共查询到20条相似文献,搜索用时 4 毫秒
1.
A three-dimensional density field associated with mesoscaie unstable waves generated by the 3-D, primitive-equation model (Wang and Ikeda, 1996) is provided to the quasi-geostrophic pressure tendency and ω-equations, and to the (ageostrophic) Q-vector equation. Diagnostic analyses, analogous to the approaches in meteorology: ω-equation and Q-vector method, are for the first time developed to examine the mesoscaie dynamical processes and mechanisms of the unstable waves propagating in the mid-latitude ocean. The weaknesses and strengths of these two diagnostic approaches are evaluated and compared to the model results. The Q-vector method is then recommended to diagnose the vertical motion associated with the mesoscaie dynamics from a hydrographic CTD (conductivity-temperature-depth) array, while the quasi-geostrophic equations produce some small-scale features (errors) in the diagnosed fields. 相似文献
2.
3.
4.
5.
Instability analysis of three-dimensional ocean shear waves 总被引:1,自引:0,他引:1
Qiao Fangli 《海洋学报(英文版)》1996,15(1):1-8
Instabilityanalysisofthree-dimensionaloceanshearwaves¥QiaoFangli(ReceivedNovember6,1995,acceptedNovember30.1995)Abstract:Base... 相似文献
6.
In order to fulfill the no-slip condition at the western and eastern boundaries of the ocean basin, introduced "effective wind stress", which has much larger spatial variations towards the boundaries than in the ocean interior. The effective wind stress can thus be decomposed into spatially slow-varying and fast varying components. Careful scale analysis on the classical Munk winddriven ocean circulation theory, which consists of the interior Sverdrup flow and the western boundary current but of no eastern boundary current, shows that the wind stress curl appearing in the Sverdrup equation must have negligible spatial variations. In the present model the spatially slow-varying component of the wind stress appears in the Sverdrup equation, and the spatially fastvarying component becomes the forcing term of the boundary equations. As a result, in addition to the classical Munk solution the present model has an extra term at the western boundary which (Northern Hemisphere) increases the northward transport as well as the southward return transport, and has a term at the eastern boundary corresponding to the eastern boundary current. 相似文献
7.
8.
《Ocean Modelling》2003,5(4):297-323
An algorithm is presented for solving the one-dimensional diffusion equation for density, written in terms of density (or a like surrogate) as the independent variable. The algorithm maintains nonnegative layer thicknesses, the premise of the transformation to density as the independent coordinate, under certain restrictions. Near-zero thickness layers can be maintained at the boundaries to accommodate future inflation in response to heating from the boundary. Layers can shrink to near-zero thickness in response to cooling from the boundary. A slight modification of the algorithm permits layers to have diffusion coefficients which differ by orders of magnitude. This provides a natural framework for a surface mixed layer in an isopycnal model, in which the mixed layer is distinguished as a zone of very high turbulent diffusivity overlying an ocean interior of much smaller turbulent diffusivity. The “mixed layer” may be an aggregation of several isopycnal layers rather than just one. A substantial jump in density at the mixed layer base can be represented by several near-zero thickness isopycnal layers. The specification of the thickness of the mixing zone, i.e., the mixed layer depth, is external to the algorithm. An illustration is given using a Kraus–Turner-type specification. 相似文献
9.
Hidetaka Takeoka 《Journal of Oceanography》1991,47(2):27-32
To examine the effects of the deep ocean circulation on the characteristics of the ocean as a reservoir, age distributions
of the material whose source and sink are at the ocean surface are calculated using an idealized vertical two-dimensional
model of the ocean. The results show that the large-scale vertical circulation of the deep water accelerates the renewal of
deep water and reduces the average age of the material. It is also shown that the multi-layered structures of the deep circulation
are more realistic than the one-layered structure and promote the renewal of the deep water. 相似文献
10.
海工结构物浅基础稳定性的可靠度分析 总被引:5,自引:1,他引:5
应用可靠度理论对渤海某油田软粘土地基工作的沉垫式基础的稳定性进行了可靠度分析,阐述了各个设计指标的变化对分项系数及可靠度指标的影响规律,并将分析结果与该标准中规定的分项系数进行了比较。 相似文献
11.
Anne Levasseur Lei Shi Neil C. Wells Duncan A. Purdie Boris A. Kelly-Gerreyn 《Estuarine, Coastal and Shelf Science》2007,73(3-4):753-767
A three-dimensional hydrodynamic model has been developed to simulate water mass circulation in estuarine systems. This model is based on the primitive equation in Cartesian coordinates with a terrain-following structure, coupled with a Mellor–Yamada 2.5 turbulence scheme. A fractional-step method is applied and the subset of equations is solved with finite volume and finite element methods. A dry–wet process simulates the presence of the tidal flat at low water. River inputs are introduced using a point-source method. The model was applied to a partially mixed, macrotidal, temperate estuary: Southampton Water, UK. The model is validated by comparisons with sea surface elevation, ADCP measurements and salinity data collected in 2001. The mean spring range 2(M2 + S2) and the mean neap range 2(M2 − S2) are modelled with an error relative to observation of 12 and 16%, respectively. The unique tidal regime of the system with the presence of the ‘young flood stand’ corresponding to the slackening conditions occurring at mid flood and ‘double high water’ corresponding to an extension of the slackening conditions at high tide is accurately reproduced in the model. The dynamics of the modelled mean surface and bottom velocity closely match the ADCP measurements during neap tides (rms of the difference is 0.09 and 0.01 m s−1 at the bottom and at the surface, respectively), whereas at spring the difference is greater (rms of the difference is 0.25 and 0.20 m s−1 at bottom and surface, respectively). The spatial and temporal variation of the degree of stratification as indicated by salinity distributions compares well with observations. 相似文献
12.
基于2000年秋季东中国海水文观测资料,应用三维有限元模式FEOM(Finite Element Ocean circulation Model),在温盐保持不变的情况下进行诊断计算100 d,模拟结果再现了环流的主要特征:由于海表面风的影响,秋季东中国海表层的环流以西南向流为主,在10m深以下由于风的影响减弱环流特征比较清晰完整。黄海北部出现一个气旋式涡旋,10m层流速大小为5 cm/s左右;浙闽沿岸流从表层到50~60m深都是存在的,流速基本不变;台湾暖流在10m层流速较大,且向陆架方向入侵明显,但是越向下越不明显,流速也有所减小。诊断计算60d后的后报计算结果显示,松弛尺度为5d可以更好地消除资料的不匹配。因此最终在诊断计算60d后开展了松弛时间为5d的40d的强诊断计算,强诊断模拟结果显示:强诊断计算能更好的模拟东中国海环流结构,相较于诊断计算,表层流速有所减弱,10 m层流速有所加强,各层流向强诊断计算和诊断计算基本一致。 相似文献
13.
After reviewing the inverse method, we apply it to deducing the general circulation of the North Atlantic ocean. We argue that the method is purely classical in nature, being nothing more than a mathematical statement of the principles upon which nearly all previous circulation schemes have been based. The ‘smoothed’ solution is shown to represent the components of the flow field that are determinable independently of the initial reference level. We then produce two circulation schemes based upon two different initial reference levels — 2000 decibars and the bottom — called North Atlantic-1A and North Atlantic-1B respectively. The models share many features in common and are strikingly similar to several previous schemes, most notably those of Jacobsen and Defant in the region west of Bermuda. No simple level-of-no-motion emerges in the flow fields; rather the velocity sections exhibit a complex cellular structure. Zonally integrated meridional cells of models and of the uniquely determined components are very similar, showing a poleward movement of warm saline water compensated at depth by a return flow of cold, fresher water. The magnitudes of the implied polar sea overflows and the heat fluxes are in good agreement with previous estimates. Finally, it is argued that neither these model circulations nor any other circulation pattern based upon the existing data can be regarded as actually representing the true time average ocean circulation because the data are aliased in time; the frequency/wavenumber spectrum of the ocean is inadequately known to determine the resulting errors. 相似文献
14.
A three-dimensional finite-difference hydrodynamic model has been developed using σ-coordinate for the vertical dimension. An explicit scheme for temporal integration and a staggered grid for spatial discretization have been adopted. The model has been tested against analytical or literature cases for wind and tide induced circulation. Results are in good agreement both with analytical solutions under idealised conditions and with results from the model of Shankar et al. (1996). 相似文献
15.
利用P矢量方法和第3版本的美国海军全球数字环境模式(GDEM)气候态月平均温、盐数据诊断分析了南海吕宋岛西侧中层与深层环流结构。结果显示在南海吕宋岛西侧中层存在一个反气旋涡,与前人在此处深层发现的气旋涡相反,且2个涡旋均与低盐中心位置相对应。诊断结果还表明中层反气旋涡从上到下流速逐渐减弱,深层气旋涡则随深度逐渐加强,在两涡旋之间的过渡层流速非常弱。中层反气旋涡的平均流速大小和低盐中心的平均盐度存在明显的季节变化,5—7月最强,这可能是中层环流在一定程度上受上层环流影响的表现。 相似文献
16.
17.
Inertial oscillations observed in the seas and oceans are frequently characterized by various hodographs of current velocities different from circular anticyclonic motion as follows from the simplest model. It is supposed in [1] on the basis of the data analysis of measurements carried out on the shelf near Gelendzhik in the autumn of 2009 that the observed distortions of hodographs of inertial currents are the consequences of superposition of inertial oscillations and background shear current. In this work we construct a simple model of inertial oscillations over the background of a shear current based on the exact solution of shallowwater equations, which generally confirms the hypothesis suggested in [1]. 相似文献
18.
A three-dimensional semi-implicit finite volume numerical model has been developed and applied to study tidal circulation and salinity stratification in the region of Oujiang River Estuary, China. The model employs horizontally unstructured grids and boundary-fitted coordinate system in the vertical direction. Governing equations consisting of continuity, momentum, and transport equations are all solved in the integral form of the equations, which provides a better representation of the conservative laws for mass, momentum, and transport in the coastal region with complex geometry and bottom bathymetry. The model performance was firstly quantified with skill assessment statistics on the choice of different parameters and validated with observed tidal elevation, current velocity, direction and salinity data over a spring–neap tidal cycle collected in 2006. Numerical results show that the model with wetting–drying capability successfully simulated the tidal currents and salinity fields with a reasonable accuracy and indicate that the Oujiang River Estuary is a macrotidal estuary with strong tidal mixing. In addition, the model results also show that the Oujiang River Estuary is a well-mixed estuary during spring tide. Then, the numerical simulations were performed to compare the hydrodynamic process and salinity distribution before and after a river training, which was conducted by blocking the south branch of the Oujiang River mouth. The results reveal that with the only north access to the sea, the influence of the blocking project on the flood discharge capacity is limited and the incremental velocity is beneficial to the navigation channel maintenance, although it will cause some scour to the embankment. Furthermore, the redistribution of tidal prism passing in or out the north branch makes a little severe salinity intrusion during high tide or low tide. However, the salinity intrusion is still within acceptable range, although it can cause some adverse effect on water intaking of production and life. The variations of salinity levels in Yueqing Bay situated at the north of the river mouth are not obvious, so the blocking project will not bring damage to local aquiculture. However, significant changes of salinity happen inside or outside of the south branch, so enough attention need to be paid to the changes of environment caused by the salinity variation after the blocking project. Overall, by weighing advantages and disadvantages of the blocking project, it is feasible and the model can be considered as a tool for managing and studying estuarine circulation. 相似文献
19.
B. V. Khar’kov 《Oceanology》2007,47(2):161-171
The nonlinear dynamics of the low-frequency variability of a mid-latitude ocean are studied. The mechanism of the separation of the western boundary current from the western wall, as well as the meridional displacements of the separation point and the separated eastward jet, is analyzed. A regional barotropic quasigeostrophic eddy-resolving numerical model is used for the analysis. The flow in a rectangular domain is simulated by the constant inflow and outflow of fluid through the boundaries. A regime when the nonlinearity prevails over the dissipation and the advection and β terms are of the same order of magnitude is considered, which is characteristic of the actual ocean. When the nonlinearity exceeds the threshold value, a periodic solution is obtained. The solution is determined by the nonslip boundary condition at the western wall. The solution obtained is studied in detail. The meridional displacements of the western boundary current separation point with respect to the western wall and the separated eastward jet can reach a few hundred kilometers. Their intensities and the intensity of the recirculation gyre in the western boundary current are found to oscillate with a period of about five years. 相似文献
20.
It is shown that the spectrum of eigen oscillations of the world ocean incorporates a mode with a period of about 100 h. It results from narrow straits connecting separate oceanic basins. The mode's spatial structure is described and found to be due to the numerical solution of a spectral problem.UDK 551.466.71 相似文献