustained changes impacting large regions of the bay. This approach to reconstructing environmental history should be generally applicable to studies of other estuaries and coastal embayments impacted by watershed development.  相似文献   

8.
Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay   总被引:1,自引:0,他引:1  
The scales on which phytoplankton biomass vary in response to variable nutrient inputs depend on the nutrient status of the plankton community and on the capacity of consumers to respond to increases in phytoplankton productivity. Overenrichment and associated declines in water quality occur when phytoplankton growth rate becomes nutrient-saturated, the production and consumption of phytoplankton biomass become uncoupled in time and space, and phytoplankton biomass becomes high and varies on scales longer than phytoplankton generation times. In Chesapeake Bay, phytoplankton growth rates appear to be limited by dissolved inorganic phosphorus (DIP) during spring when biomass reaches its annual maximum and by dissolved inorganic nitrogen (DIN) during summer when phytoplankton growth rates are highest. However, despite high inputs of DIN and dissolved silicate (DSi) relative to DIP (molar ratios of N∶P and Si∶P>100), seasonal accumulations of phytoplankton biomass within the salt-intruded-reach of the bay appear to be limited by riverine DIN supply while the magnitude of the spring diatom bloom is governed by DSi supply. Seasonal imbalances between biomass production and consumption lead to massive accumulations of phytoplankton biomass (often>1,000 mg Chl-a m?2) during spring, to spring-summer oxygen depletion (summer bottom water <20% saturation), and to exceptionally high levels of annual phytoplankton production (>400 g m?2 yr?1). Nitrogen-dependent seasonal accumulations of phytoplankton biomass and annual production occur as a consequence of differences in the rates and pathways of nitrogen and phosphorus cycling within the bay and underscore the importance of controlling nitrogen inputs to the mesohaline and lower reaches of the bay.  相似文献   

9.
Sediment cores were collected from the Neuse and Pamlico River estuaries, North Carolina, at seven different sites, and the data show strong anthropogenic influence on water quality. The sediments from these cores were dated using210Pb,137Cs,14C, and pollen horizon techniques. Specific parameters investigated include bulk density, sedimentation rates, diatom assemblage changes, nutrient and trace metal flux, and vegetation changes as recorded in the pollen record. The greatest increases in sedimentation, nutrient and metal flux and changes in diatom assemblages have occurred in the past 50–60 yr in the Pamlico and Neuse. Diatom diversity has decreased and small planktonic forms have become dominant over time, most likely due to eutrophication and increased turbidity and sedimentation. Major changes occur before phytoplankton surveys and monitoring were initiated. Overall trends are similar to those found in Chesapeake Bay, although the time frame of major changes is more recent. Dominant small planktonic diatom species differ between Chesapeake Bay and the Neuse and Pamlico. Variance in paleoecological indicators between these mid-Atlantic estuaries may be due to geomorphology and land use history.  相似文献   

10.
The decline of submersed aquatic vegetation (SAV) in tributaries of the Chesapeake Bay has been associated with increasing anthropogenic inputs, and restoration of the bay remains a major goal of the present multi-state “Bay Cleanup” effort. In order to determine SAV response to water quality, we quantified the water column parameters associated with success of transplants and natural regrowth over a three-year period along an estuarine gradient in the Choptank River, a major tributary on the eastern shore of Chesapeake Bay. The improvement in water quality due to low precipitation and low nonpoint source loadings during 1985–1988 provided a natural experiment in which SAV was able to persist upstream where it had not been for almost a decade. Mean water quality parameters were examined during the growing season (May–October) at 14 sites spanning the estuarine gradient and arrayed to show correspondence with the occurrence of SAV. Regrowth of SAV in the Choptank is associated with mean dissolved inorganic nitrogen <10 μM; mean dissolved phosphate <0.35 μM; mean suspended sediment <20 mg l?1; mean chlorophylla in the water column <15 μg l?1; and mean light attenuation coefficient (Kd) <2 m?1. These values correspond well with those derived in other parts of the Chesapeake, particularly in the lower bay, and may provide managers with values that can be used as target concentrations for nutrient reduction strategies where SAV is an issue.  相似文献   

11.
Calculations by others of the preindustrial deposition of inorganic nitrogen from the atmosphere in the area of Narragansett Bay compared with recent measurements suggest that this flux has increased almost 15 times over natural background. On the basis of modern studies of the export of nitrogen and phosphorus from temperate forests, the prehistoric watershed also probably contributed very little reactive N or P to the bay. New information from undisturbed old-growth forests suggests that most of the N that was exported from the watershed was probably associated with refractory dissolved organic matter and thus contributed little to the fertility of the bay. The largest source of reactive dissolved inorganic nitrogen (DIN) and phosphorus (DIP) for Narragansett Bay under prehistoric conditions was the coastal ocean water entrained in the bay in estuarine circulation. The total input of DIN to this estuary has increased about five-fold and the input of total DIP has approximately doubled as a result of human activities. Recent ecosystem-level experiments using large (13 m3, 5 m deep) mesocosms designed as living models of Narragansett Bay showed that the primary production of phytoplankton in the bay is limited by the supply of DIN and that annual phytoplankton production is strongly correlated with the rate of input of DIN. The relationship between DIN input and annual phytoplankton production in the mesocosms is consistent with observations published by others working in 10 different natural marine systems, and a functional regression of the field and experimental data provides a tool to calculate the rate of prehistoric phytoplankton production that would have been associated with the prehistoric DIN input estimates. The result of this calculation suggests that phytoplankton production in the bay has approximately doubled (from about 130 g C m?2 yr?1 to 290 g C m?2 yr?1 for a baywide average) since the time of European contact. It also seems likely that seagrasses and macroalgae once made a much larger contribution to total system production than they do today.  相似文献   

12.
Sediment accumulation rates were estimated from-the vertical distribution of excess Pb-210 measured in sediment cores collected at seven stations in the Saguenay Fjord, Quebec. These rates decrease with increasing water depth and distance from the mouth of the Saguenay River, ranging from 4.0 g cm?2 yr?1 (~- 7 cm yr?1) near the head of the fjord to 0.07 g cm?2 yr?1 (~- 0.1 cm yr?1) in the deep inner basin of the fjord. In one core from the head of the fjord, layered sediment structures, having different physical characteristics and composition, appear related to recent, pulsed inputs of older raised marine deposits displaced by a landslide in 1971. Synchronous depositional anomalies in several cores provide evidence of other large scale sediment redistribution processes in the fjord. Pb-210 geochronologies are generally in good agreement with time-stratigraphic horizons inferred both from Cs-137 activity profiles and from the analysis of pollen assemblages in one core.  相似文献   

13.
In Fayetteville Green Lake, past sedimentation rates can be accurately and precisely estimated by separating annual couplets or varves in dried sediment samples. Two measures were used, which serve as upper and lower limits on estimated sedimentation rate. They agree within 5 % with average annual sedimentation rate in couplets for recent years. Between 3 and 5 replicate samples are needed to reduce the half-width of 95 % confidence intervals on individual couplet sedimentation rates to 30 g m?2 yr?1 about 5 % of average recent rates. In the late 1800s sedimentation rate averaged 392 g m?2 yr?1 and ranged between 324 and 466 g m?2 yr?1, while in the 1970s the rate averaged 581 g m?2 yr?1 by the same measure, and ranged between 384 and 646 g m?2 yr?1. Sedimentation rate averaged for 13 years does not vary over short distances in the profundal zone, but lateral variation in sedimentation rate can be detected for individual years over the same distance. Not all this variation was associated with the non-uniform distribution of dark sublaminae and thin turbidites which cannot be separated from the annual layers. This indicates that although precise estimates of sedimentation rates can be made at different points in the lake, estimates will have to be made at numerous points before annual sedimentation rates for the lake as a whole can be accurately assessed.  相似文献   

14.
Sediment core segments from Sylvan Lake, Lake Champlain and Lake Canadarago were dated radiometrically with 210Pb and 137Cs. Their respective sedimentation rates were determined to be 0.11, 0.14 and 0.52 g cm?2 yr?1. For the two lakes of lower sedimentation the variations of selected elemental abundances as function of depth were analyzed. Two groupings were found: Al, K, Ti, Rb and Zr were correlated among themselves but reflected different variations in the input of terrigenous erosion material to the lakes. The Cu, Zn and Pb correlated among themselves showed similar depth dependence with increasing concentrations toward the top which can be attributed to cultural pollution. Recent ‘excess’ fluxes to the sediments above the natural contribution by clastic material were derived for the location of the cores, which for Cu, Zn and Pb amounted to 3.8, 24 and 16 μg cm?2 yr?1 respectively for Sylvan Lake and 4.9, 20 and 16 μg cm?2 yr?1 for Lake Champlain. The corresponding 210Pb flux was 3.3 and 2.3 dpm cm?2 yr?1, respectively for the two lakes.Approximate residence times in the water column were obtained for trace metals at the Lake Champlain location. Short residence times estimated for Pb (< 0.15 yr) and Cu (< 0.4 yr) indicate fast removal, whereas those for Zn (1.0 ± 0.3 yr) and Cr (2.0 ± 0.5 yr) appeared to be dominated by the water residence time.  相似文献   

15.
The estuarine environment can serve as either a source or sink of carbon relative to the coastal ocean carbon budget. A variety of time-dependent processes such as sedimentation, carbon supply, and productivity dictate how estuarine systems operate, and Mobile Bay is a system that has experienced both natural and anthropogenic perturbations that influenced depositional processes and carbon cycling. Sediments from eight box cores provide a record of change in bulk sediment accumulation and carbon burial over the past 110 years. Accumulation rates in the central part of the basin (0.09 g cm?2) were 60–80 % less than those observed at the head (0.361 g cm?2) and mouth (0.564 g cm?2) of the bay. Sediment accumulation in the central bay decreased during the past 90 years in response to both anthropogenic (causeway construction) and natural (tropical cyclones) perturbations. Sediment accumulation inevitably increased the residence time of organic carbon in the oxic zone, as observed in modeled remineralization rates, and reduced the overall carbon burial. Such observations highlight the critical balance among sediment accumulation, carbon remineralization, and carbon burial in dynamic coastal environments. Time-series analysis based solely on short-term observation would not capture the long-term effects of changes in sedimentation on carbon cycling. Identifying these relationships over longer timescales (multi-annual to decadal) will provide a far better evaluation of coastal ocean carbon budgets.  相似文献   

16.
Accretion rates were measured in fringe and basin mangrove forests in river and tidally dominated sites in Terminos Lagoon, Mexico, and a basin mangrove forest in Rookery Bay, Florida, USA. Accretion rates were determined using the radionuclides210Pb and137Cs. Consolidation-corrected accretion rates for the Rookery Bay cores, ranged from 1.4 to 1.7 mm yr?1, with an average rate of 1.6 mm yr?1. Rates at the Mexico sites ranged from 1.0 to 4.4 mm yr?1, with an average of 2.4 mm yr?1. Determination of rates in these mangrove forests was greatly affected by the consolidation corrections which decreased the apparent accretion rate by over 50% in one case. Accretion rates at basin sites compare favorably with a reported 1.4 to 1.6 mm yr?1 rate of sea-level rise, indicating little or no subsidence at inland locations. Accretion rates in fringe sites are generally greater than basin sites, indicating greater subsidence rates in these sediments over longer time intervals.  相似文献   

17.
The effects of low dissolved oxygen or hypoxia (<2 mg l?1) on macrobenthic infaunal community structure and composition in the lower Chesapeake Bay and its major tributaries, the Rappahannock, York, and James rivers are reported. Macrobenthic communities at hypoxia-affected stations were characterized by lower species diversity, lower biomass, a lower proportion of deep-dwelling biomass (deeper than 5 cm in the sediment), and changes in community composition. Higher dominance in density and biomass of opportunistic species (e.g., euryhaline annelids) and lower dominance of equilibrium species (e.g., long-lived bivalves and maldanid polychaetes) were observed at hypoxia-affected stations. Hypoxia-affected macrobenthic communities were found in the polyhaline deep western channel of the bay mainstem north of the Rappahannock River and in the mesohaline region of the lower Rappahannock River. No hypoxic effects on the infaunal macrobenthos were found in the York River, James River, or other deep-water channels of the lower Chesapeake Bay.  相似文献   

18.
Monthly sampling of a 140-ha seagrass bed in the lower Chesapeake Bay, Virginia, revealed that 13 numerically and trophically important species, representing about 20% of the total community densities over the year-long study period, accounted for the production of ≈42 g dry wt m?2 yr?1. This estimate is likely conservative due to our assumptions on voltinism and fixed size at maturity regardless of season for the species studied. The isopodErichsonella attenuata accounted for 17.6 g dry wt m?2 yr?1 or 42% of the calculated total production, while the portunid decapodCallinectes sapidus and the amphipodGammarus mucronatus each accounted for 7.7 g dry wt m?2 yr?1. The 10 remaining species (4 peracarids, 4 molluscs, and 2 decapods) each produced less than 2 g dry wt m?2 yr?1. Total seagrass-associated secondary production was estimated to equal or exceed 200 g dry wt m?2yr?1. By applying this estimate to the entire 140-ha grassbed, we projected that, on average, 4.8 metric tons dry wt of invertebrate standing stock and 55.9 metric tons of invertebrate production occur over the year.  相似文献   

19.
Geochemical (total nitrogen, total organic carbon, total phosphorus, total sulfur, and carbon and nitrogen stable isotopes) and selected biotic (diatom, foraminifera, polychaete) indicators preserved in two estuarine sediment cores from the mesohaline Chesapeake Bay provide a history of alterations in the food web associated with land-use change. One core from the mouth of the Chester River (CR) (collected in 2000) represents a 1,000-year record. The second core (collected in 1999), from the Chesapeake Bay’s main stem opposite the Choptank River (MD), represents a 500-year record. As European settlers converted a primarily forested landscape to agriculture, sedimentation rates increased, water clarity decreased, salinity decreased in some areas, and the estuarine food web changed into a predominantly planktonic system. Representatives of the benthic macrofaunal community (foraminifera and the polychaetes Nereis spp.) were affected by local changes before there were widespread landscape alterations. Nitrogen stable isotope records indicated that land-use changes affected nitrogen cycling beginning in the early 1700s. Extreme changes were evident in the mid-nineteenth century following widespread deforestation and since the mid-twentieth century reflecting heightened eutrophication as development increased in the Chesapeake Bay watershed. Results also demonstrate how paleoecological records vary due to the degree of terrestrial inputs of freshwater runoff and nutrients at core locations within the Chesapeake Bay.  相似文献   

20.
We continuously measured dissolved silicate concentrations and fluxes discharged from various Rhode River subwatersheds for a period of 14 yr from 1984 to 1998 and for 15 mo in 1971–1972. We also measured dissolved silicate concentrations along a transect from the head of the tide in Rhode River estuary to Chesapeake Bay. The average concentration of dissolved silicate discharged from the Rhode River watershed was 10.8 mg Si l?1. There were consistent and significant differences in silicate concentrations discharged over time and space among subwatersheds. Mean annual silicate flux from the watershed was 26.6 kg Si ha?1 and 93% of this occurred during the winter and spring seasons. There were large interannual variations in silicate flux, due primarily to differences in precipitation and water discharge, rather than silicate concentration. Land use had little or no effect on silicate flux from various subwatersheds. Silicate concentrations discharged from a subset of subwatersheds in 1995–1996 were 25% to 35% lower than in a period with similar precipitation in 1971–1972. Mean annual concentrations of silicate discharged from nine subwatersheds have been declining about 1.5% yr?1 or by 0.21–0.26 mg Si l?1 yr?1 over the last 25 yr. Despite high average silicate fluxes from the watershed, at times the Rhode River estuary developed low dissolved silicate concentrations, which could have been limiting to the growth of diatoms. Examples were in the spring after a winter with low watershed discharge (as low as 0.019 mg Si l?1 in 1995) and after protracted drought (as low as 0.041 mg Si l?1 in 1993).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号